
Software Testing Plan
Team ZAM

30 October 2023
Instructor: Michael Leverington

Sponsor: Tim Wojtulewicz
Mentor: Vahid Nikoonejad Fard

Team Members: David Knight, Akiel Aries, Cody
Beck, Nathan Chan

Version: 1.0



Table of Contents

Table of Contents 1

1. Introduction 2

2. Unit Testing 3

2.1 Parser Testing 4

2.2 README Scraper Testing 5

2.3 Search Testing 7

3. Integration Testing 10

4. Usability Testing 12

5. Conclusion 14

1



1. Introduction

Ensuring network safety is becoming progressively more important as technology

advances and cyber-attacks pose a serious threat to organizations. Our team has partnered with

Tim Wojtulewicz, senior engineer and Zeek’s current release manager, intending to develop a

newly refreshed package manager website with an improved search engine.

Software testing is the process of ensuring that your software’s implementation

demonstrates the necessary functional and non-functional qualities to execute the intended

purpose. When it comes to our package manager website we have a plan that consists of

performing unit, integration, and usability testing to validate the intended functionality of our

software. The main modules we plan to perform unit testing on are our parser module, readme

scraper, and search feature; this is to guarantee that the modifications done to the front-end side

of the website do not interfere with the back-end functionality. In terms of integration testing, our

goals are to verify that the data gathered by our parser and README scraper modules is

accurate, accessible through our search engine, and successfully displayed to users on the

front-end. Regarding usability testing, we will collaborate with our clients, the Zeek team, to run

several tests on the website to make sure that it meets their standards and to examine how each

feature is being used.

By following this software testing plan we will be able to assess the readiness of our

product and ensure that the features on our website will exhibit the necessary functionality to be

efficiently utilized by our clients.

2



2. Unit Testing

Unit testing is the process of testing the smallest parts, called units, of the software

application. Often, the units that are tested are functions. Unit testing ensures that functions

respect boundary conditions, return proper data types, throw the correct errors when inputs are

malformed, and return reasonable values. Our goals for unit testing are essentially the same. We

want to ensure that the backend API of the website behaves as expected for many different

conditions. This will ensure that as the Zeek team makes changes to the front-end of the website,

there will be no problems interfacing with the back-end. Essentially, we hope to utilize unit tests

to make it as easy as possible for future developers to modify the website without breaking the

whole thing.

To help us with our unit testing, we will be utilizing the Pytest library to write all of our

tests. This will allow us to write simple, readable test cases, furthering our goal of using tests as a

way to allow future developers to easily modify the application. We will be using test coverage

as a metric to determine how well-tested our codebase is. We hope to achieve one hundred

percent coverage on the backend code of our application. Additionally, we aim to test return

types, boundary conditions, malformed inputs, and reasonable outputs for every single unit. This

means that each unit of code should have at least four test cases written to be considered “wholly

covered”. As previously mentioned, we will be testing each unit within the backend of our

system, which is defined as all of the code within our backend API, which is defined as all code

based within the API directory of the codebase. This code contains all of the core modules and

functionality that are required to present package information to our users. Properly testing this

code will ensure that users are not presented with strange errors served up by Uvicorn, which is

our web server, but instead see what they are expecting to see every single time they interact

3



with the website. The main modules we hope to test are the parser, README scraper, and search

modules.

2.1 - Parser Testing

The parser module has a few functions that let it operate. They are listed in the diagram

below:

Figure 2.1.1 - Parser module functionality

The first function to test is the parse_data function. This function looks for the

aggregate.meta file containing information about each Zeek package, and parses it to find

important information. We need to ensure that this function can respect the boundary conditions

of the beginning and end of a new entry in the metadata file, and the beginning and the end of the

file. Fortunately, the file is formatted using the TOML format, so we just need to test that it

appropriately reads the TOML for these boundary conditions. Additionally, we need to ensure

that it performs correctly when information is missing, as not all packages have the same

4



information. We need to test that the parser returns reasonable results by creating some samples

to test it against. Finally, we need to ensure that it correctly returns dictionaries filled with the

proper information, as the future functions expect to be able to find the data formatted in this

way.

The second function to test is the get_readme function. This function uses URLs stored in

the metadata to make requests to GitHub for a package’s README file. We need to ensure that it

can handle the boundary condition of packages not being hosted on GitHub; one package is

hosted on GitLab. Additionally, it needs to be able to handle if a package is missing the URL

field, or if the package does not have a README file. We need to check if the README found is

reasonable, again we will create a sample to compare to, and we need to ensure that the

package’s dictionary has a new README field that is correctly populated upon the function’s

return.

Finally, we need to test the parser’s dump function. This will dump each package’s

information into JSON files for later access. To test this, we need to first test the boundary

condition if the file path to dump does not exist. Then we can test for the package information

being NULL in a package’s dictionary. Next, we will create some sample JSON to compare to

JSON returned by the dump function, to ensure that the results are reasonable. Finally, we need

to test whether or not the function can correctly write files to the proper location, to ensure that

once the parser has been run, we can access the JSON files from where we expect to be able to

access them.

2.2 - README Scraper Testing

The README scraper module has several functions that let it operate correctly. They are

listed in the following diagram:

5



Figure 2.2.1 - README scraper module functionality

To ensure the proper functionality of the README scraper, we need to ensure that each

function within the module is properly tested.

The first function we need to test is the find_missing function, which identifies any fields

that are missing a given package’s metadata. This function lacks any real boundary conditions, as

the input is rather binary; either a package field has information, or it is NULL. We must check

for malformed JSON, and handle it properly, just in case data is corrupted on the web server for

any reason. We also will create some sample packages with missing fields, just to check that the

function is performing correctly. Finally, we will ensure that it is properly returning the missing

fields, as a list of which fields are missing, to the calling function.

6



The next function we need to test is the scrape function. This function goes through a

package’s README file to find information to fill in fields that were missing in the package’s

metadata. The boundary condition we need to check for is a NULL input, essentially the

condition of a package has no missing fields, and where there are missing fields but no relevant

information in the README. We then need to check that it can handle strange inputs, such as

lists of fields that are incorrect. Then, we can test it for correctness, by seeing if it can identify

information in packages that we know contain missing fields, and information to fill said fields

in the metadata. Finally, we can check that it correctly returns a dictionary with each field and its

associated information.

The final function we need to test in the README scraper module is the backfill

function. This function fills the information found within the README into the proper fields of a

package’s JSON file. The boundary conditions we need to test against are if a package’s JSON

file does not exist if the fields within the JSON have already been filled, and if the input to the

function is NULL. We also need to check for incorrect input, such as fields that are slated to be

filled in with NULL values. Again, we will use some sample packages that we know have

missing information that can be found within the README to test if the backfill function gives

reasonable results. Finally, we need to check that upon the function’s completion, each package

still has a correctly formatted JSON file in the correct location.

2.3 - Search Testing

The final module we need to test is the search module. The functions for this module are

found below:

7



Figure 2.3.1 - Search module functionality

The first function to test is the rank function, which ranks each package based on

information found within its JSON file. We need to ensure that this function handles the

boundary condition of the JSON files for packages being missing. We also need to ensure that the

function can handle the boundary condition of fields, most notably the README field, being

missing within a package’s JSON. So long as those boundary conditions are handled, it should be

able to handle any input. To test its correctness, we will have some sample rankings saved to test

the function against. Finally, we need to ensure that it returns a list of packages and their

associated scores upon its completion.

The next function is the bias function, which biases packages based on hyperparameters.

We need to ensure that the bias function can handle the boundary conditions of the input being

NULL, for both the rankings and the search query. We also need to ensure that it does not bias

8



packages based on file extensions, such as .git and .json. To ensure that it returns correct results,

we will save some biased rankings to compare the function against. Finally, we need to ensure

that it returns the same list of ranked packages that it got as input, just with some of the scores

changed based on the biasing procedure.

We need to test the sort function to ensure that it properly sorts packages based on their

biased scores, from most to least relevant. It needs to be able to handle the boundary conditions

of the rankings being NULL and of packages all having the same score. If it can handle these

boundary conditions, the sort function should be able to handle any input. We will have some

sample packages and scores saved in a sorted list to ensure that it properly sorted in the correct

order. Finally, we need to ensure that it returns the same list of packages and their associated

scores that it received as input, just sorted.

The final function we need to test is the cutoff function. This function finds the minimal

score and cuts off any packages that received said score. We need to ensure that it can handle the

boundary condition of the input being NULL, as that is the only real boundary condition or

incorrect input that the function could receive. We need to ensure its correctness by saving some

simple rankings and cutting off the lowest scores, keeping these to compare this function’s

results against. Finally, we need to ensure that it can correctly return the sorted list of packages

and their associated scores, with the lowest scores being removed.

If we have correctly implemented these test cases, we can consider the backend units of

the application to be “wholly covered” for testing purposes. This will ensure that the backend

will always perform as expected, and make modifying the codebase simpler for future

developers.

9



3. Integration Testing

Integration testing is the process of verifying the correct interactions between a project's

components and modules. In our case, it is assurances around the data collected from the parser

and README scraper modules, searching this data with our search engine, and properly

displaying this all to our front end for the user to see. Instead of testing each component

individually ensuring it operates on its own, we make sure that these components work in

conjunction with each other. Since integration testing is similar to unit testing, except for more

components of the system, we will use the same Pytest Python library for assurances throughout

our project. In addition to using this framework, we will want to ensure proper error checking

and handling is implemented in each module so we can maximize the accuracy of the displayed

data.

The parser and README scraper modules serve as the main entry points of our project

largely in charge of the collection and storage of each package’s data. The parser collects

package information from Zeek’s central metadata file with this information while our README

scraper browses each package’s README for additional information. Testing the behavior of

these two collection modules with our search engine is vital to the functionality of our website

and assuring all collected information is stored neatly for our search engine to return accurate

and meaningful results. This means the data communicated between these modules must be

verified for accuracy and ensure no loss of data to minimize unexpected results on our website.

Given the plethora of data we are collecting from our two main methods, metadata file

parser and README scraper, we want to create assurances around how we are collecting data

and displaying it graphically to our front end. Data collected through the parser should contribute

to the various tags that Zeek has for each package allowing for easy browsing on our site. Data

10



collected through the README scraper should provide further details for each package and

additional information for users to search for. The main goal behind these two collection

modules is to complement each other as far as package information is concerned, meaning the

scraper would fill in missing information for the parser for easier browsing. For search, we want

to ensure that results are ranked correctly when trying to browse the collected information from

the parser and README scraper meaning data transmission from all of these modules in tandem

will produce our desired results.

Correctly implementing our suite of unit and integration tests which will ensure the

operation of each component with our integration tests that ensure modules work correctly

together will provide some safety and durability for the operation of our website. This also aids

future maintainers, developers, and even users of our website so that additional features can be

implemented easily and our users have a satisfactory experience.

11



4. Usability Testing

Usability testing is the process of evaluating a product being built through a group of

users testing said product. The goals of usability testing are to identify any potential usability

problems and being able to analyze how the users will use the product. The general process of

this is to get a group of users, typically the intended audience for the product, to perform a set of

tasks set by the developers. The developers will have the users perform the task one at a time

while analyzing and taking notes of how they perform these actions, as well as any usability

issues that may appear. The results from each user are compared and any issues found are

reported and fixed.

To conduct our usability testing, we will enlist the help of our client as well as other

available members of Zeek to conduct a series of tests on the website to ensure it is not only up

to their standard but also analyze how the developers of the company will use their future

product. Including the Zeek team, we also plan to form a group of university students majoring

in Computer Science and/or Cybersecurity to analyze how potential users of the app would

navigate the website. These two groups will allow us to get a good pool of data to ensure there

are no usability issues at the time of submitting the project along with the average user flow of

the site. Being able to analyze how the average user will interact with the site will allow us to

make any necessary changes to the site to make it more usable even in the event of there being

no usability issues.

The main focus of these tests will be to ensure users can browse through every page with

no issues on the user end. On top of this, we will want them to test key features such as searching

for packages, finding specific packages and examining their details, and finding a packages’

repository to name a few examples.

12



The first task that we will have users accomplish is to find the instructions on how to use

Zeek found on the About page. Next, we will have users go to the package page and click on 3

random packages and tell us the version number as well as click on the repository. After this, we

will have the user search for ‘http’ and tell us the first 5 results. Based on the names we will ask

how relevant the packages seem to be. The last test will be to have the user find the ‘add-json’

package and list off the build and test command for this package.

During this testing we will analyze how the users perform each action, taking note of

what they do and how they perform on each task. As a result, the data we will be collecting will

be qualitative with a focus on how the user interacts with the site. We feel this is the most

appropriate based on the content of our site being informational about packages and the data

within them. There are also not many complex things outside of the backend that users will be

able to analyze besides the search feature. As a result, we care mostly about the steps they take to

complete the tasks as well as ensuring that relevant packages appear for search queries that we

and the Zeek team have determined as popular or relevant.

13



5. Conclusion

As technology continues to expand this calls for the network security sector to keep pace

and evaluate how new risks can be mitigated. Fortunately, the Zeek Package Manager has been

an excellent means to allow users to develop and share packages to enhance network analysis.

Nonetheless, developers on the Zeek team feel that the user experience of the site can be

reworked in terms of its current search engine and the look and feel of the UI. By developing a

newly refreshed website we intend to alleviate the current technological challenges users face.

In this document, we’ve discussed how we plan to validate the features we developed and

how safe implementations can be made in the future so Zeek can continue to ensure their

customers have a positive and beneficial experience with their product. In regards to unit testing,

we explained how we plan to test the parser, README scraper, and search modules by utilizing

the Python Pytest library. Similarly, we will use the same library to perform integration testing,

which focuses on the seamless interaction between each module with emphasis on data accuracy

and properly displaying to the front-end of the website. Furthermore, the usability testing will

help to ensure these users receive the best user experience possible and that everything is easy

and seamless to find. By following this plan, our team should be able to give the Zeek team and

their users a positive experience on their site, which then will encourage them to come back as

the demand for enhanced safety and security rises.

14


