Floodbusters

Project HydroCams

i

A UnDTHERN ARIZONA N

Our Client

Professor of Computer Science and
researcher - NAU SICCS

Cofounder of the FloodAware Project,
overseeing the development of
HydroCams

Dr. Doerry’s Goals for HydroCams:
Easy to Install

Affordable

Solar Powered
Cell-Connected
Automatically Calibrated

Dr. Eck Doerry

O O O O O

.® Oo

Problem Statement

e Current flood monitoring systems require
expensive and labor-intensive processes to
generate calibration data

o Specialized, expensive surveying equipment

o Highly trained installation technicians

o Often rely on hand-drawn images and notes

o Prone to user error, potentially requiring
multiple trips to the camera installation

e These factors culminate in an impractical and
inefficient system, ripe for improvement

HydroCams Image Workbench

Uploadimage Uplood Mutple magos.
= 1

Cv options

Select a color:

Marker Diameter (in
inches):

Enter contour lower
bound (min area):
350

Preview

Marker information
Mi (x: 2566, Y: 2126)
M2 (32092, ¥:2060)
M3 (x 2447, ¥:1998)
M4 (x: 1918, Y: 1980)
Measured Distances
M1~ M2 3559 inches
M- M3:1444 inches
M1~ M4: 549 inches
M2 M3: 4529 inches
M2 - M4: 8900 inches.

M3 - M4: 4379 Inches

Marker
Marker Details
No marker selected

Data (JSON)

Implementation Overview

e Requirements Overview:

O

Ability to detect markers of varying sizes, shapes,
and colors

Depth/Size calibration using known-size markers
(zero-points)

User-friendly Ul for uploading, adjusting, and
running the CV

e Architectural Overview:

O

O

Front End: Built using HTML/CSS/JavaScript
Back End: Python Flask server for image upload
and processing

Storage: Temporary file system image storage for
processing; no long-term storage needed

a

d

Image Upload and Canvas Interaction

Implementation Details

ImageUpload

Canvaslnteraction

- uploadedFile: File

- uploadimage()

- submitimageForProcessing()

- zoomLevel: float
- panOffset: float

- isPanning: bool

o Allows user to upload images and dynamically
interact with them using zoom/pan navigation
Configuration
o Provides options for users to configure CV

parameters, including color selection and minimum
contour area

Marker Detection and Adjustment

(@)

(@)

Automatically detects markers based on color and
size parameters

Can be easily re-run to identify any missing markers,
or markers with entirely different properties

- handleZoom(EventListener)

- handlePan(EventListener)

Configuration

- colorSelection: hexcode
- contourArea: int

- markerSize: float

- updateParameters()

- apply Settings()

»

MarkerDetection

- hsvColor: hsv_value

- mask: <list>

- contours: <list>

- detectedMarkers: <list>

- processedimg: image

- detectMarkers(image, hsv_color,
contour_area)

- addMarkersToExisting(markers)

- updateMarkerList()

Implementation Details, cont.

Distance Calculation

@)

JSON Export

@)

Calculates distanceés between markers and a

MarkerDetection

zero-point using pixels, converted to real world units

DistanceCalculation

- zeroPoint: marker

- scaleFactor: float

Allows users to export marker data and measured

- calculateDistance(marker 1, marker2)
- recalculateDistances(markers)

- updateDistancelList()

distances in JSON format

Facilitates integration with other systems (e.g.,

JSONExport

HydroCams) for further analysis

- markerData: json

- distanceData: json

- exportMarkersAsJSON()

- exportDistancesAsJSON()

10

Prototype Review

11

Challenges and Resolutions

Cl: Structure-from-Motion (SfM) was too resource-intensive
o R1: Switched to pixel-based distance calculations for
simpler, efficient processing
C2: Inconsistent marker detection under varying lighting
o R2: Added configurable color selection and re-run
functionality to improve detection
C3: Depth causes skewed distance calculations
o R3: Developing zero-point marker calibration for more
accurate scaling
C4: Ensuring accuracy across various camera angles
o R4: Enhancing algorithm to adapt to marker size and pixel
scaling factor

12

Testing Plan

13

Schedule

Task August

Prototyping, Research

Develop Front End

Develop Back End
Implement Basic
Image Handling
Integrate OpenCV

Marker Distance
Calculation

Calibration File Output

Testing & Validation

Gantt Chart

September October November | December

14

Conclusion

Flooding regularly wreaks havoc on lives and property, and is only
expected to worsen

Current flood monitoring systems are too cumbersome and
expensive to be practical

Our solution involves an online image workbench that utilizes
computer vision to provide streamlined calibration data to help
automate flood detection

Our next steps are: To improve current distance calculation methods
and then perform thorough testing and validation

We are confident that our efforts will revolutionize the realm of flood
detection, saving lives and millions of dollars in the process

15

Thank you!

16

