
Technological Feasibility
10-3-23

Project Sponsor: Dr. Ashish Amresh

Faculty Member: Italo Santos

Team Members:

Rain Bigsby, Veronica Cardenas,

Ethan Ikhifa, Lenin Valdivia



Table of Contents

1.0 INTRODUCTION........................................................................................................................................... 2
2.0 TECHNOLOGICAL CHALLENGES.......................................................................................................... 3
3.0 TECHNOLOGY ANALYSIS..........................................................................................................................4

3.1 Software Reusability....................................................................................................................................4
3.2 Web Browser................................................................................................................................................9
3.3 Game Development Engine....................................................................................................................... 11
3.4 Programming Language.............................................................................................................................15

4.0 TECHNOLOGY INTEGRATION...............................................................................................................17
5.0 CONCLUSION.............................................................................................................................................. 19
6.0 REFERENCES...............................................................................................................................................20

1



1.0 INTRODUCTION

COVID-19 vaccination could play a critical role in not only improving the symptoms, but preventing

hospitalizations and deaths related to such a disease as well, ending the pandemic situation. Yet, despite the

possibility of such benefits, as of May 3, 2023, about 8.3 million U.S. children aged 12-17 and 17.4 million

children aged 5-11 had yet to receive their first COVID-19 vaccine dose [2]. Over 60% of people under 20

years of age had yet to receive a single dose of the vaccine in Arizona [3]. Now, even with the apparent need to

promote vaccine uptake among adolescents, there are currently no intervention studies underway aimed at

improving these vaccination rates.

Indeed, seeing such a gap within an egregious issue, with a background in video game development, Ashish

Amresh aims to fill this gap with video games directed at the adolescent. We are designing a content agnostic

game development framework that can be used to rapidly make games for different domains, such as

COVID-19 and HPV. Now, to increase the likelihood of improving vaccination rates with such an approach, we

are designing within the context of clinics where teens and their parents frequent and are waiting for their

appointments. And within such a context with limited interaction time, the games must therefore be fast-paced,

fun, and at the same time provide a range of decision-making choices to fully engage the adolescents in

addressing the outcomes. We will refer to the concept of fast-paced and engaging games as “burst games;” how

our framework will focus on making games consisting of repetitive, quick “bursts” of gameplay that promotes

learning by doing while minimizing the cost of failure and frustration for the player. Some examples of

commercial burst games that we may follow are Angry Birds, and Puzzle Fighter.

Now, given that we are in the initial stages of this project, we are currently in the process of analyzing key

technological challenges, exploring alternatives, and choosing the most promising solutions out of said

alternatives. Indeed, in this document, we begin by analyzing the major technological challenges presented by

video game development, such as limitations within the game engine we choose to develop in. In the

subsequent major sections, we will carefully analyze each of the alternative game engines, then converge and

synthesize said analysis in a plan for integration.

2



2.0 TECHNOLOGICAL CHALLENGES

To better foresee the major technological needs and challenges we will face, the constraints for the framework

we will develop are as follows: the games must be short and repetitive in nature; the games will be played in a

clinical setting via a tablet on the web browser; the games must result in a specific behavior change such as

increasing vaccination rates; the games must target the adolescent with the possibility of parental supervision.

Moreover, we will prototype two games, within the domains of COVID-19 and HPV respectively, using our

developed framework as use cases. With such constraints in mind, there are four immediate technological

challenges that we must address.

● Software Reusability: Developing a framework that remains adaptable to various themes

without being tied to specific content, ensuring flexibility and customization for different

domains. The framework will have to be timeless, meaning that whoever has ownership will be

able to reuse the framework for years to come.

● Web Browser: The burst games that are to be developed must be hosted on a tablet within a

clinical setting i.e. while a patient is in the waiting room of a doctors office. They must be played

within a fifteen minute period and hosted on the web browser Itch.io.

● Game Development Engine: The framework should be structured with easily identifiable

components, corresponding to the game's objects, characters, effects, etc. It needs to be clear to

anyone viewing the components how they interact with each other and what effects they have on

connecting other components together.

● Programming Language: The framework must be developed using C# and the Unity game

development engine according to client request. The source code for this framework is to be

hosted on GitHub for ease of future development.

3



3.0 TECHNOLOGY ANALYSIS

Now we will explore the specific technological issues brought on by the needs and challenges of this project

with the main technological challenges being Software Reusability, Web Browser, Game Development Engine,

and Programming Language. For each challenge, we will detail out desired characteristics, then investigate

various alternative technologies for said challenge, using such desired characteristics as metrics for evaluating

these alternatives. Next, after evaluating the alternatives for each challenge, one of these alternatives will be

selected in addressing its corresponding technical challenge, then prove said alternative’s feasibility by

exploring how it will function in our framework.

3.1 Software Reusability
Software reusability is a fundamental concept in software engineering that emphasizes the development of

modular components, libraries, and frameworks that can be utilized in multiple contexts, projects, or domains.

By designing components that can be easily shared and leveraged across various games, the project aims to

streamline the development process and minimize redundant efforts. To be specific, software reusability refers

to a desired creational design pattern fit for our needs.

3.1.1 Desired Characteristics
Given the nature of our proposed final product, being a framework to streamline the process of developing

vaccine literacy games, it is integral that our desired characteristics correspond to intuitiveness and minimal

effort. And so, we will strive to attain a total of three characteristics for our software reusability, totaling to a

score of 15 points that an alternative can possibly reach. Such characteristics are as follows:

- Supporting Maximum Reusability (5 points): In order to develop a short and repetitive game with our

framework, along with the prospect of more games in other domains being developed using this same

framework, it is only natural that an ideal solution contains maximum software reuse.

- Low maintenance (5 points): Once again, to achieve maximum software reuse, an ideal solution should

not be as involved when it comes to post-release patches. Ideally, one should be able to develop a game

with our framework, then hardly have a need to look back and fix any glaring issues; how our

framework should prioritize producing the least amount of issues as possible.

4



- Easy to use (5 points): Indeed, the whole point of “streamlining” a process is to make it as easy as

possible. In our case, in order to streamline the development process of future vaccine literacy games,

our framework must be intuitive to work with, and easy to couple desired components.

3.1.2 Alternative Design Patterns
- Factory Method: Also known as a Virtual Constructor. It works in such a way that it provides an

interface for creating objects in a superclass, all the while allowing subclasses to generate their own

types of objects. This method is mainly used when one does not know the exact types and dependencies

of the objects, and when one wants to provide users of the framework with a way to extend its internal

components [1].

- Builder: This design pattern lets one construct complex objects step by step. Moreover, this pattern

allows one to produce different types and representations of an object using the same construction code;

and it achieves such a feat through a Builder interface that declares construction steps common to all

types of builders. The Builder pattern is mainly used to prevent a “telescoping constructor,” and when

one wants to be able to create different representations of some product [1].

- Singleton: This pattern lets one ensure that a class has only one instance, while providing a global

access point to said instance. All implementations of Singleton have the following two steps in common:

making the default constructor private to prevent others from instantiating new instances with it; and

designating a static method/function to act as a constructor, all the while calling upon the

aforementioned private constructor. This pattern is mainly used when a class in one’s program should

just have a single instance available to all clients [1].

- Abstract Factory: This design pattern lets one produce families of related objects without specifying

their concrete classes. It earns its abstract title by declaring interfaces for a set of distinct but related

products that make up a product family. The Abstract Factory is mainly applicable when one needs to

work with various families of related products, but don’t want to depend on the concrete classes of said

products [1].

- Prototype: This method lets one copy existing objects without making their code dependent on their

classes. And it functions via a Prototype interface that declares cloning methods/functions; an interface

which is delegated to the objects that must be cloned themselves. This design pattern is mainly used

5



when one’s code should not depend on the concrete classes of objects that need to be copied, and when

one wants to reduce the amount of subclasses that only differ in their initialization methods [1].

3.1.3 Analysis
Evaluation of these design patterns took the form of analyzing their corresponding applied examples, and seeing

how such examples fared in accordance to our desired characteristics. Now, since all of the alternative design

patterns are identified as creational patterns, it was expected that all scored relatively high, some more than

others however, in the category of supporting maximum reusability. And because of such an expectation, the

defining differences are in the categories of low maintenance and ease of applicability. See Figure 3.1.4 for a

full breakdown of scores.

● Factory Method

○ Supporting Maximum Reusability: Along with the ability to simply create new and slightly

differing objects through other existing objects, it in turn saves system resources by reusing said

existing objects, as they do not rebuild them each time.

○ Low Maintenance: It utilizes the Open/Closed Principle; how new types of objects can get

introduced without breaking existing infrastructure. However, due to the capability of

introducing new subclasses with ease, the code may become more complicated and thereby

harder to maintain.

○ Easy to Use: It utilizes the Single Responsibility Principle; how one can move the product

creation code into another place in the program, making the code easier to support. Moreover, it

also avoids tight coupling between the creator and concrete products.

● Builder

○ Supporting Maximum Reusability: It allows the reuse of the same constructor code when

building the various representations of objects.

○ Low Maintenance: There is still something left to be desired in this category, as the overall

complexity increases since the pattern requires creating multiple new classes.

○ Easy to Use: This one also utilizes the Single Responsibility Principle; how one can isolate the

complex construction code from the business logic of the product. Moreover, the intuitiveness of

this pattern is reinforced through its capability of constructing objects step-by-step.

● Singleton

6



○ Supporting Maximum Reusability: Using a single instance of a class for all needed operations

reduces overhead and need for resources as opposed to instantiating multiple instances for every

operation.

○ Low Maintenance: While it may be difficult to unit test a Singleton due to its lack of inheritance,

such unit testing and mocking up objects are not integral to developing our framework.

Regardless, the prospect of difficult testing leaves something to be desired for future developers

using our framework.

○ Easy to Use: The assurance of a class having a single instance greatly decreases possible code

complexity. Moreover, while this design pattern violates the Single Responsibility Principle, its

intuitiveness shines through via how everything that needs to be known of the singleton class is

provided by the instance of the class itself.

● Abstract Factory

○ Supporting Maximum Reusability: Since the nature of this pattern is very similar to the Factory

Method, how existing objects are reused to make more objects, it also scores relatively high in

this category.

○ Low Maintenance: Like the Factory Method, this one utilizes the Open/Closed Principle; how

one can introduce new variants of objects without breaking existing code. But this one too

suffers from the code becoming more complicated as new interfaces and classes are introduced.

○ Easy to Use: Again, like the Factory Method, this pattern utilizes the Single Responsibility

Principle; how one can extract the object creation code into one place, making it easier to

support. Moreover, the nature of this pattern ensures that the objects produced by the factory are

compatible with each other.

● Prototype

○ Supporting Maximum Reusability: Objects can be cloned without coupling to their concrete

classes. And the nature of this pattern allows one to get rid of repeated initialization in favor of

cloning pre-built prototypes.

○ Low Maintenance: The capability to completely discard repeated initialization code makes this

design pattern stand out among the rest of the alternatives in this category.

○ Easy to Use: Complex can be produced more conveniently via cloning. And such cloning serves

as an alternative to inheritance when dealing with configuration presets for complex objects.

7



However, closing complex objects that have circular references may prove to be tricky to work

with.

3.1.4 Chosen Approach

Figure 3.1.4 - Desired Characteristics Scores of Alternative Design Patterns

Characteristic
Scores

Factory
Method

Builder Singleton Abstract
Factory

Prototyping

Supporting
Maximum
Reusability

5/5 5/5 5/5 5/5 5/5

Low
Maintenance

4/5 3/5 4/5 4/5 5/5

Easy to Use 5/5 5/5 5/5 5/5 4/5

Total 14/15 13/15 14/15 14/15 14/15

Indeed, given that the Factory Method, Abstract Factory, Singleton, and Prototyping are similar in terms of

overall score, choosing between these four design patterns proved to be arduous. And so, ultimately, instead of

going through with elimination, we opted to use a combination of certain patterns. In particular, Team Medical

Gaming Solutions has chosen to use a combination of the Factory Method, Prototyping, and Singleton

classes. The applicability of the Factory Method, such as not knowing the exact types and dependencies of our

objects along with wanting to provide future developers a way to extend our framework’s internal components,

fits the exact bill of project. Moreover, the prospect of reducing overhead and need for resources that both

Prototyping and Singleton provide will prove integral in maximizing software reuse.

3.1.5 Proven Feasibility
Moving forward, we will experiment with various framework designs via UML diagrams throughout these

initial phases of our project, all the while utilizing the Factor Method design pattern as guidance on good

infrastructure. In particular, the two use cases, which are within the domains of COVID-19 and HPV

respectively, that we will develop will demonstrate the effectiveness that the Factory Method has on our

finalized framework.

8



3.2 Web Browser
With the task to make these games accessible within a clinical setting via tablet, the framework must be easily

converted to an executable that can run on a web browser. It is the most efficient option for publishing games,

as players can easily and quickly access games through a browser without the need to wait for a download.

3.2.1 Desired Characteristics
The desired browser must support our various game engine options, be easily and quickly accessible through

the tablet in the clinical setting, and minimize the difficulty of playing the game within this setting. Each of our

options must meet specific requirements when it comes to this challenge, measuring from a total of 15 points in

each category.

- Ease of Use (5 points): The desired browser should make the game easy to access and play, as well as

allow the developer to easily upload the games made with the framework. Since this framework is meant

to be reused multiple times for different domains, the browser needs to have an easy to navigate UI,

stable performance when uploading files, and simple customization for the game page.

- Mobile Friendly (5 points): Preferably, these games will be played on a tablet of any version.

Therefore, the browser must allow the option for games to be played through a mobile device straight

from the web page. We require support for IOS and Android, as well as some past version support to

allow devices running on older versions to access the games.

- HTML5 and WebGL Support (5 points): These technologies are crucial for running modern

web-based games and applications that include 3D graphics and interactivity. This will allow patients to

have quick and easy access to a remote hosted game on the browser, and allow the developers to apply

3D graphics and assets within the games.

3.2.2 Alternatives
- GameJolt: A social community platform for game developers to share and publish their projects.

Started up in 2002 by Yaprak and David DeCarmine as a way for independent creators to have a central

platform to manage their content and communities [5].

9



- Itch.io: A website for users to host, download and share various forms of media, including video games

and game related content. Launched in March of 2013 by Leaf Corcoran, and currently hosts over

700,000 products through their service [9].

- Steam: Founded in September of 2003, Steam is a digital video game distribution platform developed

by Valve. It started as a storefront for Valve games specifically, until expanded into distributing

third-party titles as well [7].

3.2.3 Analysis
We began researching these options through information pages included on the site, checking for any general

information on the desired characteristics. Each browser has a dedicated FAQs page with top asked questions,

as well as active community posts on specific software topics. Below are the results of each alternative in

regards to how much of our set requirements they were able to satisfy. See figure 3.2.4 for a full breakdown of

scores.

● GameJolt

○ Ease of Use: Relatively easy to use and upload files to.

○ Mobile Friendly: Allows specific games to be played on mobile devices, mostly on the mobile

app version of the platform.

○ HMTL5 and WebGL Support: Includes both HTML5 and WebGL support.

● Itch.io

○ Ease of Use: Relatively easy to use and upload files to, as well as customizability to help direct

players on your page.

○ Mobile Friendly: Allows specific games to be played on mobile devices.

○ HMTL5 and WebGL Support: Includes both HTML5 and WebGL support.

● Steam

○ Ease of Use: Slightly complex process of uploading games to the distribution platform.

○ Mobile Friendly: Includes third party mobile games, but cannot run them on the web page itself.

○ HMTL5 and WebGL Support: No HTML5 or WebGL support, primarily hosts PC specific

games.

10



3.2.4 Chosen Approach

Figure 3.2.4 - Desired Characteristic Scores of Alternative Web Browsers

Characteristic Scores GameJolt Itch.io Steam

Ease of Use 5/5 5/5 3/5

Mobile Friendly 3/5 5/5 2/5

HTML5 and WebGL
Support

5/5 5/5 0/5

Total 13/15 15/15 5/15

Overall, Itch.io scored the highest on each of our categories and appears to be our best option. GameJolt has

more focus on mobile games within their mobile app [6], and less so on their web page. While it is still possible

to play games straight from the web page with this browser, it is not as practical as playing them on a mobile

device. Steam is a very popular choice when it comes to publishing games to distributors, but has little to no

mobile support for this project, making it impossible to play games on a mobile device without downloading the

Steam Link application and linking an account first. Itch.io has the most mobile friendly access to games, and is

well known to be easy to use in terms of publishing content.

3.3.5 Proven Feasibility
With the results shown above, our best chosen approach is Itch.io to publish and upload our games onto. It

includes the necessary technologies, being HTML5 and WebGL, and also supports mobile device gameplay

from the web browser. Itch.io also has an easy process of uploading games and related content to their platform

and allows creators to customize their pages, which will be helpful when directing players to the desired

information on the game.

3.3 Game Development Engine
To develop these burst games, a game development engine is needed to implement necessary requirements. A

development engine will provide a GUI for the user to interact with the game as well. Two use cases (video

games) will be developed over the course of this project which will require the analysis of the most optimal

game engine.

11



3.3.1 Desired Characteristics
One of our main deliverables will be developing two burst games to serve as use-cases for the architectural

design framework. Burst games are fast-paced, repetitive games that have a minuscule amount of frustration

involved [10]. Examples of these games would be Angry Birds or Puzzle Fighter, which is a Tetris-style game

where you compete against another. To allow for reusability and ease of development for future games, three

characteristics are desired for an engine, measuring up to 15 points when deciding which one will best fit our

requirements.

- Component oriented ‘ECS’ (5 points): An ECS (Entity Component System) is an architectural pattern

utilized in video game development which is enabled by a framework. ECS contain entities as unique

identifiers and components without behavior. Entities can contain any amount of components and are

able to change components dynamically. Multiple systems are admissible that match with entities that

have components [13]. The engine must be component oriented to allow other owners to implement

their own healthcare games with ease i.e. choosing the component according to their demands.

- Extend the base components of the engine (5 points): The components should extend what is already

in the game development engine to save effort and time during development. It is not necessary to create

completely new ones (client request).

- Web browser support (5 points): The engine should be able to export the use cases with web browser

compatibility to host the game in a clinical setting via web browser. Other build support options would

also be beneficial to allow for flexibility with hosting in the future, i.e., PC application, mobile

application.

3.3.2 Alternatives
- Godot: A popular, free and open-source game engine under the MIT license. It was originally developed

by Argentine developers Juan Linietsky and Ariel Manzur for companies in Latin America prior to its

public release in 2014 [11]. Now, Godot is mainly used by indie developers for its lightweighted-ness. It

has a simple interface for beginner developers and provides its own IDE. Games such as Cassette Beasts

(2023) and Deponia (2016) have been made using Godot.

- Unreal: One of the most well-known 3D game engines developed by Epic Games. It was first

showcased in 1998 via the first-person shooter game “Unreal.” Now, Unreal is mainly used by

12



high-profile video game studios and AAA developers; moreover, Unreal is also used in film making

with its robust rendering and lighting systems [12]. Unreal has played a development role in such games

as Kingdom Hearts 3 (2019) and Street Fighter V (2016).

- Unity: Another well-known game engine; it was developed by Unity Technologies, and first announced

and released in June 2005 as a Mac OS X game engine. The engine has since been extended for

cross-platform support. Now, Unity is predominantly used by indie developers for its versatility and

support for a variety of desktop, console, mobile, and virtual reality platforms [13]. Two games that

were developed in Unity are Among Us (2018) and I Am Bread (2015).

3.3.3 Analysis
Some essential elements of an engine needed for this technological challenge is for the engine to be component

based, have a sufficient asset library, and be able to have web browser compatibility. Points were reduced

according to the requirements that the engine possesses or lacks. Each engine listed below will outline its

advantages and disadvantages.

● Godot

○ Component oriented: Godot does not use an Entity Component System and instead uses ‘nodes’.

Godot chooses to embrace OOP and these nodes contain both data and logic. Nodes allow for

reusability, modularity, and flexibility during development. Godot does composition at a higher

level than in a traditional ECS [15].

○ Extend the base components of the engine: The Asset Library, or AssetLib, in Godot is a

repository of user-submitted resources for developers.

○ Web browser support: Godot supports exporting developed games to HTML5 platforms.

● Unreal

○ Component oriented: Unlike other engines, Unreal uses an actor component system. This system

requires game objects to be represented as ‘actors’ that have components attached to them. These

actors carry out the role of containers for components [16].

○ Extend the base components of the engine: UActorComponent is the base class for all

components in the Unreal engine. Unreal 4 will allow a developer to inherit from game base

class i.e. PlayerController, GameMode, HUD, etc.

○ Web browser support: HTML5 has been depreciated since the 4.23 version of Unreal.

13



● Unity

○ Component oriented: ECS is the core of Unity. It constructs complex game objects by attaching

and combining reusable components. It also provides memory control and eliminates refactoring

that would have been necessary with object-oriented architectures [14].

○ Extend the base components of the engine: It is possible to extend existing components from

Unity’s base components. An example of this would be adding an onHold event to a basic Unity

button.

○ Web browser support: Includes features for building both HTML5 and WebGL applications.

3.3.4 Chosen Approach

Characteristic Scores Godot Unreal Unity

Component Oriented 3/5 3/5 5/5

Extend Base 4/5 5/5 5/5

Browser Support 5/5 0/5 5/5

Total 12/15 8/15 15/15

Game engines have very similar features that are attractive to small development teams such as simple

interfaces, free licenses, lightweight-ness, etc. Godot received a 12 out of 15 due to the lack of an ECS and the

lesser component library compared to Unity’s [15]. Although the Unreal engine produces many AAA video

games, their extensive features are not necessary for our project. Unreal also does not support web browser

gaming in their newer versions. Ultimately, we have decided to select Unity as our development engine based

on client request and overall desired characteristics. Unity will provide the best services for our project

requirements such as having an entity component system, the ability to extend the engines base components,

and supporting a web browser as a host for a developed game [16].

3.3.5 Proven Feasibility

With Unity being our desired game engine, one major technological issue is figuring out how to extend

Unity’s entity-component system to develop the various content agnostic components of our framework. In

particular, some functions we see needing in order to resolve such an issue are as follows: a public placeholder

class representing a component; various options for a component to interact with the environment; and a way of

14



combining and coupling these components. Now, in terms of the final product, these functions, along with the

others to be designed in the future, should play the role of providing a streamlined process of developing any

vaccine-literacy burst game within our framework. We will utilize Unity as a game development engine by

producing a tech demo by the end of the Fall 2023 semester, developing two use cases by the end of the project,

and the framework as well.

3.4 Programming Language
In order to develop a game using the Unity engine, the programming languages are limited to its native C#,

JavaScript, and Boo. Unity is a widely known and documented game engine, that is mainly meant for its

programming language options to allow for optimal performance within the development environment we are

working on. This is the primary reason we are going with a programming language that aligns with Unity's

requirements and facilitates the realization of the game's objectives.

3.4.1 Desired Characteristics
The programming language we choose should work well with the Unity environment, allowing us to effectively

handle fine details within the game mechanics. With strengths in maintenance, ease of use, compatibility with

Unity, community support, and performance, we conducted an evaluation of three potential options: C#,

JavaScript, and Boo. Each language will be awarded points out of five based on suitability for desired

characteristics.

- Low Maintenance (5 points): To make the development process, along with further patchwork, as

smooth as possible for future developers using our framework, our chosen scripting language must not

pose any issues and barriers to this development process. Whether the scripting language is often

changing, or possesses some controversial features, the development process should not be held back by

such barriers.

- Easy to Use (5 points): While all of the languages that we are analyzing are already widely used, “easy

to use” will not only refer to how straightforward it is to learn and apply the language, but also how well

the documentation’s structure, accessibility, and readability is for such languages.

- Compatibility with Unity (5 points): Since we have chosen Unity to be our desired game engine in the

previous section, it becomes apparent that our desired scripting language should be well supported

within Unity.

15



- Community Support (5 points): Along with extensive documentation, the desired language should

possess a vast and supportive community that is willing to provide assistance whenever asked.

- Performance (5 points): Since our framework will value maximum software reusability and rapid

development, the desired language should not hinder the development process due to its infrastructure

slowing down processes within Unity.

3.4.2 Alternatives
- C#: Developed in 2000 by Microsoft’s Anders Hejlsberg, C# is a modern, general-purpose

programming language that is popularly used in a variety of professions. It is an object oriented

programming language, making it highly versatile and reliable. Having originated within Microsoft, this

language is primarily used on the Windows.NET framework, but can be applied to any open source

platform [17].

- JavaScript: Originally developed for Netscape 2, JavaScript became the ECMA-262 standard in 1997,

and was invented in 1995 by Brendan Eich. Websites that use JavaScript have more options for

functionality and behaviors on their site, allowing visitors to interact with content in more imaginative

ways. It is also primarily a client-side language, meaning it runs within the browser [18].

- Boo: In an attempt to combine Python and the capabilities of the .NET framework, Boo was developed

by Rodrigo Barreto de Oliveria. It served as an object-oriented language for CLI until official support

dropped in 2014 [19]. Boo was one of the three scripting languages for Unity before the compiler was

dropped from the engine in 2017.

3.4.3 Analysis
Through research we found that C# is liked within the Unity development community mainly because of its

versatility and extensive amount of features when working with game dev languages based in C. On the other

hand, JavaScript is good but, lacks some of the robust capabilities offered by C#. Boo is a another good option,

but doesn't really enjoy the same level of popularity and community support as C#. See figure 3.4.4 for a

breakdown of scores for each language.

● C#:

16



○ Low Maintenance: C# is known for its strength and stability, requiring a small amount of

maintenance, making sure that the development process remains efficient.

○ Easy to Use: With its clear syntax and extensive documentation, C# provides a user-friendly

environment for developers of varying skill levels.

○ Compatibility with Unity: C# is the primary programming language recommended by Unity,

ensuring seamless integration with the Unity environment and providing access to its full set of

features.

○ Community Support: The C# community is vast and active, offering ample resources, tutorials,

and forums for troubleshooting and resolving any issues encountered during development.

○ Performance: C# demonstrates strong performance, enabling the creation of complex game

mechanics while maintaining optimal speed and efficiency.

● JavaScript:

○ Low Maintenance: JavaScript requires regular updates and maintenance, leading to increased

workload and potential development issues over time.

○ Easy to Use: JavaScript's flexible syntax and widespread usage makes it accessible for

developers; however, its free-forming nature can lead to challenges for those unfamiliar with its

nuances and many functions.

○ Compatibility with Unity: While Unity supports JavaScript, its integration is less seamless

compared to C#, potentially limiting access to certain Unity features and functionalities.

○ Community Support: JavaScript boasts a supportive online community, although it may not be as

extensive or specialized as that of C#, leading to potential challenges in finding specific

solutions.

○ Performance: JavaScript's performance may be somewhat limited compared to C#, particularly

when handling intricate game mechanics and complex operations within the Unity environment.

● Boo:

○ Low Maintenance: Boo's limited adoption and community support may result in increased

maintenance requirements, potentially posing challenges during the development and

maintenance phases of the project.

○ Easy to Use: While Boo offers pretty straightforward syntax, its limited documentation and

resources may pose some problems for developers seeking troubleshooting assistance.

17



○ Compatibility with Unity: Boo's compatibility with Unity is restricted, limiting access to certain

Unity functionalities and hindering the perfect integration required for complex game mechanics.

○ Community Support: Boo's community support is pretty limited compared to C# and JavaScript,

posing challenges in finding quick solutions to developmental issues.

○ Performance: Boo's performance is constrained in handling complex game mechanics within the

Unity environment, impacting the overall speed of the development process.

3.4.4 Chosen Approach

Figure 3.4.4 - Desired Characteristic Scores of Programming Languages

Characteristic Scores C# JavaScript Boo

Low Maintenance 4/5 3/5 1/5

Easy to Use 5/5 5/5 3/5

Compatibility with
Unity

5/5 3/5 2/5

Community Support 5/5 4/5 1/5

Performance 4/5 3/5 2/5

Total 23/25 18/25 9/25

Considering its the wide range of usage, the compatibility with Unity, and of course the wealth of online

resources, we Team Medical Gaming Solutions chose to use C# as our primary programming language.

This was decided to ensure a seamless game development process with proficient support and guidance

available when needed. C# is the obvious choice here because it works very well with Unity's framework, plus

it's backed by solid documentation and a huge support system. JavaScript has its strengths, but it might fall

short compared to the versatility C# offers. As for Boo, it's not exactly the neighborhood favorite, lacking the

same level of backing, documentation, and community as C# has.

3.4.5 Proven Feasibility
Through thorough testing and experimentation within our Unity environment locally, we confirmed that C#

effectively meets the needs for our game development requirements. Our extensive research and practical

exploration have reinforced our confidence in C# as the most suited and practical choice for our project.

18



4.0 TECHNOLOGY INTEGRATION

With our chosen programming language, web browser, design pattern, and game engine to establish this project

upon, we can plan out how we will integrate our burst game framework using these tools. The main goal will be

to create a reusable framework that developers can use to make burst games on their desired domain, so the

framework must be flexible enough for anyone to effortlessly modify the components of the game. Any

text-based and graphics-based content within the games must be modifiable as well, to keep it from being

restricted to a limited number of domains like HPV and COVID-19.

Figure 4.1 Integration Diagram

The diagram above [Figure 4.1] shows the connections between each of our tools and how the process of

making the burst games will work. The central module is our game framework, where our main tools will assist

us in developing. Our chosen game engine, Unity, will be the base on which all of our development takes place.

C# is the main programming language we will be using to develop the components, so it must be connected to

19



the Unity module for us to be able to develop within the game engine. Our developers on the team will handle

the backend development of the framework to handle the gameplay mechanics and how they connect to the

other components of the framework. The development within Unity must also follow and connect to the factory

method design pattern, which will make our structure as efficient as possible when programming. We also need

to connect the C# module to our factory method module. This way, all code written for the components will

remain consistent for development and can be easily followed when reading code. With a framework

completed, there will need to be two test games developed to show the effectiveness of the framework itself.

Everything within the game framework connects to the burst game module itself, since the games must be

developed with the components we make within the framework. Our last module, Itch.io, is the browser we will

upload the games onto, allowing players to access the game straight from their device. Unity connects to the

module as well, to ensure we have WebGL and/or HTML5 support in the engine to satisfy the requirement of

making these games playable on the Itch.io browser itself.

The two test games should follow the burst-style format of being fast paced, simple, easy to play and

understand, and minimizes frustration for players on restarts. The games can either focus more on puzzle or

action gameplay, as long as they follow those aspects of the burst format. The framework must be developed in

a way that allows us to switch out components, layouts, text, and any other content in the game that will let us

develop two different types of burst games with ease. Components need to be developed modularly to keep the

overall framework intact if any are to be removed and/or modified. The factory method design pattern will also

assist in making the components easy to implement, test, change and reuse.

This integration is how we plan to effectively create our framework for burst style games to be developed in,

with the goal of raising COVID-19 vaccination rates among teens and children in the U.S.

20



5.0 CONCLUSION

Indeed, it is unfortunate that millions of adolescents have yet to take their COVID-19 vaccines; and it is equally

as unfortunate that there are currently no intervention studies and efforts to increase the vaccine uptake among

the youth [4]. That is why we, team Medical Gaming Solutions, will help Dr. Amresh in performing the first

ever intervention study aimed at improving such vaccination rates for the adolescent. All of this through a

framework that is intuitive to use, low maintenance, and utilizes maximum software reuse, such that the

framework streamlines the process of developing vaccine literacy games, or any medical literacy games for that

matter, in the future.

But of course, no issue with a proposed solution is complete without a plan for development. For starters, we

will develop our video game framework in Unity. Given Unity’s versatility and extensive cross-platform

support, along with the fact that all of our team members possess fundamental skills in developing within Unity,

it becomes apparent that Unity is the obvious choice for a game engine to develop in. Now, while Godot seems

like a promising alternative, the tradeoff is that an extensive amount of time would be needed for all team

members to learn Godot; such time, of which, we cannot risk losing in this tight two-semester schedule. Now, as

for finding a way to host our games in a clinical tablet setting, we plan to simply host them in a web browser

with our preferred hosting page being Itch.io.

And so, with such a plan going forward, the two use cases we will develop using our framework, within the

domains of COVID-19 and HPV respectively, will demonstrate how our framework is used with minimal effort

and maximum software reuse.

We hope that this first, but very crucial, step in Dr. Amresh’s vision will result in those millions of adolescents

finally keeping up with their vaccines, and ultimately end this pandemic situation.

21



6.0 REFERENCES

[1] Shvets, Alexander. Dive Into Design Patterns. Refactoring Guru, December 5, 2018.

[2] “Children and COVID-19 Vaccination Trends.” American Academy of Pediatrics, 3 May 2023,

https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-vaccinati

on-trends/.

[3] “Vaccination Coverage by Age.” Arizona Department of Health Services, 4 Oct. 2023,

https://www.azdhs.gov/covid19/data/index.php#vaccination-coverage-byage.

[4] Siddiqui, Faareha A., et al. “Interventions to Improve Immunization Coverage among Children and

Adolescents: A Meta-Analysis.” American Academy of Pediatrics, 1 May 2022,

https://publications.aap.org/pediatrics/article/149/Supplement%206/e2021053852D/186948/Interventions-to

-Improve-Immunization-Coverage?autologincheck=redirected.

[5] “Help Docs” GameJolt,

https://gamejolt.com/help-docs.

[6] Takahashi, Dean. “Game Jolt launches mobile app for Gen Z gamers and creators.”

GameBeat, 2 March 2022,

https://venturebeat.com/games/game-jolt-launches-mobile-app-for-gen-z-gamers-and-creators/.

[7] “About” Steam,

https://store.steampowered.com/about/.

[8] “Can You Play Steam Games on Your Phone? A Complete Guide.”

Honor, 7 July 2023,

https://www.hihonor.com/sa-en/blog/can-you-play-steam-games-on-your-phone/.

[9] “About Itch.io” Itch.io,

https://itch.io/docs/general/about.

22

https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-vaccination-trends/
https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-vaccination-trends/
https://www.azdhs.gov/covid19/data/index.php#vaccination-coverage-byage
https://publications.aap.org/pediatrics/article/149/Supplement%206/e2021053852D/186948/Interventions-to-Improve-Immunization-Coverage?autologincheck=redirected
https://publications.aap.org/pediatrics/article/149/Supplement%206/e2021053852D/186948/Interventions-to-Improve-Immunization-Coverage?autologincheck=redirected
https://gamejolt.com/help-docs
https://venturebeat.com/games/game-jolt-launches-mobile-app-for-gen-z-gamers-and-creators/
https://store.steampowered.com/about/
https://www.hihonor.com/sa-en/blog/can-you-play-steam-games-on-your-phone/
https://itch.io/docs/general/about


[10] Chernyak, Ulyana. “Burst vs. Sustained Game Design.” Game Developer, 17 June, 2014,

https://www.gamedeveloper.com/business/burst-vs-sustained-game-design

[11] Linietsky J., Manzur A., et. Al. “Godot Engine - Free and Open Source 2D and 3D Game Engine.”, Godot.

https://godotengine.org/

[12] Thor Jensen, K. “25 Years Later: The History of Unreal and an Epic Dynasty.”, PCMag.

https://www.pcmag.com/news/25-years-later-the-history-of-unreal-and-an-epic-dynasty

[13] Cohen-Peckham, Eric. “How Unity built the world’s most popular game engine.”, TechCrunch.

17 October 2019.

https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/

[14] “ECS for Unity.” Unity. https://unity.com/ecs

[15] Linietsky, Juan. “Why isn't Godot an ECS-based game engine?”, Godot. 26 February 2021.

https://godotengine.org/article/why-isnt-godot-ecs-based-game-engine/

[16] Gowda, Nahush. “ Unity vs Unreal: Comparing Game Engine Architectures.” Medium. 5 October 2023.

https://medium.com/@nahush.gowda/unity-vs-unreal-comparing-game-engine-architectures-55cc998db83f

[17] “What is C# Programming? A Beginner’s Guide.” Pluralsight, 14 November 2022.

​​https://www.pluralsight.com/blog/software-development/everything-you-need-to-know-about-c-#:~:text=W

hen%20was%20C%23%20created%3F,a%20history%20for%20popular%20creations

[18] DeGroat, T.J. “The History of JavaScript: Everything You Need to Know.” Springboard. 19 August 2019.

https://www.springboard.com/blog/data-science/history-of-javascript/.

[19] Lynch, John. “Boo Language.” White Oak Security. 27 October 2022.

https://www.whiteoaksecurity.com/blog/boo-language/

23

https://www.gamedeveloper.com/business/burst-vs-sustained-game-design
https://godotengine.org/
https://www.pcmag.com/news/25-years-later-the-history-of-unreal-and-an-epic-dynasty
https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/
https://unity.com/ecs
https://godotengine.org/article/why-isnt-godot-ecs-based-game-engine/
https://medium.com/@nahush.gowda/unity-vs-unreal-comparing-game-engine-architectures-55cc998db83f
https://www.pluralsight.com/blog/software-development/everything-you-need-to-know-about-c-#:~:text=When%20was%20C%23%20created%3F,a%20history%20for%20popular%20creations
https://www.pluralsight.com/blog/software-development/everything-you-need-to-know-about-c-#:~:text=When%20was%20C%23%20created%3F,a%20history%20for%20popular%20creations
https://www.springboard.com/blog/data-science/history-of-javascript/
https://www.whiteoaksecurity.com/blog/boo-language/

