

Design Review

Project Sponsor: Dr. Leszek Pawlowicz

Faculty Mentor: Vahid Nikoonejad Fard

> Course Organizer: Isaac Shaffer

OUR TEAM

Alan Hakala Quality Assurance Aadarsha Bastola

Nicholas Wiley Team Lead and Release Manager **Kimberly** Allison Client Communicator and Recorder Dr. Leszek Pawlowicz

OUR CLIENT

Assistant Research Professor, Department of Anthropology

Photograph new sherds

PROBLEM

Problem Statement

- Archeologists often dispute sherd identifications.
- Archeologists consistently make unreliable assessments.
- Archeologists and researchers have a limited window of time to make their assessments.
- Manually classifying and recording large batches of sherds can be highly inefficient.

Our Solutions – Deep Learning Model

On-the-Go Classification

- Field setting
- Online/Offline
- Accessible
- For hobbyists and researchers alike

Mass Classification

- Lab setting
- Prioritize rapid classification
- Mass archival projects

Solution Overview – Conveyor Belt

Solution Overview – Mobile App

Implementation Details

Mobile App

- Flutter
- Firebase (Auth, Firestore)
- TFLite
- Foreign Function
 - Interface

Conveyor Belt

- OpenCV
- Firebase (Firestore)
- Model Integration

Deep Learning Models

- ResNet
- ConvNeXt
- Swin Transformer
- Custom Model

Implementation Details: Mobile App

• **TFLite**

- Flutter
 - Cross Platform
 - Single Codebase
- Firebase
 - Authentication (Firebase Auth)
 - Database (Firebase Firestore)

- TensorFlow Model Integration
- Cross Platform Support
- Foreign Function Interface
 - Optimization for older devices with limited hardware.

Implementation Details: Conveyor Belt

- OpenCV
 - Computer Vision Library
 - Handles capture & formatting
- Firebase
 - Image Storage (Firebase Firestore)

- Model Integration
 - Automatic classification

Implementation Details: Deep Learning Models

- ResNet
 - Premade from Keras framework
 - · Fine-Tuned on sherd data
- ConvNeXt
 - Premade from Keras framework

- Swin Transformer
 - Custom transformer layers

subclassed from Keras Layers

- Custom CNN
 - Utilizes residual blocks

Challenges and Resolutions

Challenges

- Mobile app performance degrades on older hardware
 - · Classifying sherds results in noticeable lag
- · Conveyor belt program results are impacted by quality of light
 - Harsh light washes out images
- Deep learning best practices do not improve our models
 - Little to no improvement from original models

Resolutions

- Mobile app lags on older hardware
 - Code running deep learning model optimized
- Conveyor belt susceptible to harsh light
 - Light box to block outside light
- Deep learning models not improving through best practices
 - Hyperparameters optimized through automated training

Schedule

Conclusion

- Problem
 - Archaeologists struggle to classify sherds fast and consistently
- Solution
 - CRAFT project will speed up field work and gathering data
- Design
 - Mobile app
 - Conveyor belt
 - Deep learning