

StratoSplit

Software Design Document

February 15, 2025

Client:

General Dynamics Mission Systems

Mentors:

Brian Donnelly, Savannah Chappus

Team Members:

Sam Cain

Nolan Newman

Dallon Jarman

Elliot Hull

Revision 1.2

Table of Contents
Introduction ……………………………………………..…………….….……………… pg. 3
Implementation Overview …………………………….....………………………..…… pg. 4
Architectural Overview ………………………………….…………….….……….…… pg. 5
Module and Interface Descriptions …………………..…………………….……...….pg. 8
​ Audio Generator ……………………………………………………………………pg. 8
​ Web Application ………………………………………………………………….…pg. 9
​ Database ……………………………………………………………………………pg. 9
​ User Interface ……………………………………………………………………..pg. 10
​ Spatial Audio …………………………………………………………………..….pg. 10

Testing ……………………………………………………………………………..pg. 11
​ Security ………………………………………………………………………….…pg. 12
Implementation Plan …….……………………..………………………………..……..pg. 13
Conclusion …………………….…………………….…………………..……….………pg. 14

Introduction

Effective communication is paramount in defense, public safety, and intelligence
operations. In high-stakes environments, rapid and reliable information exchange is
critical for mission success. From coordinating search-and-rescue efforts to relaying
real-time intelligence, organizations depend on secure and efficient communication
systems. However, existing technologies often struggle to meet modern demands.

General Dynamics Mission Systems (GDMS), a leading defense contractor,
specializes in mission-critical products and systems. Their notable projects include
Rescue 21, a Coast Guard distress location system, and the next-generation Global
Positioning System (GPS). GDMS has tasked our team with creating a solution that
enhances communication efficiency.

Current communication with radio modems relies on cumbersome web
interfaces. These systems lack intuitive design, making real-time data transmission
inefficient and limiting the ability to manage audio attachments seamlessly. Additionally,
performance issues arise under varying network conditions, further complicating
effective communication between operators and field personnel.

The StratoSplit project aims to address the challenge of inefficient
communication with radio modems on mobile devices. Inspired by General Dynamics
Mission Systems' innovative solutions, our team is developing a Node.js web
application, StratoSplit, to simulate audio generation and transmission to a dashboard
for real-time monitoring.

The core modules of our solution consist primarily of an audio generator, a web
application, unit testing, and security. The audio generator is a virtual machine hosted
on Amazon Web Services GovCloud (AWS GovCloud) responsible for generating
Real-time Transport Protocol (RTP) audio packets and sending them to our web
application on another virtual machine on AWS GovCloud via multicast addresses. This
web application consists of the following components: a database, a user interface, and
server side spatial audio processing.

StratoSplit aims to revolutionize communication in defense, public safety, and
intelligence communities by providing a secure, efficient, and user-friendly web
application for simulated audio generation and transmission. Our team is committed to
delivering a high-quality solution that meets the needs of GDMS and its clients.

3

Implementation Overview
​ The vision for StratoSplit is to develop a highly efficient and scalable audio
stream generator and dashboard that enables real-time collection, processing, and
playback of radio signals through the cloud. This platform will allow users to seamlessly
access radio communications from a centralized system, with the audio streams being
securely transmitted to their local machines. By leveraging cloud-based infrastructure,
we aim to provide a high-performance, resilient, and user-friendly advanced audio
management experience.

​ The key features are as follows, simulated audio generation, real-time audio
transmission, a dashboard for monitoring, and a user-friendly interface. The functional
requirements are as follows, the application shall simulate audio generation, the
application shall transmit audio to a dashboard in real time, and the application shall
provide a user-friendly interface. Additionally, the non-functional requirements include
ensuring high availability, optimal performance under varying network conditions, and
adherence to industry-standard security protocols.

​ These features will be integrated with the following frameworks, services, and
languages:

●​ MongoDB: a NoSQL database solution which we will use to store user
credentials and configurations. This was chosen based on the client’s request for
a NoSQL database.

●​ Amazon Web Services GovCloud (AWS GovCloud): A cloud computing platform
designed for U.S. government agencies and contractors.This was chosen based
on the client’s providing our team access to its resources.

●​ Node JS: A JavaScript runtime that will serve as the backbone of our application,
handling server-side logic and enabling real-time communication between clients
and the audio transmission system. This was chosen because of the built in
support for audio processing, web sockets, and high potential for parallel
processing.

●​ Python3: A programming language that will be used for signal processing and
audio data manipulation within the audio generator. Python’s extensive libraries
for scientific computing and networking make it well-suited for these tasks.

●​ Real-time Transport Protocol (RTP): A standard protocol for delivering audio and
video over IP networks. We chose RTP specifically due to its compatibility within
multicast systems and ease of integration within the client’s current system.

●​ Docker: A containerization platform that will allow us to package the application
and its dependencies in a consistent environment. This was chosen after internal
testing concluded it was the best option for our needs.

4

●​ Ubuntu 24.10: The linux distribution we will use as the operating system for our
deployment environment. This was chosen because of the ability to modify kernel
code to enable Internet Group Management Protocol Version 2 (IGMPv2) in the
AWS GovCloud environment for multicast transmissions.

●​ Jest: A JavaScript testing framework that can be used to ensure the reliability
and correctness of Node.js applications. Jest was picked due to its built-in
support for unit, integration, and snapshot testing as well as code coverage
measurements.

By integrating these features into a seamless, cloud-powered solution, StratoSplit
will deliver a secure, reliable, and immersive audio streaming experience tailored to
users who require advanced, real-time communication capabilities. With a strong
foundation in cloud computing and a focus on future scalability, our platform will
continue evolving to meet the needs of its users, offering an unprecedented level of
control and flexibility in managing radio communications. With this flexible and modular
design, we pave the way for additional features such as mobile support, sophisticated
audio processing, and AI-driven enhancements.

Architectural Overview

To achieve seamless real-time communication, StratoSplit is built on a secure
and scalable architecture that integrates Amazon Web Services GovCloud hosted
virtual machines, Docker containerization, and a robust MongoDB system for user
authentication and data management. The system is designed to handle varying
workloads while maintaining optimal performance, incorporating logging mechanisms,
automated testing suites, and a modular deployment approach for seamless debugging,
upgrades, and reliability.

​ The hosting infrastructure relies on AWS GovCloud, providing a secure and
compliant environment for deployment. StratoSplit uses Amazon EC2 virtual machines
(VMs) to host key components. One EC2 instance runs the console web application, a
Node.js-based system deployed within a Docker container. This web app manages user
authentication, processes requests, and facilitates real-time interaction. A separate EC2
instance hosts the audio stream generator, which simulates radio communications and
transmits audio streams for processing. Users interact with the system via an operator
workstation, accessing the web application through a browser. Once authenticated,
users can manage and monitor active audio streams, which are transmitted from the
audio stream generator to the web server for real-time playback.

​ At the heart of the system is the web server, which ensures low-latency audio
transmission and real-time processing. Built using Node.js, the server handles audio

5

data routing, authentication, and access control. Audio streams transmitted via
Real-time Transport Protocol (RTP) are received, processed, and distributed to
connected users. The web server also manages interactions with the MongoDB
database, verifying user credentials and retrieving configuration data. To improve
deployment efficiency and ensure consistent performance, the entire web server is
containerized using Docker, allowing seamless scaling and fault isolation. This
microservices-style approach ensures that each system component operates
independently while maintaining efficient communication.

For authentication and data management, StratoSplit employs MongoDB, a
NoSQL database that securely stores user credentials, authentication keys, and audio
stream configurations. Hosted on a dedicated external server, MongoDB provides
scalable and flexible data storage, allowing the system to adapt to evolving
requirements without rigid schema constraints. Role-based access control is enforced,
ensuring that operators can monitor and control streams while administrators manage
permissions and configure access to specific radio channels.

Real-time audio transmission is achieved through RTP, enabling the audio
stream generator to simulate live radio communication. Audio packets are transmitted
over the network, processed by the web server, and forwarded to authorized users. To
optimize bandwidth usage while preserving audio quality, the system uses G.711
mu-law encoding.

The user interface is designed for clarity and usability, offering an intuitive
browser-based dashboard where users can manage and monitor audio streams.
Integrated with Node.js, the dashboard provides real-time updates using WebSockets,
ensuring minimal latency when interacting with the system. Users can adjust volume
levels, mute individual channels, and group streams for easier management.
Administrators have additional controls, such as managing user roles, configuring
access permissions, and creating or deleting accounts. Audio output is handled through
speakers connected to the operator workstation, ensuring a seamless listening
experience.

To maintain system reliability and performance, StratoSplit integrates Jest for
automated testing, covering unit, integration, and performance tests. These tests verify
that audio interactions remain consistent. Additionally, the web server and database
feature comprehensive logging mechanisms,allowing for real-time monitoring,
debugging, and security auditing. These logs ensure compliance with operational
standards and provide insights into system performance.

​ StratoSplit’s architecture is designed to provide a secure, scalable, and efficient
solution for real-time audio communication in mission-critical environments. By

6

leveraging AWS-hosted virtual machines, containerized deployment, and a robust web
server, the system ensures seamless audio transmission while maintaining high
availability and fault tolerance. The integration of MongoDB for authentication, RTP for
real-time streaming, and Jest for automated testing within a Node.js environment
reinforces reliability, security and performance. StratoSplit is built to handle evolving
operational demands while ensuring low-latency, high-quality communication.

Figure 1: An overview of the systems infrastructure, showing how components interact
within a cloud-hosted environment.

Figure 2: A a detailed view of user interaction with the system, demonstrating how the
operator workstation, web application, and audio output devices are integrated to deliver

an enhanced audio experience

7

Module and Interface Descriptions

The Audio Stream Dashboard is a web-based application that is designed to provide a secure,
efficient, audio stream management system allowing the Coast Guard to quickly and effectively
receive one-way communication from ships out at sea as well as adhere to General Dynamics
requirements. This comprehensive system enables users to monitor and control multiple audio
channels through an intuitive spatial audio interface. This section will talk about the Audio
Generator, and the Web Application, with the application broken down into five main points, the
database, user interface, spatial audio, testing, and security.

Audio Generator

The Audio Stream Generator is responsible for producing real-time audio streams and
delivering them over RTP multicast. It runs on an EC2 VM and responds to requests for audio
generation, dynamically creating and transmitting RTP packets to a multicast group.

Figure 3: Audio Generator Component Diagram

Endpoints:

●​ Audio Generation Request: This endpoint allows an authorized administrator to initiate
an audio stream. Upon success, the system returns a unique stream ID and the
multicast address where the audio is transmitted. Unauthorized users will receive an
access denied response.

●​ Stream Information Lookup: Returns the status of an ongoing preselected stream. Users
can only request information on streams they have explicit access to. Unauthorized
stream IDs will not be disclosed in order to prevent attacks.

●​ Stopping a Stream: This endpoint allows an authorized administrator to terminate an
ongoing stream. Users cannot stop streams, ensuring that only privileged entities control
the audio streams.

8

Web Application

The web application is the beating heart of the project. It serves as the central nervous
system of the entire platform, facilitating real-time audio stream processing and
distribution through the sophistication of multicasting. This web application is built off of
modern technologies being NodeJS and ExpressJS. Through these modern tools, we
are able to implement comprehensive security measures including HTTPS encryption,
input validation, rate limiting, and detailed audit logging. The system maintains optimal
performance through error handling. These features work in concert to ensure reliable,
secure operations while supporting multiple concurrent users.

Figure 4: Web Application Component Diagram

Database

The database is responsible for storing user credentials and the system configurations
made by the user. For the foundation of our data, MongoDB is the main data
management strategy. It is chosen for its robust document-oriented storage capabilities
and flexible schema design. The database architecture contains two primary domains:
user management and system configuration. The user management handles
credentials, roles, and authentication tokens. The system configuration stores audio
channel definitions and interface customization.

9

Figure 5: Database UML diagram

User Interface

The user interface emphasizes operational efficiency through a thoughtfully designed
layout that reduces cognitive load while maintaining functionality. The design
incorporates clear navigation and responsive elements that adapt to various devices
seamlessly. The key features that make our project stand out are the ability to quickly
select which channel you would like to listen to, seamless use of 3D audio to determine
the location of your channel, comprehensive user controls for profile and preference
management, and detailed monitoring tools for audio levels and system status.

Figure 6: User Interface UML diagram

Spatial Audio

The spatial audio system provides a new revolutionary approach to General Dynamics
current solution. This solution eliminates the need for a single physical speaker per

10

each channel quickly eliminating the cost of hardware. If a user has 40 channels then
they would have to buy 40 speakers. This architecture supports 360-degree sound
positioning with distance-based attenuation and room acoustics modeling. Performance
optimization ensures minimal latency and efficient resource utilization while maintaining
audio quality across various output devices.

Figure 7: Spatial Audio Workflow

Testing

Testing is responsible for ensuring the functionality of the web application. Testing
ensures that the application is staying on the right track and that the code fails properly
when exceptions occur that are beyond the scope of the function. Testing is the quality
assurance of the project. Quality assurance is maintained through a comprehensive
testing framework that operates across multiple levels. Unit testing validates the
individual components and functions. For the unit testing, JEST was the one that was
chosen as it provides code coverage and standard testing and GitHub integration
making testing significantly easier for everyone to see and understand. System-level
testing ensures the end-to-end workflow validation and performance under stress
conditions. The testing infrastructure automates execution within a continuous
integration pipeline. Quality assurance processes include mandatory code reviews,
coverage metrics, and security scanning to maintain high standards of reliability which is
all built into the GitHub commit process.

11

Figure 8: Testing workflow

Security

The zero trust security framework operates on the principle of “never trust, always
verify” implementing continuous authentication and verification at every level of system
interaction. Identity verification incorporates constant password verification and MFA
authentication. Data protection measures include end-to-end encryption and
comprehensive access audit logging. Application security implements runtime
monitoring, while compliance measures ensure regulatory alignment and policy
enforcement. The framework maintains security through continuous monitoring and
automated response ensuring legitimate user access and denying unauthorized users
access.

Figure 9: Security Workflow

12

Implementation Plan
The implementation of this project follows a structured timeline consisting of

various programming practices and phases. Our general approach to development is a
combination of individual sprints, pair programming and weekly internal meetings. With
individual sprints we can make rapid progress towards our assigned modules, leaving
time for feature testing and validation. By pair programming, we can work through
tougher programming problems and fix bugs. Lastly, with internal meetings the entire
StratoSplit team is up to date on what's going on within development, what needs to be
done moving forward, and who might need help with their respective projects.

Figure 10: Project Implementation Timeline: Development Phases and Scheduling
Overview

●​ Documentation: Beginning with planning in September 2024 and extending until

May 2025, documentation plays a critical role throughout the development cycle,
ensuring that all technical aspects are well-documented and continuously
updated. This phase lays the foundation for the project's architecture and system
design. All team members are responsible for this module.

●​ Audio Generator: Development for the audio generator module began in
October 2024. It is responsible for generating audio streams from MP3 files to be
sent over multicast groups using RTP. The initial phase of this component was
completed in December 2024 and has been integrated into the system, with
potential future updates. Nolan is responsible for this module.

●​ Database: Work on the database began in November 2024. The database is
essential for storing system configurations and user data. This has been
completed and integrated as of December 2024. Dallon is responsible for this
module.

13

●​ User Interface: The first version of the user interface was developed in
November 2024. This component provides the interactive front-end for users and
will continue to be developed until March 2025 to allow for iterative
improvements. All team members are responsible for this module.

●​ Spatial Audio: Initial spatial audio implementation begins in November 2024
with directional panning. Development will continue until February 2025 and will
be improved to implement ambisonic sound processing, ensuring that 3D audio
rendering is optimized before testing and integration. Sam is responsible for this
module.

●​ Testing: Testing began in December 2024 and will continue through April 2025.
This phase includes unit tests, integration tests, code coverage calculations, and
performance evaluations to ensure a stable and reliable system. Elliot is
responsible for this module.

●​ Zero Trust: In mid December, Zero Trust security measures began to be
implemented and are scheduled for completion by April 2025, reinforcing security
policies across the system. All team members are responsible for this module.

●​ Deployment: The final phase from April to May 2025, focuses on finalization and
Deployment. This period is dedicated to final testing, bug fixes, and
documentation updates, ensuring a seamless transition to the deployment phase.
The completion of documentation in early May 2025 marks the official conclusion
of the development cycle, signifying the project’s readiness for launch.

This structured timeline ensures that critical components are developed in a
logical sequence, allowing dependencies to align effectively. The phased approach with
overlapping development, testing, and security implementation ensures that potential
issues are identified early, leading to a robust and scalable system.

Conclusion
Developed in collaboration with General Dynamics Mission Systems, StratoSplit

directly addresses the inefficiencies of existing radio modem interfaces by providing a
scalable, secure, and user-friendly web application. With a focus on simulated audio
generation, real-time transmission, and an intuitive monitoring dashboard, our solution
ensures that operators can efficiently manage and interact with radio communications in
dynamic environments.

At its core, StratoSplit was designed to address the fundamental challenge of
inefficient outdated communication interfaces used in modern radio systems. Existing
solutions often make it difficult for operators to effectively manage and transmit audio
data in mission-critical environments. These limitations can lead to delays,
miscommunication, and operational inefficiencies, particularly in high-stakes scenarios

14

such as search-and-rescue missions and military operations. By developing a secure,
scalable, and intuitive web application, we overcome these challenges by streamlining
audio generation, optimizing real-time transmission, and providing an interactive
dashboard for monitoring and control. This ensures that users can access, manage, and
interact with communications seamlessly, reducing response times and improving
overall operational effectiveness.

The system’s architecture—built on cloud-based infrastructure, containerized
applications, and a robust MongoDB backend—emphasizes high availability, security,
and scalability. By implementing zero trust security principles and leveraging AWS
GovCloud, we have designed StratoSplit to withstand evolving cybersecurity threats
while maintaining optimal performance under varying network conditions. Features such
as spatial audio, modular development, and rigorous testing ensure that the final
product is both innovative and reliable.

Throughout the structured development timeline, we have focused on iterative
testing, security enhancements, and continuous refinement of the user experience. By
addressing potential risks such as tool incompatibilities, service downtimes, and
integration challenges, we have established mitigation strategies to ensure system
stability and security.

Ultimately, StratoSplit delivers a transformative communication solution that
modernizes audio transmission for mission-critical operations. By aligning with the
requirements of GDMS and the U.S. Coast Guard, our team is committed to delivering a
high-performance platform that enhances operational efficiency and ensures seamless
communication for its users.

15

	StratoSplit
	Table of Contents
	
	Implementation Overview
	Architectural Overview
	Module and Interface Descriptions
	Audio Generator
	Web Application
	Implementation Plan
	Conclusion

