
Software Testing Plan Version 2 for Team “Fish Out of
Water”
4/8/2024

Project Sponsor: John Fennell
Faculty Mentor: Saisri Muttineni

Team Members:
Jack Shanley
Corey Moreno

Nicholas Robishaw
Jaron Bauers

Table of Contents

3 Introduction
4 Unit Testing
9 Integration Testing
10 Usability Testing
12 Conclusion

Introduction

In the canyon bordering Northern Arizona and Southern Utah lies Lee’s Ferry, renowned

in the community of anglers for its rainbow trout fishing along the Colorado River. The Arizona

Game and Fish Department is tasked with safeguarding the trout population which is vital to the

river’s ecosystem and is an important part of the local economy. To do this, they diligently

monitor the fishing activities that go on at Lee’s Ferry. However, traditional data collecting

methods, such as in-person interviews with anglers, are difficult to conduct efficiently for the

sake of larger scale data collection. To bolster conservation efforts, the Arizona Game and Fish

Department implemented a game camera near the dock, capturing upwards of 1,800 images

daily. Our client, John Fennell and his team, have to review these photos manually in order to be

able to provide insight into traffic on the river as well as current fishing levels. These photos are

extremely useful to John and his team, but the manual review process is highly labor intensive,

highlighting a challenge of balancing resource limitations while supporting conservation efforts

at Lee’s Ferry. Our desktop application aims to ease this burden for John and his team. Utilizing

the Python tool, YOLO, we have implemented a program that automates much of the image

recognition process which will save John and his team several hours of having to look through

pictures to identify various types of watercraft.

Our program utilizes a simple and efficient front end that is integrated with the backend

logic of our program with the help of our integration tests. After new functionality is added to

our code base and successfully integrated into our GUI, we will add/edit unit tests for our new

methods. Finally, run the unit tests to make sure they are all passing as expected. This document

will go into more detail about the testing strategy that we have implemented to ensure that our

product goes off without a hitch and is a successful solution to our client’s problem.

What is Software Testing?

Software testing is a vital part of the software development process and ensures that the

deployment of your software goes smoothly. There are many different ways to test your software

but we have mainly focused on integration tests and unit tests for this project. Unit tests focus on

testing our methods’ functionality while our integration tests were steps we put in place to make

sure our methods worked against our GUI properly. After adding new functionality to our code

base, we utilized these tests to ensure that our code was working accordingly. Using software

testing in parallel to our development process helped us immensely in developing our code and

for seamless deployment.

Unit Testing

Unit testing is a critically important part of the software development process. Unit

testing is a testing technique where individual units and/or components of an application are

tested by themselves to make sure that they are working properly. This is done to ensure that the

code executes and functions as expected according to the design specifications that have been

developed in tandem with the customer. Unit tests can cover functions, classes, or even smaller

parts of the code. Unit testing allows developers to catch issues early on in the development

process by testing things independently. Ultimately, this leads to higher quality code as well as

more maintainable code. This is important in the modern software development landscape as it

promotes a more robust and reliable system. It is important to be utilizing methods such as test

driven development.

For our program, we decided to implement Pytest for our unit testing. Pytest is a popular

testing framework for Python as it simplifies writing and running tests. It has a useful set of

capabilities and it was suitable for the features we were looking for. Because of Pytest’s

versatility, it is popular in the developer community for both small-scale projects and large-scale

projects alike. Pytest also supports a variety of types of Python applications, making the testing

framework adaptable to tech that changes. Pytest will allow us to focus more closely on the

functionality of our code without having to develop and write complex setups for our testing.

Our program has several key functionalities that need to be tested. Our application

operates in three main modes including sorting mode, processing mode, and training mode.

Unit Testing - Sorting Mode

Testing our sorting mode will cover functions that carry out various tasks. These include

functions that iterate through a large folder containing several hundred photos that are taken by

the game camera at the dock. These functions were often tested during development. Typically,

we would isolate functions as we went to confirm proper working order. Testing this

functionality is important to ensure that our program can correctly and confidently iterate

through the regular influx of photos that will be fed to the program. It is also important to test

that it correctly grabs the metadata from those photos for the sake of sorting them correctly by

date. This is crucial for the organization of the photos before they enter processing. This will

allow for the photos to be presorted and will still appear in chronological order even after

processing. Our client highlighted this feature for the sake of usability for himself and his team.

Our unit testing for this mode largely centered on functions that were responsible for fetching the

metadata that indicated the chronological order of all the pictures in a given folder. Our unit tests

for functions, “organize_pic_by_date” and “get_image_time”, were critical to test the sorting

mode within our program.

Unit Testing - Processing Mode

The next section to begin testing in is processing mode. Processing mode will also have

to iterate through all of the photos, thus testing that it can do so correctly is foundational for

ensuring that all images are processed. As for the actual processing, the program is responsible

for checking the current photo and comparing it to the training data. If the photo contains a boat,

kayak, or raft, then a confidence interval will be assigned depending on how sure it is that the

object is what it thinks it is. And depending on what the floor confidence interval is set to, that

photo will be put into its respective folder (archive, review, or discard). Testing this section of the

processing is vital to completing a successful product, as this part of the processing is the crux of

the project. Thus we will have to test that the confidence interval gets set correctly and that

photos are placed as expected according to their contents. This was important for implementation

in the function, “find_boat”. Unit testing for this part of the code was also utilized on our

“move_file_to_folder” function. After processing and categorizing all the photos is complete, it

is then necessary to test that metadata from each photo is able to be written/exported to an excel

file, according to the requirement specifications that were discussed with the client. Testing this

functionality ensures that their team can accurately procure and organize data. The excel file, the

folders, and their respective photos then need to be outputted to their correct destination in the

file system. Testing these functions will confirm that the information gathered is readily available

and accessible to our customer’s team for further analysis. Unit testing for this aspect of our

program was conducted extensively on our “write_to_excel” function. Additionally, a shortcut

will be available within the GUI that will take the user from the graphical interface directly to the

location where the data resides in the file system. Testing this feature ensures a simpler and more

efficient user experience, which is important to our client.

Unit Testing - Training Mode

Lastly, we are testing our training mode, this is currently a work in progress. Test driven

development will be utilized extensively for this section. This mode allows the user to train

based off of new data, further aiding in making this product multi capable, adaptable, and

modifiable. The user is responsible for creating their own model, however, we will be providing

input validation to ensure that the model is correctly configured for program execution.

In order to conduct testing for most of the functions, or “units”, we will be utilizing

objects called mocks. In Pytest, mocks are able to mimic the behavior and characteristics of real

objects that are tested within the system. Pytest provides a built-in mechanism that allows a

developer to create their own mocks, this is possible with the use of the ‘pytest-mock’ plugin.

This offers a straightforward way for creating and managing our mock objects for our testing

functions. The following describes an example in which we would utilize mocks for our unit

testing.

Function to test

def splitdatetime(dateTime):

strList = dateTime.split(' ')

date = strList[0].split(':')

date = swap(date)

dateString = date[0] + '-' + date[1] + '-' + date[2]

timeString = strList[1]

return timeString, dateString

The function to mock (swap)

def swap(date):

return [date[2], date[1], date[0]]

Test function

def test_split_date_time(mocker): # Mock the split method of strings

mocker.patch("builtins.str.split") # Mock the swap function

mocker.patch("__main.swap", side_effect=lambda date: [date[2], date[1], date[0]])

Set up the input and expected output

dateTime = "2024:03:23 12:30:45"

expected_date = "23-03-2024"

expected_time = "12:30:45"

Call the function under test

timeString, dateString = split_date_time(dateTime)

Assert the expected output

assert timeString == expected_time

assert dateString == expected_date

Using mocks, we will be able to test most of our code in a similar fashion. Isolation of

each section will ensure that things are working as expected in a variety of test cases. It is

important that we do our due diligence so that the client doesn’t have issues with the product that

could have been prevented in development.

Integration Testing

Integration testing is another area of testing that is important to investigate for the sake of

a successful software project. Integration testing is especially relevant for programs that involve

APIs or a web implementation. As far as integration testing is concerned, we did not have a

significant amount of code that needed to be integrated since we didn’t utilize an API and we

didn’t create a web application. Our program was solely a desktop application. Most of our

testing for the GUI was implemented in the form of test-driven development, a lot of the testing

was done as we went. Most of our testing was done on the backend logic, so most of our concern

was concentrated on ensuring that it was functioning properly. Testing for the front end was

ensuring that the interface would respond accordingly based on user inputs. An example of this

was testing for the confidence interval alteration bar actually having an effect on the confidence

interval in the program. A successful test of this was evident in the outcome of the programs,

meaning that there would be more or less photos in the archive folder according to the

confidence interval. We also tested to ensure that error handling in the GUI was present to ensure

that the program wouldn’t be run without proper inputs.

We created functions that would do some operation on the user’s computer like creating

new directories, moving files, sorting images from a file, reading in data from their computer,

etc. We would test that the functions would work as expected by feeding in hard-coded values

and checking to make sure that the data we entered was processed correctly and giving us the

outcome we expected. After ensuring that the function worked properly, we would then hook it

up to our GUI where we would feed that function's dynamic variables and ensure that the

function was again giving us the same outcome and working properly with the data being

transferred from our GUI to the new function. After successfully integrating this new logic into

our GUI we finally would test our entire desktop application to ensure that the program was

working properly. Although we didn’t have much integration testing, it was crucial that we

implemented a smooth connection between our backend logic and frontend interface.

Usability Testing

Usability testing is important for any software design process. Usability testing is a

testing technique that is focused on how the software and the user interact with each other. This

is crucial to ensure that the software that the user will be operating on is easy to use and

understand. Our client and their team are not technology professionals, therefore it is important

that our software is designed in a manner that is straightforward so that anybody can pick up the

software and use it without any struggles. In order to achieve successful usability testing, it is

vital that we include the user (our client) throughout all phases of development so that they see

exactly where their product is through each step of the process. This needs to be done in parallel

with testing the product ourselves. We accomplished this by having weekly, if not biweekly,

meetings with the client in which we showcased a detailed orientation of what our progress was

and how our program was looking. This became especially important when showing the user the

GUI. Additionally, the product will only be used by the Arizona Game and Fish department at

Lee’s Ferry, so the program needs to cater to the needs of this group as much as possible. If the

program does not fit the usability requirements that our client needs, the program will cause

more problems than necessary and will slow down the process of iterating through the pictures.

When it comes to testing the program for usability, we want to make sure that our client

is satisfied with the design, functionality, and accuracy of our program. The first step was to

check with our client to see what they thought of the GUI design. After showing our GUI design

and demonstrating how the program operates, our client informed us that the GUI was easy to

use and understand. However, we did implement a section of our GUI that our client does not

want anymore. To ensure usability, we will modify our code to take out the unwanted section and

in our next meeting, we will demonstrate our changes and the functionality of the program once

again. Once we get another confirmation from our client that the GUI is complete and

easy-to-use, that will assure us that the program is usable and meets all expectations. An

effective and simple GUI is not to be understated, it ends up having a massive impact on how the

user will interact with the product. Even if the logic on the backend works well, a bad GUI will

undermine all of that.

The next step in testing usability will be to run the program on different machines to see

how fast the program will perform. Our client’s machine is an HP EliteDesk VPro 9th generation

computer, which has an i5 processor and about 8 gigabytes of RAM. In order to ensure that this

program will run on that computer, we need to test this program on a machine that has similar

components. Most of NAU’s computers have i5 processors and contain anywhere between 8 and

16 gigabytes of RAM. Once we test this program on a computer of this kind, it will allow us to

gauge how fast it will take for the program to run on the computer at Lee’s Ferry. From there, we

can modify and refactor any code that might slow down the image processing process. And

although achieving an efficient time is important, the time taken for the program to run will

ultimately still have a significant impact on the man hours that are spent by John and his team

analyzing photos. A large part of our design for this program was for it to be easily maintainable

and modifiable. Although our client has changed their mind on a couple of their requirements. It

is a lightweight program that is simple to follow and thus not difficult to add on to in the future

as needs arise. We wanted our client to be familiar with training the model so that when new

boats are seen on the water, the program can be trained to recognize them as well. This was taken

into consideration when choosing the software that would be used for annotating pictures, since

this is also a simple process that the client can implement themselves if necessary. These are the

aspects of usability testing that are most relevant and pertinent to our project.

Conclusion

Overall, the purpose of testing this program is to see from a developer's point of view

what can be improved and what would most likely break our program. Pytest is a great tool to

test if the project is running as it should and if it handles errors as it was programmed to. Using

these helpful feedback tests, we as developers can add more error handling and anticipate how

our program will handle bad inputs and outputs to limit crashing. This way, the customer doesn't

have to worry about reaching back out to us to fix mistakes that should have been addressed in

the first place. Throughout the whole project, we as the developers strived to make this project as

simple as possible for the customer, and we also know that there will also be a ton of different

inputs that the customer will accidentally select. Once testing is completed, we will see where

the program is at its weakest with certain input ranges and be able to refine those functionalities

to aid the customer in inputting the correct information needed to run correctly. The majority of

the functionality in this project is based on assumptions, like many other real-world programs.

This is easy to initially develop but difficult to validate the inputs since there are so many

variables to keep in mind. Testing is a vital part of this project, and the development team would

like to give our customers a really easy and simple project to interact with and learn from.

