
NAU–CS Team Project Self-ReflectionWorksheet

Overview: At the end of a project, it’s useful to go back and reflect on how the
project went, how the team functioned, how effectively you used tools, and so on.
This worksheet is designed to guide you in this process, and capture the outcomes.

How to fill this out: Hold a final teammeeting, after you’ve turned in the last
deliverable and the heat is off. Order a pizza, crack open a beverage. Then sit down
as a team and go through the following worksheet, discussing and filling in each
section. Type up and the result, and email the document to your teammentor.

Grading Metrics: You will not be graded on the content of this document per se.
That is, if for instance, your self-assessment concludes that you “didn’t use version
control tools effectively”, then this shortcoming won’t affect your grade; the point is
that it should be an honest assessment. What you will be graded on is how well you
fill in this document: thoughtful self-analysis gets a perfect score;
cursory/lame/vague self-analysis will score low. We instructors use this document
to help us think about how to encourage more learning and better teaming on
projects, so please help us out!

Team Name: Team Controller

Teammembers: Zachary Parham, Brandon Udall, Bradley Essegian, Dylan Motz

Course number and name: CS 486c - Capstone Experience

Semester: ___Spring 2024___Date this reflection completed: ___5/3/2024__

Software DESIGN PROCESS

How did your team structure the software development process? Did you choose a
particular formal model (SCRUM, Agile, etc.). If so, which one and why? If not, did
you explicitly agree on an informal process…or was it just pretty random. Explain
briefly.

The team structured the process around the Agile process. We decided on this
approach because of the limited time to develop the application and also it would
provide the clients with weekly updates to show our progress.

How did it go? Now briefly discuss how satisfied you were with this process. Did it
work well for this project? Why or why not?



The approach went well. Dividing the project into bi-weekly sprints then dividing
the programming issues into these sprints allowed us to keep up good progress
towards the end goal. It helped us reduce the programming problem to sub
problems which were not all that intimidating when they were small enough.

What changes might you make in your development process if you have it to do
again? More structure? Less? Different process model?

Overall, the agile process of development that our team decided on worked out
really well in the end. It held us all accountable to resolve issues by the end of our
biweekly sprint, and made it easy to divide up the work for the whole semester so
that we would finish on time. We don’t believe that we would change much about
our development process because of this.

Software DEVELOPMENT TOOLS
What software tools or aids, if any, did your teammembers use to support or
organize software development? For each of the following categories, list the tool(s)
used, and briefly describe how the tool was actually used. If you didn’t use a formal
tool, explain how you handled the matter with informal means.

● Source creation tools: IDEs, text editors, plugins, anything used to edit/create
source.

● Version control: How did you manage your codebase?
● Bug tracking: How did you keep track of bugs, who was working on them, and

their status
● UML modelers and other miscellaneous tools:

For the main technologies, we decided to use QT for a GUI paired with C++ for the
backend. The team decided to use the QTCreator IDE to facilitate active development
of both the GUI and the backend. This is the given IDE for QT development and
worked very well. For version control and bug/issue tracking we use GitHub and Git.
The team found this approach very easy as all of us had experience with Github/Git
in the past. The branching here was key for development along multiple different
issues simultaneously.

How did it go? Comment on any problems or issues related to organizing the coding
process. Howmight you have managed this better? Were some tools you used
superfluous or overkill? What tools or mechanisms would you try next time to deal
with those issues better?

Overall it went well, if we could change one thing it would be clearly defining the
roles of the team up front and specializing each of us into a different part of the
project that needed to be developed. Eventually we all found specialties which each
member could focus on but it would have been nicer to have these defined up front.



The tools we used were almost ideal. Qt has a massive library and we selected useful
components as we went including testing, serial communication, settings (to store
variables cross-session). We used discord for communication and github to track
progress and store our code base.

TEAMING and PROJECT MANAGEMENT
Without getting caught up in detailed problems or individual blame, take a moment
to think about how your team dynamics worked overall. Here are a few questions to
guide you:

How did you organize your team? Did you have some clear distribution of team
roles (leader, technical lead, documentation lead, etc.) up front? Or was it more just
“everyone does everything as needed”?

Leader - Zach
Front-End - Dylan
Back-End (Controller Simulator) - Brandon
Back-End (Data Manipulation/Testing) - Zach/Bradley

How did you communicate within the team? Comment on each of the following
communication mechanisms:
● Regular teammeetings? If so, how often?

o Teammeetings occurred virtually every Monday at 5PM
o Issue refinement meetings occurred virtually every other Friday at

1:30PM
● Impromptu teammeetings? If so, roughly what percent of total teammeetings

were of this sort?
o ~10%

● Emails to all members? If so, explain briefly: about how often, what used for?
o Mainly for emailing clients/mentor

▪ Once a week

o We never emailed each other since we used Discord for
communication instead

● Software tools? Were any of the software tools you mentioned above (e.g.
bug/issue tracking) using to communicate and organize tasks, e.g., in lieu of
emails or other discussion?

o Used Github to organize our issues + deliverables for each sprint, as
well as the Notion board for the calendar

● Other communication channels used? Facebook, wiki, text messages, phone
conferences, etc.

o Used Discord for all our communication



How did it go? Did you feel that intra-team communication overall went well? Were
there breakdowns, e.g., where someone didn’t know something was due, didn’t
realize a task had been assigned to him/her, did not know about a deadline, etc.?
Without getting into details, simply comment on whether such breakdowns
occurred, what the overall cause was, and how serious (if at all) the consequences
were.

The communication strategy was effective. We used a more professional tone in the
form of emails with the client and mentor. The team used discord to communicate
and organize tasks every day so this meant that the team was well organized and
kept on top of deadlines and deliverables.

What could you do better?More structured leadership? A more formal task
assignment/tracking system? Using better/other communication mechanisms?
Generally just think about what you all would do next time to improve
communication and avoid breakdowns mentioned.

Because we never really encountered any “breakdowns”, there isn’t too much that
we would change with our communication mechanisms. All teammembers were
aware of the work they needed to complete each week, as well as being
well-informed about upcoming meetings and deliverables from a neatly structured
Discord server.

Nice work! Congratulations on finishing your project! Please enter all of your
answers in this document and send it off to your instructor and teammentor,

and submit it on Canvas.

Some closing thoughts…
Spend a little more time on your own percolating on the answers you gave in this
self-reflection exercise. Being effective as a project team is not easy, and is a skill
that we all have to work on continuously. There is rarely any single or simple reason
why a project was a bumpy ride; usually it’s a combination of factors…of which is
YOU. Regardless of project or team, there are things that could have been done
differently to make it flow better. Recognizing those things through thoughtful
reflection post-facto is the key to improvement!

Brandon Udall - What I really liked about this project was that it introduced me to
agile and the Qt framework. Both of these are useful tools which are commonly used
in industry and I feel as though I grew as a software developer throughout the
course of this project. Also this capstone gave me the chance to meet the other
members of Team Controller which has been a valuable experience.

Dylan Motz - This project was fun to work on as it introduced me to new
technologies. The Qt framework definitely made this project more enjoyable as it
provided us with everything we needed and made development easier. Also getting



more experience using github was very nice as I am much more comfortable with
using github now. Overall this capstone helped me become a better software
engineer and it was fun working with the other members of Team Controller.

Zachary Parham- This project made me realize howmuch I really enjoy project
management. I found that organizing a small team of software developers around a
central development goal was very satisfying and makes me excited for all of the
roles where I can learn and growmy leadership skills. This project also helped me
develop my interpersonal skills when working with clients and project owners.
Working in a very corporate environment, these will certainly come in handy.

Bradley Essegian - This project introduced me to serial communication, which was
the part that I was most intimated by based on the initial project guidelines. We got
to create our own serial protocol during development of the Connection class and I
learned a lot of valuable things about serial communication. Researching the Qt
framework and its libraries was significant, and I’m excited to continue using the
framework beyond its serial and GUI capabilities.

Stay tuned as Team Controller is still working on some more projects after college!


