Operation RM William Rogers (Team Lead): wpr29@nau.edu

Northern Arizona Isaac Faulkner: lwf2@nau.edu
University Andrew Milizia: am5275@nau.edu
Flagstaff, AZ Nick Henderson: nsh67@nau.edu

Software Desigh Document
February 16th, 2024
Operation RM
Client:

General Dynamics Mission Systems
Mentor:

Tayyaba Shaheen
Team Members:
William Rogers
Isaac Faulkner
Andrew Milizia
Nicholas Henderson
Version:

1.2

Overview:

This document will provide a structured plan concerning the design and
implementation of the software for this project. The development team will utilize this
document in hopes to mitigate vulnerabilities within the software design and ease

implementation efforts.



Table of Contents

1 Introduction
2 Implementation Overview
3 Architectural Overview
4 Module and Interface Descriptions
4.1 Frontend Mobile Application
4.2 Backend Java Application
4.3 Backend C Controller Module
5 Implementation Plan
5.1 Project Initiation
5.2 Design and Development
5.3 Feature Implementation
5.4 Testing and Quality Assurance
5.5 Final Adjustments
5.6 Final Product
6 Conclusion



"

1 Introduction

In today’s world, the need for secure, efficient, and tactical communication in the
defense, public safety and intelligence communities can not be understated. General
Dynamics Mission Systems has tasked Operation RM with developing a solution to
solve the problem of inefficient communication with a radio modem on a mobile device.

General Dynamics Mission Systems (GDMS) is a defense contractor that
specializes in the development of mission-critical products and systems. GDMS has
developed many widely-used technologies and programs such as Rescue 21, which is a
system that allows the Coast Guard to locate people and vessels in distress. Probably
one of the most commonly known programs at GDMS is developing the next generation
of GPS, or the global positioning system. Overall GDMS provides many critical products
and systems to the defense, public safety, and intelligence communities.

GDMS has tasked Operation RM with developing an Android application that can
provide two-way communication with a radio modem, in addition to being able to select
a specific connection to use for transmitting and receiving. Developing a mobile
application that is able to communicate with a radio modem efficiently is crucial for
General Dynamics Mission Systems. Currently, communication with the radio modem is
done through a web interface that is inefficient to access and easily add file
attachments. With an Android app, the clients will be able to communicate in a more
efficient and tactical manner. In addition, the advantages include not only the ability to
send and receive files efficiently, but also the ability to easily send images in the field
using the integrated Android camera application. GDMS has provided a radio simulator
to simulate the behavior of the real software-defined radio, as well as a remote control
interface (RCI) API that will be used to communicate with the radio simulator.

To meet the expectations of our client, it is imperative that certain requirements
are met. These requirements provide Operation RM with a guide to what is needed for
the project's solution.

e The application will utilize Java and C to enable communication between the
application and RCI



"

e With the use of this application, emails will be able to sent and received through
specified connections

The application will be compatible with Android version 12,13, and 14

Screen compatibility will be supported through the Android application

Color blindness will be considered in the development of the Ul

For any loading process with a time over 3 seconds will display a progress bar

To implement this application, the software architecture was developed to ensure
the software meets the requirements that GDMS has set forth. First, an overview of the
systems architecture was created to begin to understand the connections and various
components of the design. For each module or component of the architecture, a
corresponding class diagram was developed to better understand the relationships
between classes, as well as between modules.

2 Implementation Overview

This project primarily consists of creating a mobile Android application that will
connect with the General Dynamics radio modem. This application will help make
communicating with their modem easier on a mobile device, as the currently
implemented interface is limited to a web application. The primary objective of the
project is to get an email-like system on the mobile application that can send and
receive files to and from the radio modem. One of the driving factors behind GDMS’
desire for an Android application over the current web application is to have it integrate
with other applications on the phone such as the camera. There will be many parts of
the solution that should be considered when connecting the mobile application with the
radio modem.

The first part of the solution is to create a mobile application that will look similar
to the current web application in order to make it easier to train people who have
already interacted with the web application. This Android application will serve as the
primary user interface for communicating with the radio modem. The application will be



"

similar to an email system where the user can compose, send and view emails sent and
received to/from the radio modem. The user will be able to see the inbox and outbox of
the radio modem as well as select a certain connection to use via presets. On the home
screen there will be five different tabs to choose from: compose, inbox, outbox, sent and
transfer history. There will also be settings, system health, and about tabs that will
provide information and settings for the radio modem. In addition, there will be a status
bar at the top of the application showing the current status of the connected radio
modem. This status bar will show if the modem is currently connected and if it is actively
receiving or sending. The Android application will be made on Android Studio using
Java. Java is one of Android Studio's most compatible languages and can easily
communicate with the given radio simulator from General Dynamics.

The second part of the solution is facilitating the communication between the
Android application and the radio modem. To do this, the Android application will make
use of the General Dynamics RCI API. This provides an interface with the radio modem
and radio simulator that allows packets to be sent back and forth through a WiFi
connection. One challenge during implementation is that the RCI API is written in C
while the Android application is in Java. To facilitate this transition, the Android
application will use the Java Native Interface (JNI). The backend Java will facilitate the
conversion of the Java methods to the native C methods. In addition, the queue system
will be implemented in the backend Java. To transition between Java and the RCI API, a
controller written in C will be used. The controller will communicate with the radio
modem through the RCI API to perform operations such as sending and receiving files.

3 Architectural Overview

This project has four main parts to it as seen in Figure 1. These parts are the
front end mobile application, the backend Java layer, the backend C controller, and the
intermediate layer between the backend Java and backend C. These are important
parts of the architecture to consider in the project. It is crucial that the interaction
between these components, as well as their individual structure are analyzed.



"

Phone Ubuntu VM

Front End Mobile App Backend Java Intermediate Layer (C) Radio Controller Radio Simulator

Main Activity Main Activity

JNI Inbox Handler RCIAPI
Array lists H
WiFi
Qutbox Handler JSON-C library w
e x

Fragmenis Queue System Email Class

Status bar Navigation Bar

l Packaging Handler Waveform Handler

Layouts
Aftributes Error Handler

Local Phone Storage

Styles

Android Applications

Camera

Figure 1 Systems Diagram

The front end mobile application is the primary user interface and executable of
the project. It will control the mobile application and allow the user to access everything
they need to communicate with the radio modem. Inside the mobile application most of
everything will be controlled by fragments. These fragments will be used to facilitate the
various functions of the radio simulator though a GUI. The main activity is the primary
controller of the application that will be used the most. As part of the main activity, the
status bar is used to check the status of the connected radio modem and see if it is
connected, and whether it is actively sending or receiving files. In addition, the
navigation bar will be used to navigate between the various tabs. In the layouts, there
are controls, attributes and styles. The layout component consists of what the
application looks like graphically. The front end mobile application serves as the primary
facilitator for not only user interface, but communication with the radio modem entirely.



"

The backend Java will be used to store emails in a queue system, as well as
interact with the backend C controller layer. This layer will facilitate the core functionality
and logic of the application. This layer is composed of 3 parts: the main activity, queue
system, and email class. The main activity is where most of the information and data is
stored and used. The queue system will be used to store emails outbound for the radio
modem. The queue system will follow First In First Out (FIFO) priority and will allow that
queued email to be sent out in that order. Lastly, the email class will serve as an object
to store the various components of each email. This class will store all necessary
information for the emails to be displayed and sent properly. This layer will send and
receive data from the back end C controller layer through the intermediate layer.

The intermediate layer is used between the back end Java and the back end C
controller. This layer will connect any of the data that we gather from the radio modem
on the C side and transfer them over to the Java side, and vice versa. In order to do this
the Java Native Interface (JNI) will be used which is a Java to C interpreter. JNI will
allow the mobile application to remain in Java and the RCI API to remain in C.

Lastly there is the backend C controller layer. In this layer, the application will
connect to and communicate with the radio modem. This is where the RCI API will be
implemented into the application. The RCI API will then be used to communicate with
the radio modem and send and receive data. There are also handlers for the different
application parts such as the inbox, outbox, and connection presets. These are used to
handle the respective parts of the application. Any error that comes from the radio
modem in connecting, sending, or receiving will be dealt with in this area and forwarded
to the appropriate Java handler.

4 Module and Interface Descriptions
4.1 Frontend Mobile Application

The frontend mobile application module serves as the primary point of
communication between the user and the radio modem. All user interface descriptions
and code are included in this module. This module connects with the backend Java



module in order to execute tasks requested by the user and to receive messages from
the radio modem. Figure 2 shows the overall architecture of the frontend mobile

application module.

AboutFragment

Fragment, bundle: Bundie): void

-« replaceFragment(fragment
Fragment, bundie: Bundie). void

- bundie: Bunde

+ replaceFragment(iragment. Fragment,
bunde Bundle) void

Extends

[ semuistagopter |

[ ger int

A

Use

Use

ComposeFragment

sent Fragment

Outbox Fragment

- attachmentPath: Stringl]

+ method(type): type

Main Activty

+ inboxList: ArrayList<Email=

+ replaceFragment(fragment
Fragment, bundle: Bundle): void

- bundie: Bundie

- emaiQueue: ArrayList<Email>

+ onCiick{View view): void

- bundie: Bundie

- bundie: Bundie

=

Figure 2 Frontend Class Diagram

There are two primary components within this module, the main activity and
general fragments component, and the adapter component.

First, the main activity and general fragments component consists of the Main
Activity class which handles the main front-end code. In addition each fragment of the
Android application will be linked and used by this class and act as screens that will
appear on top of the main activity. This is done to keep the program’s email data
contained in a centralized area where the fragments can access it by reference. Figure

3 displays the structure of this component.




Fragment

Extends

Extends Extends Extends
Extends
AboutFragment SettingsFragment
SystemHealthFragment + replaceFragment(fragment: + toggleDarkMode(void): void
+ replaceFragmentifragment: Fragment, bundle: Bundle): void \

- N N + replaceFragment(fragment:
Fragment, bundle: Bundle): void Fil ) Fragment, bundle: Bundle): void
- bundle: Bundle

+ replaceFragment(fragment. Fragment,
bundle: Bundle): void

ComposeFragment

- bundle: Bundle

_ N . - emailQueue: ArrayList<Email>
Email Main Activity
- receiveTime: String + inboxList: ArrayList=Email= + onClick(View view): void
- emailSubject: String + putboxList: ArrayList<Email=
Parcelable - emailContent: String {¢———» + seniList: AmrayList<Email=
Extends—|

- hasAttachment- boolean +ransferList: ArrayList=Email>

- attachmentPath: String[] - boxData: Bundle
. + replaceFragment(fragment:

+ methoditype): type Fragment, bundle: Bundle): void

Figure 3 Main Activity and General Fragments Class Diagram

The public interface of this component consists of the frontend, Ul code that will
serve as an interface for the radio modem on the mobile device. This component
redirects the user input into the backend Java module.

The main activity serves as the initial main class of the application. This will use
the Email class to access email objects. In addition, it will use the file transfer fragment
to navigate to the various file transfer and setting pages. The system health and about
fragments can be navigated to which are added as a possible future implementation as
a stretch goal. The settings fragment will be used to toggle the dark mode. The main
activity will serve as a bridge between the frontend and Java backend while also
containing some of its own frontend functionality such as the navigation between the
previously mentioned fragments. In addition, the compose, inbox, outbox, and sent
fragments can be navigated to which is covered below.



"

The second components of the system are the fragments. These are the screens
that will sit on top of the main activity and will be used to conduct the operations needed
to use all the functionality regarding emails. These fragments are:

e Compose fragment: This is where the user can create and email including the
subject, body, and attachments. The user can also specify if they want to
automatically send the email or send it to the outbox.

e Outbox fragment: This is where the created emails will be stored that are
awaiting transmission. Here the user can manage which emails will be sent out
or remove an email from being sent. This fragment will also include emails that
have been automatically sent and their current status of transmission.

e Inbox fragment: This is where the received emails will be accessed and opened.
Managing emails in the inbox can also be conducted in order to remove emails
that are no longer needed and to refresh the inbox similar to commonly used
email systems.

e Sent fragment: This is where the emails that have been sent can be viewed and
managed. The status of an email’s transmission will be included to indicate if it
was successfully transferred or if there was an error during the transmission
process.

Further detail about the outbox, inbox, and sent fragments can be found below

and in Figure 4 which covers how emails will be displayed on these screens through the
use of adapters.

10



Adapter

Extends Extends Extends
SentList Adapter Email List Adapter QutboxList Adapter

+ getltemCount{void): int + getltemCount{void): int + getltemCount{void): int

A A A

L.Ilse L.Ilse Uise

Sent Fragment Inbox Fragment Cutbox Fragment

- bundle: Bundle - bundle: Bundle - bundle: Bundle
+ replaceFragment(fragment: +replaceFragment(fragment +replaceFragment(fragment
Fragment, bundle: Bundle): Fragment, bundle: Bundle): Fragment, bundle: Bundle):
void void void
+ onClick{View view): void + onClickiView view): void + onClick{View view): void

Figure 4 Adapter Class Diagram

The last components of the frontend are the adapters for the fragment classes
which can be seen in Figure 4 above. The adapters have to implement Android’s
Adapter interface so it can effectively use the implemented adapters. These adapters
are used to tell Android how to populate the list boxes on the fragments based on the
data contained within the Email class. The list boxes are what will contain the individual
email entries. To do this, adapter classes are needed for each fragment with a list box
since each fragment displays different data. The adapters will use an Extensible Markup
Language (XML) document to format each individual entry in terms of appearance.

11



Then, the adapter class will populate the entry’s fields and allow Android to display it. All
of the adapters will also include a check box which is used for email management. An
example of this is deleting emails from the system, but other operations will take
advantage of this as well. To do this, the adapter will keep track of the list of which
checkboxes are checked and give it back to the fragment where the email can be
deleted.

4.2 Backend Java Application

The backend Java application module serves as the primary logic layer for
handling the various functionalities in the user interface. This module will utilize the JNI
library to talk to the C code present in the backend C controller module. This module will
be placed as an intermediate layer between the frontend mobile module and the
backend C controller module. Figure 5 shows the structure of this module.

FileManager (Java)

+ convertFilsToEmail(filePath: String)
Email

|
Use

Vv

Email
- receiveTime: String
- emailSubject: String
Fragments ) 9 Android File System
> U: - emailContent: String
- hasAttachment: boolean
H
Ute - attachmentPath: Stringl]
; A
H
Status |
- transferStatus: int Use
- percentComplete: int !
- ' Main Activi
bytesRead: int ty Backend C (Under NDA)
- fimeRemaining: double + emails: ArrayList<Email=
- timeExpired: double < ___________ Uggmmmmmmmmm e + activatePreset() T a
- staried: boolean + getStatus)
- done: boolean + loadPraset()
+ deaclivatePresel() RciApi (Under NDA)
+ createConnection()
+ abortConnection()

Figure 5 Backend Java Class Diagram

12




K

The primary public interface of this module is the various methods associated
with calling the backend C controller module methods. These are native methods that
use the JNI library to take place.

The main activity will use the Email class to create and access email objects. In
addition the class will use Status objects that contain the status of the file transfer
operation. The file manager class will be used to convert files to emails using the
android file system.

4.3 Backend C Controller Module

The backend C controller module acts as the interface between the backend
Java application and the radio simulator or radio modem. This module contains the
custom handlers for the various functionality of the project. In addition, the given RCI
API and requisite libraries will be included to interface with the radio.

Due to an active Non-Disclosure Agreement, Figure 6 has been simplified to a
black-box diagram.

13



RciApiDriver RCI AP

+ createConnection{)

+ abortConnection()

+ sendEmail{) [ >
+ receiveEmail()
+ assembleZlP{)

+ gxtractZIP()

+ activatePreset()
+ deactivatePreset()

+ loadPreset()

+ getStatus()

i
i
i
i
i
i
i
i
i
Use
!
i
i
i
i
i

W

libzip

Figure 6 Backend C Controller Class Diagram

The primary public interface of this component is the methods that talk to the RCI
APl which then talks to the radio simulator or radio modem. This component will handle
radio status and preset activation, which will be specified in the frontend layer.

The RCI API driver class will be used to call the various functions in the RCI API,
and will be used to establish the socket connection with the radio modem. The
createConnection function will establish the socket connection with the simulator. The
abortConnection function will abort the socket connection with the simulator. The

14



"

sendEmail function will send the email and attachments to the simulator. The
receiveEmail function will receive emails and attachments. The assembleZIP function
will zip all email with its attachments. The extractZIP function will unzip the email with its
attachments. The activatePreset function will activate a desired preset on the simulator.
The deactivatePreset function will deactivate the current preset on the simulator. The
loadPreset function will load a desired preset on the simulator. The getStatus function
will get the current status of the radio simulator, such as whether it is currently
transferring files.

5 Implementation Plan

The implementation plan was created to ensure that the team stays on track due
to the many tasks that are imperative to the success of this project. Implementation is
split up into 6 different development phases. Each phase has a specific goal that the
team plans to accomplish that will support the team's road to successful
implementation. Be aware that this chart is flexible and changing based on possible
successes and failures the team will encounter. Figure 7 displays the current Gantt
chart for this plan.

15



1/24 2,24 3/24 4/24 5/24
16 21 28 4 11 18 25 [ B 10 24 3 7 14 21 28 |

TEA-Tactical Email Applicat...

Project Initiation r
Establish Meeting Times [ TEAM

Define Software Development Plan TEAM

Make Gantt Chart Isaac Faulkner

Module and Interface Description Nick Henderson, William Rogers
Architecture Andrew Miliza

Final Draft Software Development Pl... TEAM

gn and D P 1
Implement Communication with RCI 1 TEAM
Responsive and scalable application 1 TEAM
Revisit mobile application Ul for impr... [ ] Nick Henderson
Define Mobile application File System... TEAM
Implement file system TEAM

Feature Implementation r
Send and receive emails from RCI an... [ ——
zip and unzip files
email file attachments .
Grab Files from Radio
implement notification
Implement Dark screen option | —
email composition | —
auto send | —

transfer history

inbox/outbox email display

waveform Selection

Status lcons —

Testing and quality assurance —
Ensure that the application is fully fu... | ——
create and push files from c to java | ——
Send Email from application [
Receive Email from RCI | ——
Test that files are deleted from radio... e

Final Adjustments r—
Optimize performance of application /T
Address any lingering bugs | —

Final Product —
Finalize documentation TEAM [T
Submit Project to GDMS for review a... TEAM []

Figure 7 Gantt Chart
5.1 Project Initiation

In the implementation phase of project initiation the team will set up meeting
times to ensure efficient communication throughout the entirety of the project.
Furthermore, this software design document will be constructed and utilized to give the
team a structure to follow and deadlines to meet. This document will be used as a map
to ensure that the project is on task and to give each member of the team their portion
to complete to meet the end goal.

5.2 Design and Development

16



"

The Design and Development phase has the goal of setting up the structure of
the mobile application so that it may be efficiently utilized later in the project when
features are added. The goal during this phase is to create a stable connection between
the RCI to the mobile application and vice versa. Furthermore, the team will design and
implement a file system so that later in the project when handling emails and
attachments we have a foundation of how these items will be stored and accessed.

5.3 Feature Implementation

Next is the feature implementation phase. This phase has the largest amount of
time sectioned out due to the amount of tasks that need to be accomplished. There are
a total of 12 imperative features that need to be completed by the group. These tasks
have not yet been assigned but will be as we discover the niches of the group and can
assign tasks based on efficiency. Each group member will be responsible for
implementing 3 features during this phase.

5.4 Testing and Quality Assurance

In the Testing and Quality Assurance phase the group will test the mobile
application to ensure that the code the group has brought together in the feature
implementation are working seamlessly. The group will also ensure that the application
meets the standards of GDMS allowing time for the group to make any minor tweaks or
additions to improve quality.

5.5 Final Adjustments

During the final adjustments implementation phase the team will take time to
reassure that any bugs found during the testing stage have been resolved. As well as,
take measures to optimize the performance of the mobile application. This may consist
of multiple aspects that the team are uncertain of at this time in development.

5.6 Final Product

17



"

This last stage of development will consist of preparing the documentation for the
email application. Allowing the team to ensure that the product can be replicated on by
our clients. Lastly, the project will be submitted to General Dynamics for revision and
approval.

6 Conclusion

The development of the mobile Android application for the client, General
Dynamics Mission Systems, presents a convenient solution to enhance communication
efficiency within GDMS respective fields. Through recognizing the limitations of the
current web interface, this project aims to surpass those limitations by providing a
user-friendly, intuitive Android application.

The significance of this project is found in its ability to enhance efficient and
secure communication. Furthermore, the ability to replace the current web interface
enhances the potential by providing a more convenient interface. With this solution the
team hopes to enable users to send, receive messages and attachments efficiently.

The architectural overview displays a well structured system with four main
components: the mobile application’s front end, the backend Java side, the intermediate
layer, and the backend C side. This modular design will allow the team to implement
software that will support efficient communication and a seamless connection. The roles
of these components are defined in the module and interface description. The mobile
application’s frontend will act as the primary point of interaction for the user, while the
backend Java handles the logic and interfaces with the radio. The intermediate layer,
utilizing Java Native Interface, will facilitate communication between the Java and C
backends. The C backend controller utilizes the RCI API to interact with the radio
modem.

The project will progress through various implementation phases, from initiation
to final adjustments. These phases will ensure the team maintains a systematic
approach to development of software and features. The Gantt chart illustrates the
timeline for these phases.

18



The development of this document will give us a structured path to follow through
many tasks as the team develops the Android application for GDMS that will address
communication inefficiency. This will be conducted through careful planning, modular
architecture, and a systematic implementation plan. Operation RM aims through this
document to deliver a reliable, efficient, user-friendly solution that surpasses the
expectations of General Dynamics Mission Systems. The team hopes that this solution
will bring an efficient streamlined form of communication.

19



