

Functional Specifications for Team TerraUser

The Web-based User Management Project
Michelle Harr

Naoko Tsunekawa
Daniel Wallace

19 February 2002

Table of Contents

TABLE OF CONTENTS

LIST OF TABLES AND FIGURES 2

1. INTRODUCTION 3

2. SOFTWARE OVERVIEW 3

2.1 BACKGROUND / HISTORY 3
2.2 PRODUCT DESCRIPTION 4
2.3 PRODUCT FUNCTIONS 5
2.4 USERS 5
2.5 GENERAL CONSTRAINTS 5
2.6 TECHNICAL CONSTRAINTS 6
2.7 ASSUMPTIONS AND DEPENDENCIES 6

3. SPECIFIC FUNCTIONAL REQUIREMENTS 7

3.1 HIGH-LEVEL ARCHITECTURE 7
3.2 USERS 8
Administrators 8
Editors 9
Guest 9
3.3 FUNCTIONALITY OVERVIEW 9
3.4 USER INTERFACES 10
3.5 PROCESSING 12
User Access – Editor/Guest 12
User Access – Administrator 13

4. USE CASES 16

4.1 HOW THE PRODUCT WILL BE USED 16
4.2 USE CASES 16
Use Case 1: Invisible Application Login 18
Use Case 2: TerraUser Login 20
Use Case 3: Changing Password 21
Use Case 4: Access to Applications 22
Use Case 5: Changing Preference 23
Use Case 6: Search 24
Use Case 7: E-mail 25
Use Case 8: Add User 26
Use Case 9: Delete User 27
Use Case 10: Update User Information 28
Use Case 11: Password Reset/Expire 29
Use Case 12: Add Team 30
Use Case 13: Update Team Information 31
Use Case 14: Delete Team 32
Use Case 15: Log Off Users 33
Use Case 16: Post MOTD (Message of the Day) 34
Use Case 17: View Active Users and Logs 34
Use Case 18: Administrator Search 35
Use Case 19: Add Information Fields 35

5. INTERFACE REQUIREMENTS 36

5.1 INTERNAL INTERFACES 36
5.3 SOFTWARE INTERFACES 36
5.4 COMMUNICATION INTERFACES 36

6. PERFORMANCE REQUIREMENTS 37

7. DESIGN CONSTRAINTS 38

8. OTHER REQUIREMENTS 39

9. CONCLUSION 39

 2

LIST OF TABLES AND FIGURES
FIGURE 2.1: HIGH-LEVEL APPLICATION OVERVIEW 4
TABLE 2.1: TECHNICAL REQUIREMENTS 6
FIGURE 3.1: HIGH-LEVEL INTERFACE OVERVIEW 7
FIGURE 3.2: ARCHITECTURE 8
TABLE 3.1: ADMINISTRATOR REQUIREMENTS 8
TABLE 3.2: EDITOR REQUIREMENTS 9
TABLE 3.3: GUEST REQUIREMENTS 9
FIGURE 3.3: DIALOG BOX 11
FIGURE 3.4: DROP-DOWN SELECTION MENU 11
FIGURE 3.5: VARIOUS TEXT FIELDS 11
FIGURE 3.6: TWO LINKS AND A BUTTON 11
FIGURE 3.8: STATE DIAGRAM USER ACCESS 12
FIGURE 3.9: USER ACCESS DATA FLOW DIAGRAM 13
FIGURE 3.10: STATE DIAGRAM ADMINISTRATOR ACCESS 14
FIGURE 3.11: ADMINISTRATOR ACCESS DATA FLOW DIAGRAM 15
FIGURE 4.1: CONCEPTUAL WEBSITE 16
TABLE 4.1: USE CASE INVISIBLE APPLICATION LOGIN 18
FIGURE 4.2: INVISIBLE APPLICATION COMMUNICATION 19
TABLE 4.2: USE CASE TERRAUSER LOGIN 20
TABLE 4.3: USE CASE CHANGE PASSWORD 21
TABLE 4.4: USE CASE ACCESS TO APPLICATIONS 22
TABLE 4.5: USE CASE CHANGE PREFERENCES 23
TABLE 4.6: USE CASE SEARCH 24
TABLE 4.7: USE CASE EMAIL 25
TABLE 4.8: USE CASE ADD USER 26
TABLE 4.9: USE CASE DELETE USER 27
TABLE 4.10: USE CASE UPDATE USER INFORMATION 28
TABLE 4.11: USE CASE PASSWORD RESET/EXPIRE 29
TABLE 4.12: USE CASE ADD TEAM 30
TABLE 4.13: USE CASE UPDATE TEAM INFORMATION 31
TABLE 4.14: USE CASE DELETE TEAM 32
TABLE 4.15: USE CASE LOG OFF USERS 33
TABLE 4.16: USE CASE POST MOTD 34
TABLE 4.17: USE CASE VIEW ACTIVE USERS AND LOGS 34
TABLE 4.18: USE CASE ADMIN SEARCH 35
TABLE 4.19: USE CASE ADD INFORMATION FIELDS 35

 3

1. INTRODUCTION
This document is an official functional specification of the TerraUser Web-based User
Management software. This project is part of Northern Arizona University (NAU)
College of Engineering and Technology’s (CET) Senior Capstone Design 2001-2002.
Sponsorship is provided by Deborah Lee Soltesz from the U.S. Geological Survey and
advisement provided by Dr. Eck Doerry, Professor of Computer Science at NAU.

This document describes the behavior of the product and contains the technical
information and data needed for the design. It translates the software requirements
document into a technical description, which ensures the product feature requirements
are correctly understood before moving into the design process.

2. SOFTWARE OVERVIEW

2.1 Background / History
Congress created the U.S. Geological Survey (USGS) in 1879 as a science agency for
the Department of the Interior. The USGS serves as a national science provider and
fact-finding agency that provides a scientific understanding about natural resource
conditions, issues, and problems. USGS scientists collect, monitor and analyze large
amounts of data about the Earth and solar system. The government and citizens in all
walks of life use the information the USGS produces for various reasons, including
addressing pressing social issues. The USGS uses the vast scientific information for a
wide range of products, such as maps, and scientific solutions, such as wetlands
restoration and hazardous waste disposal.

The USGS Terrestrial Remote Sensing Team at the Flagstaff Field Center consists of a
four-member group: Pat Chavez (Remote Sensing Scientist and Group Leader), Stuart
Sides (Computer Scientist), Deborah Lee Soltesz (Web Mistress), and Miguel Velasco
(Image Processing Specialist). They work with satellite, multispectral, airborne,
shipborne sidescan sonar, and DEM digital images. This team does such things as
digital mosaicing, extraction and mapping of earth science information, geometric and
radiometric calibration and corrections, and multitemporal change detection. The team
has set up TerraWeb as a way for people to access this information, along with a way to
organize and manage some of their data.

Currently USGS TerraWeb applications have minimal security. Users are not required
to log on to access these web applications. No current user management system is in
place. Since data management and data analysis/manipulation is the main function of
many of these applications, it is imperative that there be some sort of security standards
when using these systems. These TerraWeb applications are fairly new, therefore
application uses and functions are evolving for the group’s needs.

 4

The objective of the project that we have been given by USGS is to design and
implement an efficient and secure interface to other USGS TerraWeb applications,
along with a stand-alone application used to administer the user management system.
The software will allow users to securely and easily access other interactive TerraWeb
applications.

2.2 Product Description
The goal of this product is to provide an efficient, secure interface to other USGS
TerraWeb applications, along with a stand-alone application used to administer the user
management system. The system will be built on a SuSE Linux server running an
Apache web server.

There are two parts to the TerraUser interactive web application. First, the interactive
web application allows users to securely and easily access other interactive USGS
TerraWeb applications. A variety of user information is stored in a MySQL database:
user name, team name, personal preferences, priority level, level of access, etc. This
allows users to customize their interface with preferences. Also, users are allowed to
retrieve and update certain information from the database through the interface.

Second, administrators are able to manage user accounts and permissions through the
stand-alone management system. The product centralizes the user management
system and provides to administrators a way to manage the user’s different access
levels. Users information can be easily manage through administration interface.

Figure 2.1 below shows a rough overview of the TerraUser application. Users will use a
secure socket layer (SSL) to login to the TerraUser application. The TerraUser
application will communicate to a MySQL database using JDBC. The TerraUser
application will be able to send requested information to the TerraWeb applications.

DataBase

TerraUser
Application

TerraWeb
Applications

Photo Archive
Maui Cam
TerraData

Figure 2.1: High-level Application Overview

 5

2.3 Product Functions
The overall functionality must:
Provide a secure interface for users to login to TerraWeb applications

• Provide a centralized way to manage users and their access/priority level
• Use a web-based interface
• Allow the user to:

o Supply a user name and password to be granted access to applications
o Supply personal preferences

• Allow the administrator to specify users, access levels, priority levels, and
available applications

• Store all the data in its database

These functional requirements are elaborated and discussed in more detail in Section 3.

2.4 Users
There are three kinds of users:

• Administrators: Users who use the administration application to edit user
information in the database. They enter data such as who the user is, what
privileges the user has and the priority level of the user.

• Editors: Users belonging to a specific work group or multiple work groups who
have access to all information belonging to their group. These users also have
read access to information that is marked public by other groups.

• Guests: Users who are allowed very limited access and information to
applications. These users can only search and read information that is marked
as public.

2.5 General Constraints
Listed below are the constraints that have been proposed by the client as well as those
which reflect project domain specifications.

• The system will have to secure user information sent through the Internet. This
will be achieved by using the secure HTTPS protocol.

• The system must adhere to accessibility and government guidelines (System
must not use cookies, etc).

• The system must not require specific browser to be run.
• The system development/integration/testing must be completed by April 26,

2002, for the Capstone Project Conference.

 6

2.6 Technical Constraints
The TerraUser software must meet the following minimal requirements:

• The system will be designed to be scalable to meet future needs of the client.
• The implementation must utilize specific technologies provided on the server.

The following table is a brief summary of the technology required by the project and
available on the server:

Category Technology Used

Operating System SuSE Linux
Web Server Apache
Java Server Apache Tomcat
Server Side Interfacing Java, JDBC, JSP, JavaScript
Database MySQL
Security SSL

Table 2.1: Technical Requirements

The design must provide a completely web-based interface. All interfaces must meet
with HTML 4.0 minimum standards and be in compliance with the Rehabilitation Act of
1973, Amendments of 1998, section 508.

2.7 Assumptions and Dependencies
Listed below are assumptions that have been considered:

• All TerraWeb applications will use the same technologies to provide easy
interfacing.

• A server exists.
• Users have access to a standard browser.
• Direct access to the server is available.
• The server has direct access to the TerraWeb server (i.e. not going through

firewalls).

 7

3. SPECIFIC FUNCTIONAL REQUIREMENTS

3.1 High-Level Architecture
Figure 3.1 below shows a rough diagram of the TerraUser interface. Users will have to
log in through a browser to gain access to TerraWeb applications, a user preference
page, etc.

LoginWorld User
Center

Application
Links ...User

Preferences

Figure 3.1: High-level Interface Overview

The architecture of the software will be fairly simple. Modules will be created at each
level of technology: WWW (HTML, JavaScript), server (JSP, JavaServlets), and
database (MySQL). The modules will act as an internal interface between each
technology. The web-page modules use the database modules as an interface
between the web pages and the database. This will be an effective and efficient way to
provide easy interaction between the web-interface and the database.

A three-tier architecture can provide flexibility, reusability, and scalability when used for
a distributed client/server design. It is a common architecture used for many Internet
applications. An architecture overview is shown below in Figure 3.2.

Using a three-tier architecture will allow the information transfer between the web server
and the database server to be optimized. The architecture will allow the interface to be
easily scalable. The architecture also provides a framework for sub-system control and
communication.

 8

Client

Client

Client

Web Server
Application Processing

Database Server
Data Management

HTTPS

HTTPS

HTTPS

JDBC

Presentation

Process ManagementUser System Interface Database Management

Three tier client-server architecture

Figure 3.2: Architecture

3.2 Users

Administrators
Administrators manage users, teams and their authority to access information. The
following table is a list of the identified requirements for the administrators.

Requirements prioritized with 1 = Crucial, 2 = Very high, 3 = High, 4 = Average, 5 = Low, 6 = Very
low. Difficulty is rated from 1 to 10 where 10 = very difficult and 1 = very easy.

Requirement Priority Difficulty
Add a new user 1 2
Delete existing user 1 2
Update user information 1 2
Add/Update/Delete team information 1 2
Log off all users 3 8
Post Message of the Day (MOTD) 5 1
View active users or logs 2 2
Add information fields 1 4
Set password reset/expire 1 5

Table 3.1: Administrator Requirements

 9

Editors
Editors are the main users of the interface and applications. These users perform the
actual work. The following table is a list of the identified requirements for the editor.

Requirements prioritized with 1 = Crucial, 2 = Very high, 3 = High, 4 = Average, 5 = Low, 6 = Very
low. Difficulty is rated from 1 to 10 where 10 = very difficult and 1 = very easy.

Requirement Priority Difficulty
Change password 1 2
Change preference 1 4
Access to applications 1 8
Search option 5 8
E-mail to administrator 2 1

Table 3.2: Editor Requirements

Guests
Guests have limited access to applications and information. The following table is a list
of the identified requirements for the guest.

Requirements prioritized with 1 = Crucial, 2 = Very high, 3 = High, 4 = Average, 5 = Low, 6 = Very
low. Difficulty is rated from 1 to 10 where 10 = very difficult and 1 = very easy.

Requirement Priority Difficulty
View application data that is marked
public

1 8

Search for public information 1 5
Post messages to administrators or
teams

5 1

Table 3.3: Guest Requirements

3.3 Functionality Overview
The following specific functions must be provided:

1. User Accounts:
• provides storage of user information including but not limited to: user login

name, password, priority level, access rights, group membership, and
interface preferences

• managed through an administrator interface

2. Centralized User Login:
• requires use of user login name and password to access the software
• provides users the ability to change the password at any time
• uses encryption to send data
• has expiration times for passwords set by administrators forcing users to

change their passwords after the expiration time

 10

3. Interactive Web Application for Administrators:
• provides an independent application available exclusively to administrators
• provides the ability to add or delete information that can be stored for users
• provides the ability to alter information stored for any given user
• provides the ability to add or delete users
• provides options to set the password expiration time
• provides monitoring of user activities and the option to enable outputting of

activities to a log file

4. Interactive Web Application for All Users:
• uses secure login
• provides access to the Maui Cam, TerraData, and Photo Archive applications
• provides user interface customization stored with their user data
• allows applications to retrieve the user’s customization
• allows users to view and manage their system accounts in one place
• allows users to use TerraWeb applications they have been granted access to
• allows users the option to change their password

3.4 User Interfaces
The interface to the software is entirely web-based; all input will come from forms
embedded in the web pages. This means that:

• All input data will be in a text format.
• The data will be sent to our application as text.
• The data will be transformed to various data types.

The interface will use four basic types of inputs: text fields, drop-down selection menus,
buttons, and links. The following constraints will apply:

• The login and password text fields will be checked for illegal characters.
• The login field will be limited to alphanumeric characters, the dash “-“ and the

underscore “_”.
• The other text fields will allow the user to enter text freely and will be processed

for compatibility with the database while preserving the text. The processing will
primarily involve using doubled double quotes and encoding returns and
backslashes.

• Any buttons or links that appear on any given page will have an obvious
functional effect and may bring up a dialog box asking a yes or no question.

• Many of the inputs available to the user will be a drop-down selection menu.
• Inputs will have predefined values associated with them and thus require no

processing before being used.

 11

The figures below show the different types of inputs available to the user.

Figure 3.3: Dialog Box

Figure 3.4: Drop-down Selection Menu

Figure 3.5: Various Text Fields

Figure 3.6: Two Links and a Button

Outputs will be the TerraData applications (after login), confirmation of any changes
users/administrators make, search results, or various error messages when inputs are
not valid.

 12

3.5 Processing

User Access – Editor/Guest
All the users must login through the TerraUser interface and become verified before any
process is selected. The editor/guest has the following selections:

• change password (editor only)
• start TerraData applications (editor only)
• add/modify user’s preference
• search option
• send e-mails

Process flows and data flows are shown below in Figures 3.7 and 3.8.

Figure 3.7: State Diagram User Access

Validate
verify user login

Process
process selection

Start
pass information

to application

Preference
change preferences

Password
change password

Not
validated

Validated as user

Password
selected

Preferences
selected

Done

Done

Application
started

Application
selected

Search
database search

Search
option

Done

E-mail
send e-mails

E-mail
option

Done

Confirmation/results Return

 13

Figure 3.8: User Access Data Flow Diagram

User Access – Administrator
All administrators must login through the TerraUser interface and
process is selected. The administrator has the following selection

• update user information
• add/delete users
• reset/expire user’s password
• add/delete/update teams
• view user log files
• add/delete/modify user database fields
• log user off
• post message of the day (MOTD)

User
database

Get login
information

Customize interface/
Change password

Application
selection

Database
Search

User
login

Validate
login

Session
ID

Search
items

Start
application

User
information

New
preferences/password

Results/Confirmation
 be verified before any
s:

Process flows and data flows are shown in Figure 3.9 and 3.10.

Validate
verify admin. login

Process
process selection

Users and Teams
add/delete/update
users and teams

User DB Field
change field options

Password
reset/expire

Not
validated

Validated as Admin.

Password
selected

Field
selected

User/Team selected

Done

Done

Done

User Information
update/modify

user information
User selected

Done

Administration
Search

Search request Done

User Log Files Done
Log file request
14

Figure 3.9: State Diagram Admini

View log files

Message of the Day
Post MOTD

New MOTD posting
requested

Done

Confirmation/results Return

strator Access

 15

Figure 3.10: Administrator Access Data Flow Diagram

Get login
information

Add/delete user
information fields

Add/delete/modify
user/team

Reset/expire
password

Admin
login

Admin.
Validate login

Session
ID

User
information

Field
information

New passwo
options

Administration DB
search Search items

Post MOTD in
user login page New MOTD

View Log files

Results/Confirmation

User

database

rd

Request log information

 16

4. USE CASES

4.1 How the Product will be used
Figure 4.1 shows a conceptual representation of the web pages in the TerraUser
application. The Guest is basically the same as an editor, but with a limited
functionality. The Administrator interface allows administrators to manage and control
user information.

Guest
main page

Preferences

Editor
main page

PreferencesApplications

Password

Login

Admin
main page

SearchTeam

Search Results

MOTD Add Info field to dbActive Users/Logs

Password
Reset/ExpireUpdate User Delete User

Logs

Conceptual Website
TerraUser Application

Legend

Editor Page

Administrator Page

Guest Page

Login Page

Email

EmailEmail

Add User

Search Results

Specific Result

Related Pages

Search

Search Results

Specific Result

Related Pages

Search

Related Pages

User Info

Figure 4.1: Conceptual Website

4.2 Use Cases
By identifying the project’s use cases we are able to abstract, technology free,
dialogues of user interaction and system responsibilities. These use cases will convey
a series of actions that a user must initiate as they use the system to resolve problems.
By describing the use cases we hope express the specific functions of the application in
a way that pulls all the ideas together.

Figure 4.2 shows the all of possible use cases of TerraUser application. Users login to
the system as guests, editors, or administrators. Depends on the users level of access,
variety of things can be done through the interface. Specific use cases are shown in
Table 4.1, followed by details of each use case.

 17

Administrator
Editor

Use Case Search

Guest

TerraUser System

Use Case Email

Use Case Applications

Use Case Preferences

Use CasePassword
Use Case View Logs

Use Case Add to DB

Use Case Post MOTD

Use Case AddTeam

Use Case Reset/Expire Password

Use Case Delete User

Use Case Update User Info

Use Case Add User

Use Case Log user off

Use Case DeleteTeam

Use Case UpdateTeam

Use Casses
TerraUser Application

Precondition: A valid Actor has
logged into the system!

Use Case Admin Search

Use Case Login

Use Case Invisible App. Login

Editor

Guest

Administrator

TerraUser System Login

Figure 4.2: Use Cases

Index Use Case Users

1 Invisible Application Login Editor/Guest
2 Change Password Editor
3 Access to Applications Editor/Guest
4 TerraUser Login Administrator/Editor/Guest
5 Change Preference Editor/Guest
6 Search Editor/Guest
7 E-mail Administrator/Editor/Guest
8 Add User Administrator
9 Delete User Administrator
10 Update User Information Administrator
11 Password Reset/Expire Administrator
12 Add Team Administrator
13 Update Team Administrator
14 Delete Team Administrator
15 Log off Users Administrator
16 Post MOTD (Message of the Day) Administrator
17 View Active Users and Logs Administrator
18 Administrator Search Administrator
19 Add Information Fields Administrator

Table 4.1: Table of Use Cases

 18

Use Case 1: Invisible Application Login
The following use case is used to define optimal paths for an Editor, or a Guest to get
logged in to a specific application directly.

Use Case Invisible Application Login: Guest, Editor
Description This use case describes the interactions that take place when an Editor, or a Guest

wants to get logged in directly to an application, in order to gain access to the
system.

Scenario Eddie (an Editor) is a scientist working on some DEM (Digital Elevation Model)
data. He would like to use the TerraData application to access the metadata from
the images that he had previously pulled from the system. Eddie types in the URL
for the TerraData application. He must then enter his username and password in
the provided area and hit the ‘Login’ button. The system will authenticate Eddie
and put him directly into the TerraData application.

Actor(s) Editor or Guest
Assumptions We assume that Eddie has an active account.
Steps 1. Eddie enters top-level URL for application.

2. Eddie enters username and password.
3. Eddie presses the ‘Login’ button.
4. System will verify the information.
5. If any information is incorrect, the system will display correct error

message and prompt Eddie to correct information.
6. Eddie should now be logged in to application.

Non-Functional Performance: Should take less than 30 seconds to process after hitting ‘Log in’
Reliability: Users shouldn’t be able to gain access to application without logging in.
Once system is up and running Logins should be available when system is
operational.
Frequency: Must login each time want to access application, user logged out after
thirty minuets of inactivity.
Fault Tolerance:
Priority:

Issues

Table 4.2: Use Case Invisible Application Login

 19

T e rra U se r
A p p lica tio n

T e rra W e b
A p p lica tio n
(T e rra D a ta ,
M a u i C a m ,

P h o to A rch ive)

A sk fo r U se r In fo

Y E S /N O

A u th e n tica te

U se r In fo

A sk fo r A p p In fo

A p p In fo

In v is ib le A p p lica tio n

Figure 4.2: Invisible Application Communication

Figure 4.2 above shows the communications between the TerraUser application and a
TerraWeb application. The purpose of the invisible login is to have a generic login page
for a TerraWeb application, so that when the user logs in they go directly into the
TerraWeb application, instead of having to go through the TerraUser interface. The
TerraWeb application can also ask for other types of information form the TerraUser
system, such as information about the user, or some piece of application information,
like the users preferences.

 20

Use Case 2: TerraUser Login
The following use case is used to define optimal paths for an Administrator, an Editor, or
a Guest to get logged in and gain access to the system.

Use Case TerraUser Login: Administrator, Guest, Editor
Description This use case describes the interactions that take place when an Administrator, an

Editor, or a Guest wants to get logged in, in order to gain access to the system.
Scenario Abigail is an Administrator. She wants to get logged into the TerraUser system so

that she can add some users. Abigail types in the top-level URL for the TerraUser
application. She must then enter her username and password in the provided
area, select ‘Administrator’ as the user type and hit the ‘login’ button. The system
will authenticate Abigail and put her directly into the TerraUser application.

Actor(s) Administrator, Editor, or Guest
Assumptions We assume that Abigail has an active account.
Steps 1. Abigail enters URL for login page in browser.

2. Abigail enters username and password.
3. Abigail selects ‘appropriate user type ‘Administrator’ from the drop down

menu labeled ‘Type of User:’
4. Abigail presses the ‘Login’ button.
5. System will verify the information.
6. If any information is incorrect, the system will display correct error message

and prompt Abigail to correct information.
7. If Abigail needs help they can click on the help link.
8. Abigail should now be logged in to appropriate interface.

Non-Functional Performance: Should take less than 30 seconds to process after hitting ‘Log in’
Reliability: Users shouldn’t be able to gain access to application without logging in.
Once system is up and running Logins should be available when system is
operational.
Frequency: Must login each time want to access application, user logged out after
thirty minuets of inactivity.
Fault Tolerance:
Priority:

Issues

Table 4.3: Use Case TerraUser Login

 21

Use Case 3: Changing Password
The following use case is used to define optimal paths for an Editor to be able to
change their password.

Use Case Change Password: Editor
Description This use case describes the interactions that take place when an Editor wants to

be able to change his/her password on the system.
Scenario Eddie is an Editor. He wants to be able to use the Maui cam application. Eddie

asks Abigail for access to this system. Abigail, the Administrator adds Eddie as a
user to the system, gives him the URL for the TerraUser application, and asks him
to login and change his password. Eddie Loges into the system, navigates to the
preferences page. Eddie hits the ‘Password’ button, and changes his password.

Actor(s) Editor
Assumptions Precondition: Eddie has logged into the system.
Steps 1. Eddie clicks on the ‘Preferences’ page link.

2. Eddie clicks on the ‘Password’ button.
3. Eddie enters current password, and new password twice.
4. Eddie enters the ‘update’ button.
5. System verifies information, and displays appropriate message.
6. If there is an error in entering the data, the Eddie is prompted to reenter the

data.
Non-Functional Performance:

Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.4: Use Case Change Password

 22

Use Case 4: Access to Applications
The following use case is used to define optimal paths for an Editor to be able to access
certain web-based applications that have been set by the Administrator. An
administrator can give a whole group access to an application or individual users or a
combination of both.

Use Case Access to Applications: Editor, Guest
Description This use case describes the interactions that take place when an Editor wants to

access other web-based applications that belong to the system.
Scenario Eddie a scientist has editor privileges on the TerraData application. Eddie wants to

gain access to the TerraData application through the TerraUser interface.
Actor(s) Editor or Guest
Assumptions Precondition: a valid Eddie has logged into the system.
Steps 1. Eddie clicks on the ‘Application’ link on main page

2. System takes editor to page with list of the applications they have access to.
3. Eddie clicks on application they want to use.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues Implementation issues still awaiting resolution.

Table 4.5: Use Case Access to Applications

 23

Use Case 5: Changing Preference
The following use case is used to define optimal paths for an Editor, or a Guest to be
able to change their user preferences on the system (i.e. Change the look and feel of
the application).

Use Case Change Preferences: Editor, Guest
Description This use case describes the interactions that take place when an Editor wants to

be able to change his/her preferences on the system.
Scenario Gus the guest is checking out the system to see how the interface works. He has

a hard time reading some of the text on the page so he wants to changes his
preferences to make the text bigger.

Actor(s) Editor or Guest
Assumptions Precondition: Gus has logged into the system.

 *Guest preferences will be reset to default upon logout.
 *Settings are saved for the Editor.

Steps 1. Gus clicks on the ‘Preferences’ link on the main page.
2. Gus Clicks on dropdown menus to change such things as color, font size,

etc…
3. Gus clicks the update button at the bottom of the page.
4. Gus also has the choice to hit the ‘default’ button to restore default settings.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.6 Use Case Change Preferences

 24

Use Case 6: Search
The following use case is used to define optimal paths for an Editor, or a Guest to be
able to perform a search on the system that will return matching results that they have
ownership of, permission to access, or records that are marked public.

Use Case Search: Editor, Guest
Description This use case describes the interactions that take place when an Editor wants to

search the system, the system will only return matching results that are owned by a
group they belong to, or are marked public.

Scenario Gus the guest is really excited to learn all he can about the geology of the Grand
Canyon. He wants to do a search and see if he can find any information, so he
runs a search.

Actor(s) Editor or Guest
Assumptions Precondition: Gus has logged into the system.
Steps 1. Gus clicks on the ‘Search’ link on the main page.

2. Gus types in search criteria, such as a key word.
3. System verifies the information.
4. System performs the search and returns results that match and are marked

public in the database.
5. (For Editor search will also return records that they own or belong to their

group).
6. User may click on the links to view data in greater detail.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues
Table 4.7: Use Case Search

 25

Use Case 7: E-mail
The following use case is used to define optimal paths for an Editor to be able to send
an email to the Administrators of the system, to members of a group they belong to, or
one or more individuals that are members of the same group that the Editor belongs to.

Use Case Email: Administrator, Guest, Editor
Description This use case describes the interactions that take place when an Administrator, an

Editor, or a Guest wants to send an email through the system.
Scenario Abigail the administrator would like to send out an email to the members of the

DataCruncher group, informing them that they all have access to a new
application.

Actor(s) Administrator, Editor, or Guest
Assumptions Precondition: Abigail has logged into the system.

*An Administrator can send an email to an individual, member of a group they
belong to, or to all the Users of the system.

*An Editor can send email to an individual, members of a group they belong to,
or the Administrator of the system.

*A Guest can only send an email to the Administrator of the system.
Steps 1. Abigail clicks on the ‘email’ link on the main page.

2. Admin Abigail (also Editors) specifies recipients in ‘to:’ field
3. Abigail fills in the subject field, and their message in the main text box.
4. Abigail clicks on the ‘mail’ button.
5. System sends email message and displays appropriate response to the

screen.
Non-Functional Performance:

Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.8: Use Case Email

 26

Use Case 8: Add User
The following use case is used to define optimal paths for an Administrator to be able to
add a new user to the system.

Use Case Add User: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to add a new user to the system.
Scenario Abigail the administrator has receives a request from Molly that a new student

intern has joined her group and needs to be added. Molly specifies the
permissions that the student, Carla will require. Abigail adds Carla as a user and
sends an email to Carla and Molly.

Actor(s) Administrat
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on ‘Add User’ Link on the administrator interface main page.

2. Abigail types in Carla’s name, contact info, group, etc., etc…
3. Abigail will select ‘Submit’ button
4. System will verify the information.
5. If required information is missing, the system will prompt for correction.
6. System will notify if Carla’s account has been successfully created.
7. If Abigail already exists, error message will be displayed.
8. If Abigail wants to create another user they may hit the ‘reset’ button.

Non-Functional Performance: Should take less than 30 seconds to process after hitting ‘submit’
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues Not decided if application will first do a check to see if user already exists and
display search results??

Table 4.9: Use Case Add User

 27

Use Case 9: Delete User
The following use case is used to define optimal paths for an Administrator to be able to
delete an existing user from the system.

Use Case Delete User: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to delete an existing user from the system.
Scenario Abigail the administrator receives and email from manager Molly that her top

programmer Zed is leaving the Survey for Greener pastures. Molly sends an email
to Abigail requesting that Zed’s account be deleted. Abigail deletes Zed’s account
and sends an email to Molly.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘User Search’ link.

2. System displays the ‘search’ page.
3. Abigail enters search criteria into one of the following search fields (Zed’s first

name, Last Name, user ID, group, etc, etc…)
4. System displays a table on the ‘search Results’ page.
5. Abigail clicks on the ‘delete’ button next to the selected user.
6. Abigail is prompted if they really want to delete Zed ’YES or NO’.
7. System displays appropriate response to the previous question.
8. System should note in the log file which user got deleted.

Non-Functional Performance: Should take less than 30 seconds to process after hitting ‘yes’
 Should not return more than 100 search results, if more system will ask user to
refine their search.
Reliability: Should work every time, and only delete the user that is specified.
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.10: Use Case Delete User

 28

Use Case 10: Update User Information
The following use case is used to define optimal paths for an Administrator to be able to
update an existing user’s information in the system.

Use Case Update User Information: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to update an existing user’s information on the system.
Scenario Abigail the administrator receives an email from Molly that her student Carla has

graduated and promoted to a full time position within the group. Carla needs some
more permissions changes. Abigail completes the request and sends an email
back to Molly and Carla.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘User Search’ link.

2. System displays the ’Search’ page.
3. Abigail enters search criteria into one of the following search fields (Carla’s

first name, Last Name, user ID, group, etc, etc…)
4. System displays a table on the ‘Search Results’.
5. Abigail clicks on the ‘update’ button next to the selected user.
6. System displays ‘Update User’ page with the fields filled in with the known

information.
7. Abigail modifies necessary fields.
8. Abigail clicks on the ‘update’ button located at the bottom of the page.
9. System will verify information.
10. If invalid information is entered the Abigail is prompted to correct this

information.
11. System displays appropriate message to screen.

Non-Functional Performance: Should take less than 30 seconds to process after hitting ‘update’
 Should not return more than 100 search results, if more system will ask user to
refine their search.
Reliability: Should work every time, and only update the user’s information that was
specified.
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.11: Use Case Update User Information

 29

Use Case 11: Password Reset/Expire
The following use case is used to define optimal paths for an Administrator to be able to
reset a users password, or set the password to expire at some specified date.

Use Case Password Reset/Expire: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to reset a user’s password, or have a user’s password expire.
Scenario It has been a while since Eddie (an Editor) the scientist has worked with the Terra

applications and he has forgotten his password. Eddie asks Abigail the
administrator to please reset his password. Abigail goes into the admin interface,
resets Eddie’s password, then notifies Eddie that he can logon with this new
password and change it to a new one.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘search’ link on the main page.

2. Abigail performs search to find desired user.
3. System displays search results page.
4. Abigail Clicks on ‘Password’ button next to desired user’s name.
5. Abigail is promotes to change the password, or have it expire.
6. System verifies information, and displays appropriate error message.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.12: Use Case Password reset/expire

 30

Use Case 12: Add Team
The following use case is used to define optimal paths for an Administrator to be able to
add a team to the system.

Use Case Add Team: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to add a team to the system.
Scenario Abigail the administrator has received a request via email that manager Molly

needs to create a special group within her team to work an a special project. She
includes in the email the new team name, the team members and special team
information. Abigail will go into the administrator interface, add the team, then
send an email to Molly confirming that the request was completed.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘team’ link on the main page.

2. Abigail clicks on ‘Add Team’ link.
3. Abigail prompted to enter the team information.
4. Abigail click the ‘Add’ button
5. The system verifies the information
6. If any information is incomplete the system prompts the Abigail to correct it.
7. System verifies information and displays correct message to screen.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.13: Use Case Add Team

 31

Use Case 13: Update Team Information
The following use case is used to define optimal paths for an Administrator to be able to
update team information.

Use Case Update Team Information: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to update a team’s information.
Scenario Abigail the administrator has received an email from a manager named Frank,

noting that frank has recently acquired two new members into his group. Frank
would like his new group members added to his group. Abigail must go in and
update the team information.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘Team’ link on the main page.

2. Abigail clicks on the team name, which is a link to the team info page.
3. Abigail updates information
4. Abigail clicks the ‘update’ button at the bottom of the page.
5. System verifies information.
6. System prompts Abigail to fill in missing or incorrect and displays correct

message to screen.
Non-Functional Performance:

Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.14: Use Case Update Team Information

 32

Use Case 14: Delete Team
The following use case is used to define optimal paths for an Administrator to be able to
delete a team from the system.

Use Case Delete Team: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to delete a team from the system.
Scenario Abigail the administrator is performing her weekly maintenance tasks on the

system. She receives an email from Molly a manager of the wespt group, notifying
Abigail that her group has been absorbed into other groups and no longer exists.
Group wespt can be deleted.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘team’ link on the main page.

2. Abigail clicks on the ‘delete’ button to the right of the team name.
3. Abigail is prompted with a ‘yes’ or ‘no’ question do they really want to do this.
4. System processes request and displays appropriate response on screen.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.15: Use Case Delete Team

 33

Use Case 15: Log Off Users
The following use case is used to define optimal paths for an Administrator to be able to
log off all currently connected users and display an appropriate message when the
users try to log back in.

Use Case Log off Users: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to log off all currently connected users from the system.
Scenario Abigail the administrator would like to log out all the users that are currently logged

in so that she can perform some maintenance on the system.
Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on ‘Active Users/Logs’ Link on the administrator interface main

page.
2. System shows a dynamic page displaying users currently logged in.
3. User clicks on the ‘Log users out’ button
4. System kicks all users off except Abigail, and displays appropriate message to

screen. Page is dynamic and should update with the number of users logged
in.

Non-Functional Performance: All users should be logged out within 30 seconds.
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues We will need to consider blocking users from logging in again, until lock released??
And what about a message to be posted on the login page also.

Table 4.16: Use Case Log off Users

 34

Use Case 16: Post MOTD (Message of the Day)
The following use case is used to define optimal paths for an Administrator to be able to
post a Message of the Day that appears on the Login page.

Use Case Post MOTD (Message of the day): Administrator
Description This use case describes the interactions that take place when an Administrator

wants to post a MOTD (Message of the Day) that will appear on the Login page.
Scenario Abigail the administrator would like to notify users that the system will be off line for

maintenance over the weekend. She will do this by posting a message on the
login page.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.

Whatever text or characters are in the text box when the post is made will appear
as the MOTD on the login page.

Steps 1. Abigail clicks on ‘MOTD’ link on the Administrator Interface main page.
2. Abigail enters a MOTD in the text box, or modifies message that is in this field.
3. Abigail clicks on the ‘update MOTD’ button.
4. System displays appropriate message.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.17: Use Case Post MOTD

Use Case 17: View Active Users and Logs
The following use case is used to define optimal paths for an Administrator to be able to
view which users are currently logged in and view the log files.

Use Case View Active Users and Logs: Administrator
Description This use case describes the interactions that take place when an Administrator

wants to view how many users are logged in, or view the log files.
Scenario Abigail the administrator would like to see how many users are currently logged on

to the system. Then she would like to view the web logs.
Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘System Status’ link on the main page.

2. System displays dynamic page that shows the number of users that are
logged in.

3. To view the log files, Abigail clicks on the ‘Log’ button.
4. System displays log file on screen, or appropriate message.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues

Table 4.18: Use Case View Active Users and Logs

 35

Use Case 18: Administrator Search
The following use case is used to define optimal paths for an Administrator to be able to
search the database for user and team information.

Use Case Administrator Search
Description This use case describes the interactions that take place when an Administrator

wants to search for users, or groups and have the system return matching results.
Scenario Abigail the administrator would like to search to see if a user currently exists in the

database, so she can update their settings.
Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘Search’ link located on main page of Admin interface.

2. Abigail enters search criteria.
3. Abigail clicks the ‘Search’ button.
4. System verifies information and prompts Abigail for corrections if

necessary.
5. System displays results page.

Non-Functional Performance:
Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues Should the number of results that it returns limit the search???

Table 4.19: Use Case Admin Search

Use Case 19: Add Information Fields
The following use case is used to define optimal paths for an Administrator to be able to
add new fields or information to the user database.

Use Case Add Information Fields
Description This use case describes the interactions that take place when an Administrator

wants to add user information fields.
Scenario Abigail the Administrator receives an email request from Dana the application

developer for the Photo Archive. Dana would like the TerraUser application to
store information on whether the user exited the photo Archive using view A, B, or
C. This information will be kept track of in the TerraUser database, and used in the
future for other application designs. Abigail navigates to the Add information
pave, fills out the form and hits ‘submit’. Abigail then sends an email to Dana with
the application communication details.

Actor(s) Administrator
Assumptions Precondition: Abigail has logged into the system.
Steps 1. Abigail clicks on the ‘Add Info’ link on the main page.

2. ??? Issues here that have not yet been resolved by design team!!!
Non-Functional Performance:

Reliability:
Frequency:
Fault Tolerance:
Priority:

Issues Implementation issues still awaiting resolution.

Table 4.19: Use Case Add Information Fields

 36

5. INTERFACE REQUIREMENTS

5.1 Internal Interfaces
The TerraUser software will be accessed on the Internet through a web-browser.
Users must have an Internet connection and a standard browser to access the
software. The TerraUser software is a database driven web-application. The
software will use the most current standards for implementing JSP pages accessing
a MySQL database via JDBC. All HTTP transfers (data over the internet) and SQL
access (data from a local database) will be handled by internal functions of the
technologies being used.

5.3 Software Interfaces
The TerraUser software will act as an interface between the user and applications
they have access to. The applications can be only be accessed through the
software. When the user selects an application to run, the software will send the
required information. At any time the application is running, a request from the
application can be made back to the software to gain any new or different
information needed. The request can be made from any of the applications. A
single feature in the software will handle all requests. When new applications need
to interface to the software, the form of the request will be used in the new
application and the software will be ready for the new application. The requests for
information can be requested only with valid user login.

5.4 Communication Interfaces
The TerraUser software will use a web-based interface. The software will generate
dynamic web pages viewed via HTTP/HTTPS. The software will communicate with
the user’s web browser using the most current HTTP/HTTPS and HTML standards.
All communication from the software to the user will be prompted by user input. All
communication from the user will be done through entering data and selecting items
on the web pages dynamically created by the software.

 37

6. PERFORMANCE REQUIREMENTS
The software must meet certain performance requirements to maximize its usefulness
when it is fully implemented and installed.

1. The development of the system must use the technical tools/languages as
specified by the USGS sponsor. See section 2.6 for technical constraints.

2. Usability
• User logins should take no longer than 30 seconds.
• Access from the interface to the applications should take less than 5 seconds.
• An error should generate one friendly message that can be easily understood

and direct the user toward appropriate help.
• Specific page-long help should be available at any time by clicking a help

icon.
• Users can only be logged in once.
• A message will be displayed when server is unavailable for logins.
• The system will use a web-based interface similar to popular computer

interfaces.
• It shall be accessible by all standard methods of Internet access (modem,

DSL, cable, satellite, LAN, broadband, etc.).
• It should require less than fifteen minutes of training to use.

3. Training

• Users should require less than fifteen minutes of training to use the interface.
• Administrators should require at most one hour worth of training to use

application.
• Application developers that want to use the interface should require less than

one hour of training to interface (Reading the documentation should be
enough).

4. Maintenance

• The code will be well commented.
• Documentation will be created about the software design and implementation

for future maintenance.
• The system should be accessible from any machine.
• The system will reside on a network visible to the Internet.

5. Security

• The system will enforce user login, which will determine level of accessibility.
• It shall use encryption to send information across networks.

6. Scalability
• The system will use a modular design.
• The system will use a simple and well-documented interface between

modules and external software.

 38

7. DESIGN CONSTRAINTS
Throughout the design process there are many design constraints that face this project.
Since this project is a web application, there are many more hardware and software
constraints that the design team has to work around. The following discusses a set of
reasonable measures that will be used later during acceptance testing.

Bandwidth
There is a communications cost associated with sending large amounts of information
between the server and the client. We have to keep in mind the speed of the
connection between our server and the Internet, as well as the speed of the client’s
connection to the Internet. We will assume that the minimum Internet connection that a
user will have is a 56K modem and that the minimum connection speed between our
server and the Internet is 10Mbps.

Hardware
Another constraint to consider in our design is the hardware that is going to be used to
run this application. Because this is a web application, we are going to assume that the
user’s screen is at least 800x600 pixels and use a browser-safe 216-color palette when
picking the application’s colors. The computer running the application can be any
computer meeting the requirements of running a standard HTML 4.0 compatible
browser.

Ease of Maintenance
The System must be inexpensive to maintain and repair. Since the U.S. Geological
Survey has little money to invest in this venture, we will make sure that costs are
negligible and the system is easily maintainable.

Scalability
The system will be scalable both in the size of the system and how many records,
users, and data the system can support.

Browser Independence
The application must function properly in all standard browsers. Application will be fully
functional in browsers that support HTML 4.0+. The pages will be fully functional in
Lynx (pretty rollovers not being considered "functional"). Note: Lynx emulates how many
people with disabilities access the web, and is used for testing purposes. Typically, if client-side
applications (JavaScript or Java) are only decorative and/or are backed up with NOSCRIPT tags and
server-side checks, you're fine. Lynx is used for testing purposes.

Training
There should be little to no training required to use the application. The user will be
able to perform each action as described in the use cases (section 3) within a minute
each.

 39

8. OTHER REQUIREMENTS
There are other requirements that do not impact the functionality of the product:

Deliverables

• The documents must be in electronic forms: PDF, HTML, or MS Word.
• Documentation and reports should be formatted so they will make usable two-

sided hardcopies.
• Documentation should be readable on a computer screen.
• Documentation on setup/implementation of system, database, and security must

be provided.
• The code should be well commented in electronic form.
• Manuals for programmers, system/database/web administrators must be

provided.
• Online, context-sensitive help must be provided.

The system must follow design guidelines presented in the capstone design course.

9. CONCLUSION
The information provided in this functional specifications documentation serves as a
bridge between software requirements and design process for the web-based user
management package for the USGS in Flagstaff. The TerraUser team has analyzed the
problem, translated the requirements into technical descriptions, and developed a high-
level design. This project is economically viable and will be a valuable tool to our clients
when managing data and TerraWeb applications.

The TerraUser team is confident that we will design and develop a successful product.
We look forward to sharing our product with the USGS to benefit and improve their
business.

	List of Tables and Figures
	1. Introduction
	2. Software overview
	2.1 Background / History
	2.2 Product Description
	2.3 Product Functions
	2.4 Users
	2.5 General Constraints
	2.6 Technical Constraints
	
	
	
	
	Category

	2.7 Assumptions and Dependencies

	3. Specific functional requirements
	3.1 High-Level Architecture
	3.2 Users
	Administrators
	Editors
	Guests

	3.3 Functionality Overview
	3.4 User Interfaces
	3.5 Processing
	User Access – Editor/Guest
	User Access – Administrator

	4. Use Cases
	4.1 How the Product will be used
	4.2 Use Cases
	Use Case 1: Invisible Application Login
	Use Case 3: Changing Password
	Use Case 4: Access to Applications
	Use Case 5: Changing Preference
	Use Case 6: Search
	Use Case 7: E-mail
	Use Case 8: Add User
	Use Case 9: Delete User
	Use Case 10: Update User Information
	Use Case 11: Password Reset/Expire
	Use Case 12: Add Team
	Use Case 13: Update Team Information
	Use Case 14: Delete Team
	Use Case 15: Log Off Users
	Use Case 16: Post MOTD (Message of the Day)
	Use Case 17: View Active Users and Logs
	Use Case 18: Administrator Search
	Use Case 19: Add Information Fields

	5. Interface requirements
	5.1 Internal Interfaces
	5.3 Software Interfaces
	5.4 Communication Interfaces

	6. Performance requirements
	7. Design constraints
	8. Other requirements
	
	
	Deliverables

	9. Conclusion

