
Software Testing Plan
November 8, 2024

TeamMembers

Dylan Anderson, Jennie Butch, Noah Gooby

NathanHill, JadeMeskill

Sponsored By

Dr. Eck Doerry

TeamMentor

Vahid Nikoonejad Fard

Capstone Instructor

Isaac Newton Shaffer

Version

1.0

Overview: This document outlines themain implementations for the HydroCams

software testing plan and process.

Table of Contents

1 Introduction...3

2 Unit Testing.. 4

3 Integration Testing..12

4 Usability Testing.. 14

5 Conclusion... 15

1 Introduction

Flooding is the single most common and destructive natural disaster, causing over

$3.7 billion in damage and claimingmore than 120 lives annually across the United States.

Nationwide, the frequency of disastrous flood incidents hasmore than doubled since

2000 and is expected tomore than triple by 2050. Floodbusters is dedicated to addressing

this problem through the development of a reliable, efficient, and adaptable image

processing application that supports accuratemarker detection and distance calculations

across a variety of environmental conditions andmarker configurations. This application

can be used to easily generate calibration files for smart cameras, vastly lowering the

amount of work and resources required to support automated flood detection. By

providing features likemulticolor marker detection, interactive zero-point calibration, and

customizable configuration options, our application aims tomeet or exceed the high

demands of our client.

Software testing is paramount tomake sure our applicationmeets these high

standards of functionality, accuracy, and usability. In general, software testing includes

identifying and fixing any issues in a system that could impact users, guaranteeing that all

components work as expected, and verifying that the system performs reliably under a

variety of conditions. To achieve this, wewill utilize a well-rounded testing approach that

will help us validate each feature and interaction.Wewill employ unit testing, integration

testing, and usability testing as the key pillars of our strategy, covering every aspect of the

application, from individual functions andmodule interactions to the overall user

experience.

As for our testing plan, wewill use unit testing to address the accuracy and

consistency of critical functions like image processing, UI elements, and JSON export,

helping us verify that each functional block is sound as an individual component.

Integration testing will focus on the interaction between these functions, guaranteeing

that all components work together harmoniously. Lastly, wewill utilize usability testing to

observe real users’ interactions with our application, helping us to further refine the user

experience for ease of use and efficiency.

Given the intended use case of this application, we have tailored our testing plan to

focus primarily on unit and integration testing to guarantee the accuracy and stability of

core functionalities, while usability testing will focus on refining our interface and

experience. This balance ensures that our most critical components are thoroughly

validated while still receiving valuable user feedback. In the following sections, wewill

outline our specific approaches for each type of testing, discussing the strategies and

processes that will allow us to achieve a high-quality final product.

2Unit Testing

Unit testing is a vital part of our testing process. It allows us to ensure that key

parts of our application work correctly as individual components. By testing these

modules individually and in isolation, we can detect and address issues early on, ultimately

providing amore stable foundation for the entire system.

We have decided to use Jest to test JavaScript-based units and pytest for the

Python components. These tools are incredibly useful, supporting asynchronous testing

andmocking, along with providing detailed logs. Our aim is tomaintain high coverage

across all critical components, focusing onmodules like our Flask, Marker Detection,

Marker Calculation, Canvas, Image Upload, Configuration, and JSON Export modules.

These units are essential for providing accuratemarker detection, distance calculations,

and output data, demanding thorough testing.

For eachmodule, wewill define equivalence partitions and edge cases in order to

create targeted test cases, along with explaining our success criteria and general

execution plan. Combined, these unit tests will allow us to verify the resiliency and

accuracy of our system.

2.1Marker Distance CalculationModule (Jest)
The primary function tested here is the recalculateDistances() function, which

computes the real-world distances betweenmarkers using pixel measurements,

user-defined sizes, and a calculated scale factor. Since accuratemeasurements are

absolutely crucial for the success of our application, this unit needs to be thoroughly

tested tomake sure it is capable of handling various distances and scale factors

correctly.

2.1.1 Equivalence Partitions
1. Normal vertical distances: Cases wheremarkers are within expected vertical

ranges from the zero-point (e.g., within 15 feet).

2. Extremely close vertical distances: Cases wheremarkers are very close to each

other and/or the zero-point (e.g., within less than 2 inches).

3. Long distances: Cases wheremarkers are outside expected vertical ranges from

the zero-point (e.g., 30 feet).

2.1.2 Edge Cases
Edge cases such as amarker being placed precisely on the zero-point or on the

edge of an imagewill be addressed. These cases should return appropriate results,

such as a distance of 0 if a marker overlaps the zero point, or an accurate distance if a

marker lies on the edge of the image.

2.1.3 Execution Plan
These test cases will be run in isolation, with known inputs and expected outputs.

For this unit, we are aiming for a 90% accuracy rate with regard to the calculated

distances. This will allow for slight discrepancies, such as 2” of error in a 36”

measurement, but will otherwise expect precise calculations. All results will be

recorded in Jest’s test logs, with our primary focus on verifying the accuracy of the

results from each equivalence partition.

2.2Marker DetectionModule (pytest)
The key function in this module is the detect_markers() function, which algorithmically

detects themarkers in the user-uploaded image. This is accomplished using OpenCV, as

well as parameters input by the user, such as a set of marker colors, and aminimum and

maximummarker area (in pixels). The foundation of this project is the detection of

markers, so this modulemust be tested rigorously.

2.2.1 Equivalence Partitions
1. Normal ratio of marker to distance:Markers are visible clearly in the image.

2. Small ratio of marker to distance:Markers are small and not clearly visible.

3. Large ratio of marker to distance:Markers are large and clearly visible in the image.

4. No detectedmarkers: No objects matching the parameters are detected.

2.2.2 Edge Cases
Edge cases are difficult to define for this module, but could be created by using

markers of a similar color to the background, or themarkers being particularly near or

far from the camera. However, these scenarios are highly unlikely to occur andwould

ultimately fall out of the scope of our project.

2.2.3 Execution Plan
Once again, these tests will be run in isolation, using testing images containing a

known number of markers, of a known size and color. As themarker detection itself is

heavily influenced by the distance from the camera to themarker, the accuracy rating

of this module is hard to clearly define. pytest will output the results of these tests to

the console, or optionally a log file.

2.3 Flask Server (pytest)
The Flask server plays a central role in our system, handling requests, processing

images, managing configurations, and facilitating data transfer between the back and

front end.Wewill focus its unit tests on verifying its response to valid and invalid

requests, ensuring it returns the appropriate data or handles errors gracefully.

2.3.1 Equivalence Partitions
1. Valid image uploads: Requests with a valid image file (JPG, PNG) and all required

parameters for color selection, contour area, andmarker size. The server is

expected to process the image and return data for markers, distances, and the

image URL.

2. Invalid image uploads: Requests without an image or with an unsupported file type

(e.g., PDF, TXT). The server is expected to respondwith an appropriate error

message and code (e.g., 400 Bad Request).

3. Valid configurations: Requests with valid configurations, such asmarker size and

contour area being appropriate values. The server is expected to accept the

submission request without error.

4. Invalid configurations: Requests withmissing configuration parameters or with

values outside expected ranges (such as negative contour area or marker size). The

server is expected to validate the inputs, reject those that are invalid, and return

the appropriate error message.

5. Error simulations: Requests that result in excessive processing time. The server

should limit themax processing time and return an error when it is exceeded.

2.3.2 Edge Cases
1. Empty requests: Requests with no data or files attached. The server should

respondwith a 400 error.

2. Extremely large image files: Uploads that are close to or exceed the servers

processing limit. The server should either process it within a time limit or reject it

gracefully with a corresponding error message.

3. Concurrent requests: Instances wheremultiple users are sending requests

concurrently. The server should handle and process each request independently,

without any errors or interference between requests.

2.3.3 Execution Plan
Weplan to use pytest to execute these tests. Before each test, wewill initialize a

test instance of the Flask server. Mock image files and configuration requests will then

be sent to simulate each of the aforementioned test scenarios. Finally, the test

instance will be torn down, and any test-generated files or data cleaned up. Success

will bemeasured by the server's response to each of the test cases, by gracefully

handling errors and providing the expected outputs.

2.4 ConfigurationModule (Jest)
The ConfigurationModule provides users with a variety of settings to customize

the image processing parameters, such as color selection, minimum contour area, and

knownmarker size. This module accepts and validates user inputs, ensuring they are

applied correctly. Testing will confirm that all configuration options are properly

received, validated, stored, and retrievedwithout error.

2.4.1 Equivalence Partitions
1. Valid configuration updates: Changes of values within expected ranges for each

parameter, such as valid color selections (RGB), minimum-contour areas with

reasonable values, andmarker sizes with typical dimensions. Themodule should

accept and store these values without error.

2. Invalid color selections: Invalid or empty RGB values. This module should reject

these values and provide feedback onwhy they are invalid and revert to default

settings.

3. Out-of-bounds contour values: Invalid minimum/maximum contour values, such as

negative values or values that are excessively large (greater than a reasonable

maximum). These values should be rejected, and the user prompted to provide a

valid input.

4. Out-of-boundsmarker sizes: Marker size values that are either too large, too small,

or negative. These values should be gracefully rejected, and revert to their default

values.

2.4.2 Edge Cases
1. No configuration data: Using empty or null values for all fields. These should revert

to their default values.

2. Non-numeric values for numeric fields: Providing non-numeric values like letters or

symbols should result in themodule rejecting these values and reverting to default

values.

3. Concurrent updates with invalid values: Submitting configurations that have both

valid and invalid fields should result in themodule successfully applying the valid

changes, while rejecting the invalid entries without affecting the overall

configuration state.

2.4.3 Execution Plan
Each of these tests will be performed using Jest, as this module is written in

JavaScript. Similar to the Flaskmodule, a fresh instance of the configurationmodule

will be initialized before each test, and all configurations reset after, to avoid any

interference. Success will bemeasured through this module's handling of edge cases,

and its ability to revert to default values when erroneous inputs are provided.

2.5 CanvasModule (Jest)
The CanvasModule is responsible for rendering and annotating images with

marker outlines, labels, and distance lines. It is also responsible for handling user

interactions such as panning, zooming, and selectingmarkers. Thorough testing of this

module is required to ensure that it provides a smooth and intuitive user experience,

free of error.

2.5.1 Equivalence Partitions
1. Valid pan and zoom levels: Cases where panning and zooming interactions occur

within typical limits (such as not panning completely away from the image, and

maintaining zoom between 0.5x and 4x). The canvas should be updated smoothly,

while keepingmarkers and lines in proportion with the pan and zoom adjustments.

2. Extremely high/low zoom levels: Cases where the zoom is set to extreme values,

such as approaching 0x or over 10x. The actual zoom level should be constrained

betweenminimum andmaximum levels, to prevent the canvas from becoming

distorted or invisible.

3. Marker, line, and label updates: Cases wheremarkers have been added, updated, or

removed during pan and zoom states. Thesemarkers should update properly, along

with their distance lines and labels.

4. Concurrent marker interactions: Cases where there are simultaneous updates to

multiple markers. Eachmarker should be updated independently on the canvas

without interference between them.

2.5.2 Edge Cases
1. Pan outside canvas boundaries: Applying a pan value that is outside the canvas

boundaries. The canvas should immediately reposition the canvas back to center if

the user tries to drag too far.

2. Rapid pan / zoom actions: Very fast, repeated panning and zooming actions. The

canvas should respond fluidly without lagging, distorting elements, or misplacing

markers/lines/labels.

3. Overlaying labels on canvas edge: Cases wheremarkers are near the edge of the

canvas view andmay cause labels to overlap or go out of view. Themodule should

respond by automatically adjusting its placement to remain visible.

2.5.3 Execution Plan
Jest will again be used to test this module, in addition to custom JS scripts to

simulate rapid canvas interactions.Wewill initialize a fresh canvas before each test,

and reset it afterward tomaintain a consistent environment. Success will bemeasured

by the ability of the canvas to smoothly handle each interaction, without noticeable lag

or distortion. Furthermore, all annotations (markers, labels, lines) must display

consistently in their correct position and scale regardless of zoom level.

2.6 Image UploadModule (Jest)
The Image Uploadmodule allows users to upload images for CV processing, which

is the starting point for our application workflow and is crucial for its core

functionality. This module handles a variety of file types and sizes, provides feedback

on upload success or failure, and supports smooth interaction with the back end.

2.6.1 Equivalence Partitions
1. Valid image formats: Cases where standard image formats (JP[E]G, PNG) are being

uploaded. Themodule should upload these to the back endwithout error.

2. Invalid file types: Cases where non-image or otherwise invalid files are uploaded

(PDF, GIF, TXT). These file types should be rejected, and a helpful error message

displayed to inform the user of accepted file types.

3. Very large and very small files: Cases where very small (<500 KB) or very large (>50

MB) images are uploaded. Small files should be uploaded quickly, and large files

should trigger a useful warning if the file exceeds a practical size limit. If it exceeds a

maximum limit, the file should be rejected, and the user informed.

2.6.2 Edge Cases
1. Empty file upload: A user initiates uploadwithout selecting a file. Themodule

should detect this and inform them via an alert message that theymust select an

image first.

2. Extreme image dimensions: The uploaded image’s dimensions exceed a reasonable

threshold (e.g., a 10,000x10,000 image is uploaded). Themodule should reject the

upload and inform the user of themaximum dimensions accepted.

3. Network error during upload: A network error (loss of connection) occurs during

the upload process. Themodule should handle this failure gracefully and inform the

user of the network failure, allowing them to retry the upload process without

refreshing the page.

4. Corrupt image files: The submitted image has corrupted or incomplete data. The

module should inform the user, reject the upload and allow them to try again.

2.6.3 Execution Plan
Wewill stick with Jest for this unit, which will be especially useful in mocking

network errors. As with the other units, wewill initialize a clean environment (no

previous uploads, no images stored in back end) before each test case. Success will be

based on this module’s ability to correctly handle a variety of valid and invalid uploads,

with graceful error handling and appropriate feedback for any invalid case.

2.7 JSON ExportModule (Jest)
This module allows users to export processedmarker data, including information

onmarker positions, dimensions, colors, and distances from other markers in a JSON

format, which will ultimately be used for smart-camera calibration. Given its

importance, this module clearly needs to generate accurate and readable JSON files

that consistently align with the data presentedwithin the application.

2.7.1 Equivalence Partitions
1. Standard export with valid data: Cases with a typical dataset wheremarkers have

all necessary attributes (position, size, color, and distances). A correct JSON file

should be generated for download.

2. Minimal data set: Cases where there is minimal data (e.g., a single marker). The

module should continue to export this data to a downloadable JSON file without

error.

3. Maximal data set: Cases where the amount of markers and distance data reach the

expected upper limits. Themodule should successfully generate a JSON file

without any truncation, and experience no performance issues during the

generation.

4. Invalid marker attributes: Cases wheremarkers aremissing attribute data. The

JSON export should still complete without error, while including “N/A” for any

missing or invalid fields.

2.7.2 Edge Cases
1. Extreme attribute values: Cases wheremarkers have extreme attributes such as

position coordinates, size, or distance values. These values should be accurately

represented in the JSON file without altering the structure of the file.

2. Network or disk error during export: Cases where there is a network or disk error

while generating or downloading the JSON file. The current file should be deleted,

the user informed of the error, and allowed to retry the generation and download

process.

2.7.3 Execution Plan
Wewill conduct these tests using Jest, with ourmain focus being data accuracy and

structural consistency. Before each test, wewill preparemockmarker data with varying

attributes, and reset the environment after each test. Success will bemeasured by

verifying that all JSON files are correctly structured, complete, and are

generated/downloadedwithout error.

3 Integration Testing

Integration testing primarily focuses on verifying the interactions between the

variousmodules within our workbench. This testing phase aims to ensure that data flows

correctly between components, requests, and responses are handled correctly, and that

the overall system behaves as expected whenmultiple modules are integrated. For this

process, wewill utilize two testing tools, Jest and pytest, depending on the specificmodule

we are testing. These tools provide adequate code coverage for all modules.

3.1 Image Upload toMarker Detection Pipeline
This integration point verifies that the images uploaded through the workbench

are received and processed by themarker detection pipeline correctly. This ensures that

the upload interface is capable of processing themodule without issue and that markers

are being detected correctly.

Firstly, when a valid image is uploaded, it is expected to be processed and returned

with themarkers detected. Secondly, when an invalid image is uploaded, the workbench

should not accept the file. Similarly, if the image is corrupted or of an otherwise invalid file

type, the workbench should reject it. Finally, if the uploaded image does not have any

detectable markers, the system should return a “NoMarkers Detected” response.

Jest will be used to create a testing environment and simulate file uploads. Once

the environment is set up, the responses from the file uploads will be validated. These

responses should help us ensure that the system handles the image upload process

properly.

3.2 ConfigurationModule toMarker Detection and

Distance Calculation
These integration tests examine the interactions between the configuration

module and themarker detection and distance calculationmodules. This allows us to

confirm that the configuration settings are being applied correctly, and validate the

behavior of the detection and calculation process.

When using valid configuration settings, it is expected that the systemwill return

the correct marker information and distances, according to the configuration. If invalid

configuration settings are supplied, the system is expected to reject the data, and

potentially revert to the default values.

Jest will again be used to create a testing environment, and the various

configurations usedwithin. These configurations will be used to verify that the system

accepts and rejects the proper values, and returns the anticipated results.

3.3Marker Detection to Distance Calculation
This integration test focuses on verifying that data provided from themarker

detectionmodule (position, size, etc.) is easily accessible by the distance calculation

module. The goal is to test the data flow and have themarker information align properly

between themodules.

In our testing scenarios, wewill gather a set of detectedmarkers with known

coordinates to verify that the distance calculationmodule correctly receives and

computes distances from this data.Wewill also test this pipeline with a variety of test

images in which themarkers are very close to each other, or very far apart to ensure that

our scalingmethods are robust at various distances. Finally, wewill simulate incorrect

marker data, such asmarkers missing a coordinate, to confirm that the system rejects it

and displays an error to the user.

To execute these tests, wewill use knownmarker sizes and distances in a variety of

images to ensure that our system reflects these within an acceptable margin of error.We

expect the distance calculationmodule to return accurate data or appropriate error

messages for all cases.

3.4 CanvasModule andMarker Interactions
This integration point will test how the canvasmodule interacts with the detected

markers.Wewant to ensure that themarkers are being displayed correctly, and that user

interactions are being handled correctly.

Primarily, wewant to ensure that the canvas renders valid markers correctly,

displaying in the proper position and being undisturbed by user interactions like panning

or zooming. Additionally, markers must be selectable by the user, and the interface display

the corresponding details. Finally, a marker must be able to be deleted upon being

selected, at which point it will be removed from the canvas and its information removed

from the list.

In order to implement these tests, Jest will be used to simulate a canvas, and the

user interactions with it. This allows us to verify that the canvas is interacted with and

markers are rendered properly.

4Usability Testing

Usability testing is critical in ensuring that our application is accessible, intuitive,

and effective for users. This form of testing focuses on realistic user interactions, allowing

us to observe how they navigate and operate the application to accomplish specific tasks.

By allowing representative test-users to interact hands-onwith our application, we can

gather valuable feedback on its functionality, ease of use, and overall user experience.

4.1 Considerations
The target audience of the imageworkbench is members of the FloodAware

project, whowill be setting up and calibrating the camera hardware.

Wewill assume they have an adequate understanding of technology, enough to

competently operate the workbench. Theworkbench has clear mechanisms for uploading

andmodifying images, and performing the necessary calculations with them. These design

elements provide an easy-to-use, intuitive interface. After imagemodification and

calculations are complete, the correspondingmeasurements andmarker details are

provided to the user.

4.2 Testing Plan
Workbench usability testing will be conducted through trials performed by our

client, and potentially other members of the FloodAware team. This will give us a good

idea of how real users feel about the overall user experience.Wewill also be surveying a

group of our peers to get external opinions.

The users testing the software will complete themain tasks that the workbench is

designed for. They will upload images, configure parameters, submit the image for CV

marker detection and distance calculations, and download the generated calibration file.

A user survey will be the primarymethod of receiving feedback, which will give us

information on how users feel about specific aspects of the workbench.

4.3 Timeline
Wehave begun the testing and validation phase of the project. Currently, we are

addressing the remaining issues with the computer vision detection, and implementing

additional features. Upon completion, wewill begin the peer surveys, and are planning on

completing them before the end of November.

5 Conclusion

Throughout this document, we have outlined our plans to rigorously test our

product to ensure that wemeet, or even exceed, the expectations of our client. In order to

do so, we have to test each part of the product individually. Unit testing will be conducted

using pytest and Jest, to verify the functionality of individual methods or functions,

creating a solid code foundation for the rest of the product. Integration testing will

evaluate the interactions between system components, ensuring that they can

communicate without issue. Finally, usability testing will assess whether users can interact

with the product effectively, providing an ideal user experience. By following this

comprehensive software testing plan, we are confident that we can deliver a reliable,

polished, and easy-to-use product to our client.

