
# Floodbusters

**Project HydroCams** 



#### **The Team**



Jennie Butch Team Lead



Nathan Hill Architect



Noah
Gooby
Client
Communications



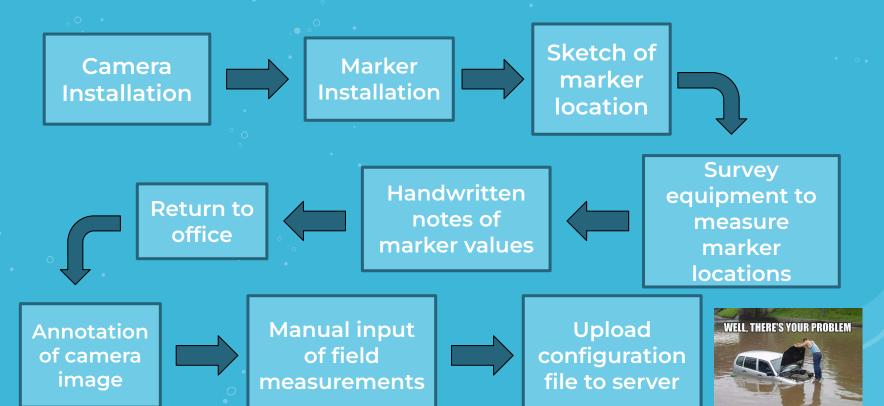
Jade Meskill Archivist



Dylan
Anderson
Release
Manager

**Capstone Instructor: Michael Leverington** 

**Capstone Mentor: Vahid Nikoonejad Fard** 


#### **Our Client**

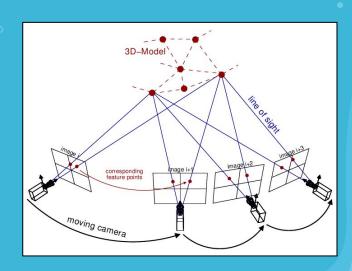
- Professor of Computer Science and researcher SICCS NAU
- Cofounder of the FloodAware Project, overseeing the development of HydroCams
- Dr. Doerry's Goals for HydroCams:
  - Easy to Install
  - Affordable
  - Solar Powered
  - Cell-Connected



Dr. Eck Doerry

#### **Current Process**




#### **Problem Statement**

- Current flood monitoring systems require expensive and labor-intensive processes to generate calibration files
- Specialized, expensive surveying equipment
- Highly trained installation technicians
- Relies on hand drawn images and notes
- Manual input and annotation
- Prone to user error requiring repeat trips back to camera site



### **Solution Overview**

- Online Image Workbench
  - Manually select markers and input measurements
- Computer Vision<sup>o</sup>(CV)
  - Enables automatic detection of markers and zero point
- Structure from Motion (SfM)
  - Automatically calculate all 3D measurements
- Mobile Application
  - Take and upload images on-site



## **Key Requirements**

After some deliberation with our client, and a review of the project documents, we settled on the following key requirements:

- Browser-agnostic image workbench front end
  - For marker identification
- Supporting back end
  - To handle image fetching and storing
- Basic CV marker identification program
- Depth measurements using SfM
- Mobile application
  - Take images; Send and receive data in the field

## **Functional Requirements**

- Image Workbench Front End
  - Image Upload
  - Navigation
  - Markup
  - Calibration / Annotation Output
- Automatic Marker Identification via CV
- 3D Measurements via SfM
- Mobile App
  - Camera Functionality
  - Server Communication

Image Workbench

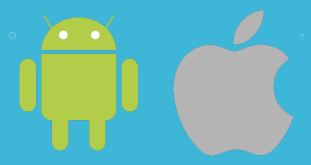


SfM



CV



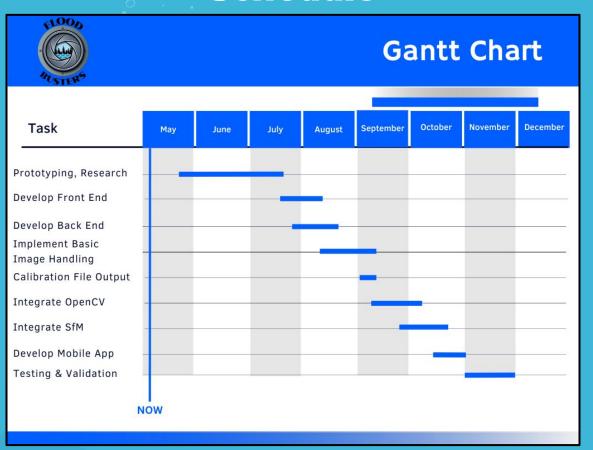

Mobile App

## **Performance Requirements**

- Quick computation times
  - CV / SfM should take < 2 minutes total</li>
- Long-term data storage
  - Images and calibration files should be stored until no longer necessary
- UI/UX
  - Non-technical users should be capable of using the interface
- Reliability
- Maintainability

# **Environmental Requirements**

- HydroCam installation hardware
  - Limited camera resolution
  - Limited network connectivity
- Mobile OS compatibility
- Browser compatibility
- Limited hardware compatibility






# **Risks and Feasibility**

- Calculation Inaccuracies
  - Potential inaccuracies from CV or SfM could lead to misidentification of floods
- Injury during HydroCam Installation
  - Requirement of multiple images for SfM can introduce physical risks for technicians on rough terrain
- Destruction of Markers
  - o Markers may be damaged or displaced by weather, wildlife, etc.
  - Renders the on-site camera useless

### **Schedule**



#### Conclusion

- Flooding regularly wreaks havoc on lives and property
- Current flood monitoring systems are too cumbersome and expensive to be practical or effective
- Our solution involves an online image workbench that utilizes a live network of cameras, computer vision, and structure from motion to automate flood detection
- Our next steps include prototyping and thorough testing / research
- We are confident that our efforts will revolutionize the world of flood detection, saving lives and millions of dollars in the process

# Thank you!

Questions?