Mini-Intro

CERAMIC RECORDING AND AUTOMATION CLASSIFICATION TEAM

Sponsor: Dr. Leszek Pawlowicz

Team Leader: Kimberly Allison

Team Members: Aadarsha Bastola, Alan Hakala, Beatriz Ortega, Nick Wiley

Faculty Mentor: Vahid Nikoonejad Fard

Our Client

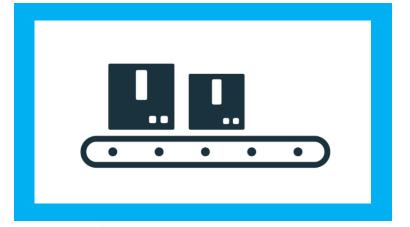
- Painted ceramics sherds are one the most important types of artifacts.
- Based on the designs present, they can assign a "type" to the ceramic, which in turn can yield information about it.
- Our client's research deals with the classification of the types of Tusayan White Wares.
- He has spent many years doing field surveys and excavations in Flagstaff.

Dr. Leszek Pawlowicz Assistant Research Professor, Department of Anthropology

Problem

- Archeologists cannot classify sherds consistently or reliably.
- 48% of sherd identifications are disagreed upon.
- It is common for more than half of an expert's assessments to change after a reexamination.

Native American tribes are requesting sherds back to be reburied.



Examples of wholly intact artifacts identified by Leszek's CNN at NAU

https://blogs.nvidia.com/blog/sherd-gpu-deep-learning-sorts-pottery-fragments/

Solution

- Conveyor Belt
- Used in conjunction with app
 - ► Mass classification of sherds
 - Speed up large projects
- Return sherds to archeological sites faster

Solution

- Client is developing and training a Convolutional Neural Network for sherd classification
- The CNN has an accuracy comparable to professionals
- This is useful, but the CNN's **consistency** is more impressive.
- Regardless of accuracy identifications stay consistent
- Even if sherds are only available temporarily in a remote location, a mobile app will be developed to save sherd images and upload them to the CNN at a later time.

Prototype of mobile classification app

Plan For Development

Conveyer Belt:

- Phase 1: Design a GUI Application that uses Computer Vision to crop out only the shreds and save it with an associated metadata provided by the user
- Phase 2: Integrate CNN in the application so that the it can process sherds in batches of hundreds or thousands

Mobile App:

Modify the application source code to add functions to upload results to a database and modify the results before uploading if there is error classifying by the CNN.

In Conclusion

Team CRAFT is working to help solve the widespread and formerly unavoidable inaccuracies and inconsistencies in archeological identification.

48% of identifications are disagreed upon

Researches in remote environments no longer must make rushed identifications in the field without resources

In the long term team **CRAFT**'s solution will save time and money from avoiding misidentification.