

Unit Development Folder
~ Parser

Programmer: Justin Tumlinson
Team: Motorola

Date: April 28, 1997
Revision: 1.0

�SUMMARY PAGE

BRIEF SUMMARY

The purpose of the Parser will be to search for certain sections of code that are required to change or must be determined if a change is necessary. These sections include the import, comment, and event handling sections of the code. If the import section is found, imports necessary for dynamic customization will be added. If a comment section is found, denoted by “/* */”or “// “, and it contains the string “import”, it will be ignored. But, if any of the seventeen components of the Java Developers Kit(JDK) are found within the comment section, the lexical analyzer will modify them by adding the “M_” string to the front of the token string. If a handleEvent method is found, code will be added to handle our hotkey-activation of the control panel. If no handleEvent method is found, then the parser will add a handleEvent method to handle the hotkey-activation of the control panel. The hotkey mentioned above is the F1 key located on the keyboard. There is no significance as to why we chose this particular key.

The lexical analyzer will be integrated with the M_defs.h(definitions) file and the M_lex.c(lexical analyzer) file to create the translator.

WHITE BOX TEST STRATEGY

To test that every line of our code will be executed, a test file that contains each of the above noted sections will be created. For each hit, we will output what type of section was found and what type of activity is performed. All data will be recorded in a script file and attached at the end of this document.

Invocation Coverage Plan

The functions called by the parser are:

parse(); This function calls:
	getToken()
	changeClassName()
	placeToken()
and if the '-k' option is used:
placeHotKey()

getToken() returns a token string from the input file.

changeClassName() sets a flag to change the classname to a M_<class> if it is supported.

placeHotKey() places a Hotkey within the output file that calls the control panel.
	
placeToken() changes the current token to a M_<token> if it is supported by the M_class library.

extensionPuller() strips off the '.java' extension from an input file class call.

The function 'extensionPuller()' is called within 'main' of the Parser. And this is done only once at the start of the program.

Since the functions of getToken, changeClassName, placeToken, and (possibly) placeHotKey are called sequentially for each token within the parser it then follows that for the parser to work correctly each of these functions must be called and used properly. This means that the invocation coverage plan can simply rely on this sequential nature to correctly parse the input file to that of the output file.

Also of concern is the invocation of the M_lex.c and M_defs.h files. These files are called from methods within the parser that call the methods within them. So the test plan will simply invoke the parser for simple file types that have the events of:

case 	1:	an empty file
	2:	a file with a token not supported by the parser
	3:	a file with a token supported by the parser.
	4:	a file that contains all supported tokens.
	5:	a file that contains not eventhandler
	6:	a file that does contain an eventhandler.
	7:	a file without the '.java' filename extension.	
	8:	a file with the '.java' filename extension.

 This should contain both the upper and lower bounds for the invocation test coverage plan.

Parser Control Flow Diagram

�		

Branch Coverage Plan

Branches exist within the parser as results of the conditional statements of each of the functions. By its nature the parser is essentially sequential and thus contains no major branches. We will defer this test regime to that of the conditional coverage plan since it is covered there more thoroughly.

Loop Coverage Plan

As mentioned above the parser is sequential by nature and thus cycles through an input file (sequentially) till it encounters an EOF character. A test plan to cover this could simply utilize this sequential nature and rely on the fact that the parser will exit on an EOF after correctly parsing both supported and non-supported token strings.

Conditional Coverage Plan

Conditional situations exist for the following cases:

in Main(int argc, char* argv[])

'-k' - for the Hotkey
if the input file exists
if the output file already exists
if there was an error opening the output file
if the parser was invoked correctly

in parse()

token DNE EOFILE
Hotkey exists and the comments flags do not

in changeClassName()

class keyword is/isn't found
class name is/isn't found
definition beginning found
code has been inserted previously
default for file parsing

in placeHotKey()

is at EOFILE and no handleEvent methods found in the input file
if the control panel has not been added and the parser is within the class definition
if the Hotkey flag isn't set and a eventHandler is found.
switch on Hotkey flag
no handleEvent method
eventHandler found
current token is a literal
inside eventHandler and first '('
�in placeToken()

Switch on token:

�EOFILE
EOL
WHITESPACE
STRING
LITERAL
LINECOMMENT
BEGINCOMMENT
ENDCOMMENT
CLASS
EVENT
HANDLEEVENT
IMPORT
CLASSNAME
LBRACE
RBRACE
SEMICOLON
OTHER
BUTTON
CANVAS
CHECKBOX
CHOICE
PANEL
APPLET
DIALOG
FRAME
LABEL
LIST
SCROLLBAR
TEXTAREA
TEXTFIELD
MENUBAR
MENU
MENUITEM
CHECKBOXMENUITEM
�
do: change to -> M_<class> if not in a comment.

in extensionPuller(char *dest, char *source)	strip off the name of the input file.

So, it follows that to properly test the condition coverage plan we need to check that each of the cases are parsed correctly. Test files should consist of the following:
	
for main(int argc, char* argv[])

file compiled with the ‘-k’ hotkey option.
parser invocation with the output file already existing.
parser invocation with the input file not existing.

if the right number of arguments were on invoking the parser.

for parse()

the handleEvent is found within a comment section.
the handleEvent is found outside of comments.
the file is empty - this generates an EOF. Of course this condition will exist in any event at the end of a file ‘EOF’.

for changeClassName()

input file that includes no supported classes.
input file that contains a supported class.
input file that contains all supported classes.
input file with no supported tokens.
input file with a supported token.
input file with all of the supported tokens

for placeHotKey()

Empty, or short, file with no handleEvent contained.
) Short file with a handleEvent within.

for placeToken()

Short file with no supported classes or components within it.
Short file with a supported token.
A file with the complete list of the supported tokens, see below:
�
CLASS
EVENT
HANDLEEVENT
IMPORT
CLASSNAME
BUTTON
CANVAS
CHECKBOX
CHOICE
PANNEL
APPLET

DIALOG
FRAME
LABEL
LIST
SCROLLBAR
TEXTAREA
TEXTFIELD
MENUBAR
MENU
MENUITEM
CHECKBOXMENUITEM
�
for extensionPuller(char *dest, char *source)

1) See that the correctly named file is produced as output.

Please notice that many of the test conditions are covered by the same test data. This observation can be used to simplify our approach to the white box test design. This essentially means that we can use the same data input/output to cover many of the test cases and that, in many cases, we only need to run one set of data to cover many tests.

Equivalence Partitioning

Since the nature of the parser is to scan an input file for tokens and then, if necessary, convert them to the supported tokens within the M_<class> library the only equivalence we may see in the parser is contained within the similarity of supported tokens, non-supported tokens, and parsing conditions. This essentially amounts to the situation where there is essentially no difference between members of each of the above sets. This test regime is not particularly useful and will be deferred to the Cause/Effect Analysis testing stage.

Boundary Value Analysis

Much like the case for testing under equivalence partitioning boundary value analysis is not really relevant in this case where the input data is a series of text strings from a java source file. This testing strategy will be deferred until the next testing analysis phase of Cause/Effect Analysis.

Cause/Effect Analysis

This is where the testing of the parser is actually useful. Here we need to test that the parser works correctly and that the appropriate components and classes are changed and that the proper import statements are added in addition to the inclusion of the hotkey, if the file was compiled with the hotkey option.

�Test cases and their input files should be:

hotkey - correctly inserts the control panel’s hotkey into existing eventhandler.
M_<class tokens> - correctly identifies a supported M_<class> token and translates it.
import statements - adds the M_class library package and appropriate import statements.

Input files:

Empty file - to check EOF and that the appropriate import statements are added.
file with existing handleevent code invoked without ‘-k’ option.
file with existing handleevent code and invoked with the ‘-k’ option.
file without any supported M_<tokens>.
file with a supported M_<token>.
file with all supported M_<tokens>.

BLACK BOX TEST STRATEGY

Black box testing will be based on cause/effect analysis where we search for code and modify it if necessary. The following cause/effect analysis flow diagrams illustrate our test procedures

TRANSLATOR CAUSE/EFFECT FLOW GRAPHS

Parsing Conditions:
Includes:	“import” in comments
		“M_Components” in comment section (found by lexical analyzer)

�

Inserting ‘import’ Statements:

���

����

Inserting the Control Panel HotKey:

�

	

�CODE REVIEWERS SIGNATURES
����������������������Dave Todd����Darold Litzin������������������������John Aichholz����Brian Mecham��
BUILD LEADER SIGNATURE
����������������������Justin Tumlinson������

�

SOURCE CODE
�

WHITE BOX
TEST DATA

�WHITE BOX TEST DATA

Invocation Test Data

an empty file
a file with a token not supported by the parser

gridBagLayout gb = new gridBagLayout();

a file with a token supported by the parser.

Panel frontEndPanel = new Panel();

a file that contains all supported tokens.

Button thisButton = new Button();
Canvas thisCanvas = new Canvas();
CheckBox thisCheckBox = new CheckBox();
Choice thisChoice = new Choice();
Panel thisPanel = new Panel();
public void thisApplet extends Applet
{
/* do stuff */
}
Dialog thisDialog = new Dialog();
Frame thisFrame = new Frame();
Label thisLabel = new Lable();
List thisList = new List();
ScrollBar thisScrollBar = new ScrollBar();
TextArea thisTextArea = new TextArea();
TextField thisTextField = new TextField();
MenuBar thisMenuBar = new MenuBar();
Menu thisMenu = new Menu();
MenuItem thisMenuItem = new MenuItem();
CheckBoxMenuItem thisCheckBoxMenuItem = new
CheckBoxMenuItem();
			
 a file that contains no eventhandler

/* This file is empty except for these comments. */

 a file that does contain an eventhandler.

import java.awt.*;

public boolean handleEvent(Event e)
{
/* the hotkey code should be added above this line. */
}

a file without the '.java' filename extension.	

For example the input file might be a *.doc or a *.txt file.

a file with the '.java' filename extension.

For example the input file could be any file with the *.java extension.

Branch Coverage Test Data

Please note that this test was deferred.

Loop Coverage Test Data

Please note that this test was deferred.

Condition Testing

for main(int argc, char* argv[])
file compiled with the ‘-k’ hotkey option.

Parse input.java output.java -k

parser invocation with the output file already existing.

Parse input.java existing.java

parser invocation with the input file not existing.

Parse nonexistent.java output.java

if the right number of arguments were issued when invoking the parser.

Parse file.java

and

Parse input.java output.java extraneous.file

for parse()
the handleEvent is found within a comment section.

/* Here is an example of how to insert the control panel’s hotkey.	*/
/* public boolean handleEvent(Event e)				*/
/*	{								*/
/* 	do stuff.							*/
/*	}								*/

the handleEvent is found outside of comments.

/* the code below shows an implementation of the event handler.	*/

public boolean handleEvent(Event e)
{
/*	Do stuff.	*/
}

the file is empty - this generates an EOF. Of course this condition will exist in any event where the file is at EOF.

Empty file here.

for changeClassName()
input file with no supported tokens.

Public void thisClass extends Window
{
/*	Do stuff.	*/
}

input file with a supported token.

Public void thisClass extends Panel
{
/* 	Do stuff.	*/
}

input file with all of the supported tokens.

Public void thisButton extends button()
{
/* 	Do stuff.	*/
}
Public void thisCanvas extends Canvas()
{
/* 	Do stuff.	*/
}
Public void thisCheckBox extends CheckBox()
{
/* 	Do stuff.	*/
}
Public void thisChoice extends Choice()
{
/* 	Do stuff.	*/
}
Public void thisPanel extends Panel()
{
/* 	Do stuff.	*/
}
Public void thisApplet extends Applet
{
/* 	Do stuff.	*/
}
Public void thisDialog extends Dialog()
{
/* 	Do stuff.	*/
}
Public void thisFrame extends Frame()
{
/* 	Do stuff.	*/
}
Public void thisLabel extends Label()
{
/* 	 Do stuff.	*/
}
Public void thisList extends List()
{
/* 	Do stuff.	*/
}
Public void thisScrollBar extends ScrollBar()
{
/* 	Do stuff.	*/
}
Public void thisTextArea extends TextArea()
{
/* 	Do stuff.	*/
}
Public void thisTextField extends TextField()
{
/* 	Do stuff.	*/
}
Public void thisMenuBar extends MenuBar()
{
/* 	Do stuff.	*/
}
Public void thisMenu extends Menu()
{
/* 	Do stuff.	*/
}
Public void thisMenuItem extends MenuItem()
{
/* 	Do stuff.	*/
}
Public void thisCheckBoxMenuItem extends CheckBoxMenuItem()
{
/* 	Do stuff.	*/
}

for placeHotKey()
Empty, or short, file with no handleEvent contained.

/* 	 How about just a couple of comments.	*/

 Short file with a handleEvent within.

Note, this is covered previously in the function parse().

for placeToken()

Please, note that the cases below are covered within the functional test plans described above.

Short file with no supported classes or components within it.
Short file with a supported token.
A file with the complete list of the supported tokens, see below:
�
CLASS
EVENT
HANDLEEVENT
IMPORT
CLASSNAME
BUTTON
CANVAS
CHECKBOX
CHOICE
PANEL
APPLET

DIALOG
FRAME
LABEL
LIST
SCROLLBAR
TEXTAREA
TEXTFIELD
MENUBAR
MENU
MENUITEM
CHECKBOXMENUITEM
�
for extensionPuller(char *dest, char *source)

See that the correctly named file is produced as output.

This is covered through a call to the parser with right number of arguments. The test here is to see, simply enough, if the parser correctly created the properly named output file.

Please notice that many of the test conditions are covered by the same test data. This observation can be used to simplify our approach to the white box test design. This essentially means that we can use the same data input/output to cover many of the test cases and that, in many cases, we only need to run one set of data to cover many tests.
�

WHITE BOX
TEST RESULTS
�

BLACK BOX
TEST DATA
�
BLACK BOX TEST DATA

Equivalence Partition Test Data

This testing regime has been deferred to that of Cause/Effect Test.

Boundary Value Test Data

This testing regime has been deferred to that of Cause/Effect Test.

Cause/Effect Test Data

Empty file - to check EOF and that the appropriate import statements are added.

	/* just a comment.	*/

file with existing handleEvent code invoked without ‘-k’ option.

	/* the code below shows an implementation of the event handler.	*/

	public boolean handleEvent(Event e)
	 {
		/* Do stuff.	*/
	 }
	
file with existing handleEvent code and invoked with the ‘-k’ option.

	/* the code below shows an implementation of the event handler.	*/

	public boolean handleEvent(Event e)
	 {
		/* Do stuff.	*/
	 }

file without any supported M_<tokens>.

	Public void thisClass extends Window
	 {
		/* Do stuff.	*/
	 }

file with a supported M_<token>.

	Public void thisClass extends Panel
	 {
		/* Do stuff.	*/
	 }

file with all supported M_<tokens>.

	Public void thisButton extends button()
	 {
		/* Do stuff.	*/
	 }
	Public void thisCanvas extends Canvas()
	 {
		/* Do stuff.	*/
	 }
	Public void thisCheckBox extends CheckBox()
	 {
		/* Do stuff.	*/
	 }
	Public void thisChoice extends Choice()
	 {
		/* Do stuff.	*/
	 }
	Public void thisPanel extends Panel()
	 {
		/* Do stuff.	*/
	 }
	Public void thisApplet extends Applet
	 {
		/* Do stuff.	*/
	 }
	Public void thisDialog extends Dialog()
	 {
		/* Do stuff.	*/
	 }
	Public void thisFrame extends Frame()
	 {
		/* Do stuff.	*/
	 }
	Public void thisLabel extends Label()
	 {
		/* Do stuff.	*/
	 }
	Public void thisList extends List()
	 {
		/* Do stuff.	*/
	 }
	Public void thisScrollBar extends ScrollBar()
	 {
		/* Do stuff.	*/
	 }
	Public void thisTextArea extends TextArea()
	 {
		/* Do stuff.	*/
	 }
�
	Public void thisTextField extends TextField()
	 {
		/* Do stuff.	*/
	 }
	Public void thisMenuBar extends MenuBar()
	 {
		/* Do stuff.	*/
	 }
	Public void thisMenu extends Menu()
	 {
		/* Do stuff.	*/
	 }
	Public void thisMenuItem extends MenuItem()
	 {
		/* Do stuff.	*/
	 }
	Public void thisCheckBoxMenuItem extends CheckBoxMenuItem()
	 {
		/* Do stuff.	*/
	 }

�

BLACK BOX
TEST RESULTS

�

 Input File

 Output File

 extensionPuller()

 parse()

 changeClassName()

 placeToken()

 placeHotKey()

While not EOF

 Finish Writing
 to the Output
 File and close.

Parsing Conditions

Parser

Modified/
Not Modified

Add imports/Add comment

import section found

Parser

Event Handler Exists/Does Not Exist

Add HotKey
Event Handler

Parser

