Forest Frames

Design Review III

Mentor Scott Robert Larocca

Daniel Austin

Dalton Tippings

Nick Greco

Fady Zaky

Kyle Bambling

Aidan Trujillo

Problem Statement

Rural and more isolated parts of the world are more likely to experience degradation of its biodiversity due to a lack of conservation efforts.

- Less reported on areas due to a lack of funding or resources
 - Malaysia, Kenya, Colombia
- Citizens are not incentivized or lack resources to be collecting data themselves

Dr. Camille Gaillard

Dr. Chris Doughty

Solution Overview

Our solution is a mobile app that is easily available to citizens in these areas.

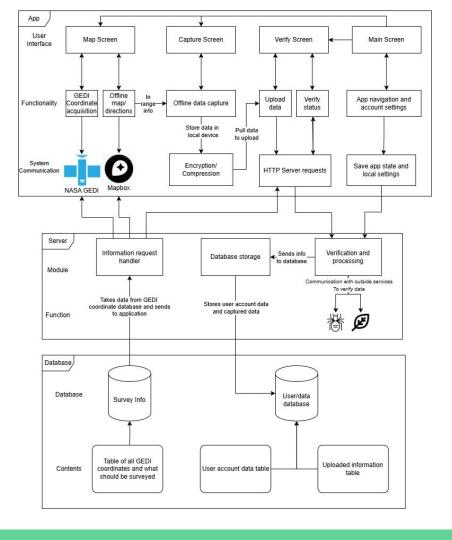
- Our app will allow users to upload gathered data to our server, where it will be verified through existing methods and stored in our database
- The app collects coordinates from the NASA GEDI Satellite to show acceptable areas for users to collect data. Users are guided to data collection sites using a built in map interface.

Dr. Duan Biggs

Dr. Jenna Keany

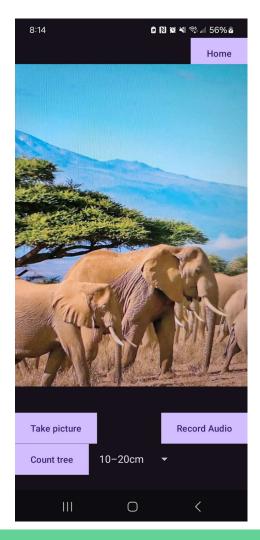
Key Requirements

Data Processing Requirements


- Collect visual/audio data natively
- Transfer data from app to server
- Verify images of animals through detection/classification
- Store and retrieve user data from database

Map Requirements

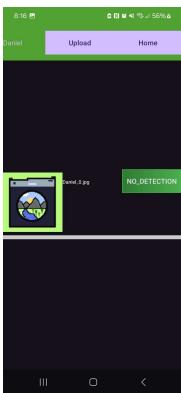
- Display GEDI satellite coordinates
- Display user location and bearings
- Show the map offline
- Track if a user is within 35m of a GEDI coordinate


Implementation Overview

- App Frontend
 - Collecting data natively (Kotlin)
 - Offline mapping functionality (Mapbox)
 - User authentication
 - Simple and accessible UI
- Server & Database Backend
 - Verification of image data (Pytorch Wildlife)
 - Storing user data in database
 - Storing and searching GEDI coordinates

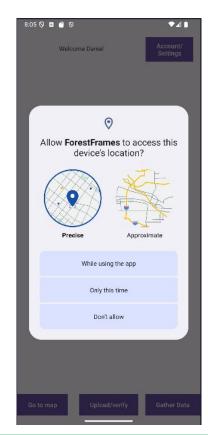
Prototype - Data Collection

- Recording audio/visual data
 - Ensure that the recorded data is within the needed coordinates
 - Records images and audio recordings to local storage
- Counting trees
 - The user can count the number of trees they encounter within the GEDI coordinates and that is uploaded to the server along with the audio/visual data



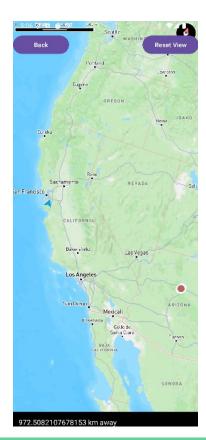
Prototype - Data Upload & Verification

- Upload collected data
 - Upload image/audio
 - Upload associated tree counts
- See status of data verification
 - Pulls users data
 - Informs user of the verification status


Upload Screen

Verification Status

Prototype - Map Location Tracking


- Get Permissions
 - Prompt for precise location.
 - Ensure the user can't collect data without it.
- Track their location with a puck
 - Accurately track a user's orientation.
 - Actively update user location.

Prototype - GEDI coordinates

- Extract nearby coordinates
 - Check user location
 - Request coordinates near user location
- Coordinates filtering
 - Filter out 50 nearest
 coordinates from user location
 - Filtering is done using K-D tree algorithm for efficiency

Prototype - Map Routing

Choosing a Coordinate

- A user can select a coordinate and see distance.
- User can route to it if they want.

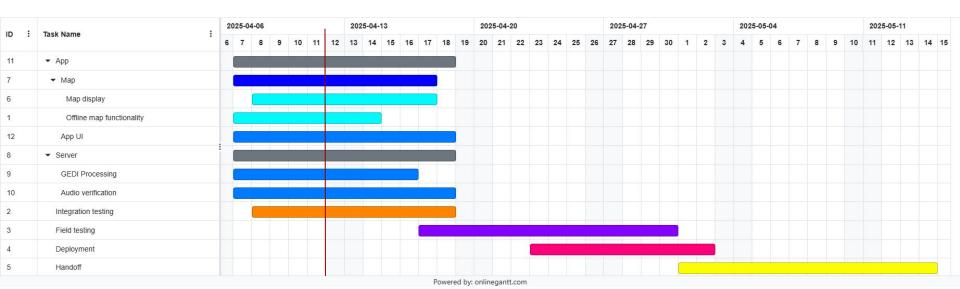
Distance Tracking

- A user can see how close they are.
- A user will be notified when they are within an acceptable distance.

Challenges and Resolution

Offline Map View

 Getting the view of the downloaded tiles is difficult. They do not work the same as setting original map.


Coordinate Sorting

 Finding a way to efficiently sort and store coordinates without taxing our database and server to help be cost effective as well as quick.

Secure Network Data Transfer

 Acquiring an SSL certificate and using it on the server for HTTPS requests, allowing our data to be encrypted over the network and prevent tampering

Schedule

- Finishing up development of key functionality
- Moving into integration and field testing before deployment and handoff

Testing plan

- Unit Testing App
 - Will use JUnit for unit testing
- Unit Testing Backend
 - Use Python 'unittesting' and 'pytest' libraries to conduct unit testing
 - Usage of mock database to simulate actions
- Integration Testing
 - Test responses of the HTTP requests between the server and app
 - Ensuring proper data transfer between server and database
- Usability Testing
 - Unguided ease of use of app
 - Readability of backend logging

Closing

- Our app will improve the accessibility of ecological citizen science to many areas unable to participate in it previously
- Prototype includes: data collection, data upload to server, location tracking, and map routing
- Currently finishing up development and working on app and backend testing

Thank you