Forest Frames Design Review II

<u>Mentor</u> Scott Robert Larocca

Daniel Austin

Fady Zaky

Kyle Bambling

Dalton Tippings

Nick Greco

Aidan Trujillo

Problem Statement

Rural and more isolated parts of the world are more likely to experience degradation of its biodiversity due to a lack of conservation efforts.

- Less reported on areas due to a lack of funding or resources
 - Malaysia, Kenya, Colombia
- Citizens are not incentivized or lack resources to be collecting data themselves

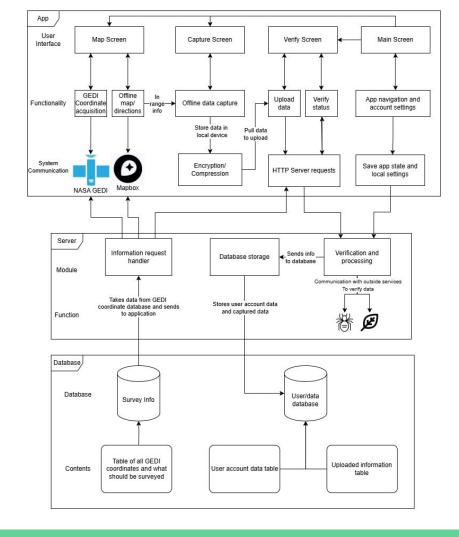
Dr. Camille Gaillard

Dr. Chris Doughty

Solution Overview

Our solution is a mobile app that is easily available to citizens in these areas.

- Our app will allow users to upload gathered data to our server, where it will be verified through existing methods and stored in our database
- The app collects coordinates from the NASA GEDI Satellite to show acceptable areas for users to collect data. Users are guided to data collection sites using a built in map interface.



Implementation Overview

- App Frontend
 - Collecting visual data natively
 - Offline mapping functionality
 - User authentication
 - Simple and accessible UI
- Server and database Backend
 - Verification of image data
 - Storing user data in database
 - Storing and searching GEDI coordinates

Implementation Details - App

- Offline Map Functionality
 - After downloading GEDI coordinates and related map data, the user will be able to use an offline map that will guide them using the mapbox API
 - The user will be able to download navigation to coordinates for offline use.
- Native data collection
 - Data will be collected through the app itself and stored locally on the phone. This will use built in Android Jetpack libraries.
- Verification status
 - Using HTTPS GET and POST requests to send data (images, video, etc.) and retrieve data from server (JSON of data status)

Implementation Details - Server & Database

• Image Verification

- HTTP Response to handle received images and updates on verification
- PyTorch Wildlife API calls, pretrained models for detection/classification of animals
- Config file containing threshold acceptance
- Storing User Data
 - MySql scripts on the server to store/query to the RDS database
 - Additional python scripts used for compression of user content
 - AWS RDS/S3 database to store user data as well as metadata for content

• Coordinate Storage and Retrieval

- Google Earth Engine for retrieving and updating coordinates
- AWS RDS/S3 database for storing coordinates
- \circ $\;$ AWS SDK to retrieve coordinates using our app

Challenges and Resolution

- Code Collaboration
 - GitHub: Version History & Issue Tracking
 - Determined Code Stylings & Tool Dependencies
- Coordinate Extraction
 - Downloading predetermined regions
 - Store coordinates ourselves not from NASA
- Location Permissions
 - Ensuring user privacy is obeyed and no background location used
 - Prompt for precise location and provide explanation

Schedule

- Basic functionality for each individual component soon
- Integration of individual components is the next task

Closing

- Our app will improve the accessibility of ecological citizen science to many areas unable to participate in it previously
- Our full stack will handle in the gathering, verification, and storage of the ecological data gained from the user in their area
- We have basic functionality for most modules, advanced functionality and integration between modules is in-progress

Thank you