
Software Design
Team ZAM

28 September 2023
Instructor: Michael Leverington

Sponsor: Tim Wojtulewicz
Mentor: Vahid Nikoonejad Fard

Team Members: David Knight, Akiel Aries, Cody
Beck, Nathan Chan

Version: 1.1

Table of Contents

Table of Contents 1

1. Introduction 2

2. Implementation Overview 3

3. Architectural Overview 4

4. Module and Interface Descriptions 6

4.1 Parser Requirements 6

4.2 Functional Requirements 8

4.3 Functional Requirements 10

5. Implementation Plan 13

6. Conclusion 15

1

1. Introduction

When deciding what precautionary actions to take to secure an organization’s data,

network security is a crucial consideration. By prioritizing network security, businesses can save

a ton of money and relieve themselves of the fear of falling victim to cyber attacks. In a 2018

report1 by The Center for Strategic and International Studies (CSIS), they discussed the

economic impact of cybercrime and revealed that nearly $600 billion is lost annually.

Fortunately, we have Zeek: an open-source network traffic analyzer software that provides a

powerful and versatile set of tools for network security monitoring. Zeek also has the capability

to measure performance and perform troubleshooting on a given network. These services all

provide assistance concerning defending against malicious attacks.

We have partnered with Tim Wojtulewicz, a senior engineer and current release manager

for Zeek. Tim and the Zeek team aspire to supply an open network monitoring framework that is

able to empower their users by providing them with substantial insights into the activity of their

systems. Zeek supports all users in need of their services ranging from simple home offices to the

largest and fastest research and commercial networks. Zeek strives to build and support a

dynamic community of developers, educators, and users. To achieve this, developers aim to

strengthen the Zeek ecosystem, allowing all users to deeply understand and defend their

networks.

One of the ways Zeek has grown their ecosystem is by implementing the Zeek Package

Manager Website2, which allows users to create and publish their own third party scripts and

plugins. By doing this Zeek is able to consistently provide users a wide variety of tools to

enhance their network analysis.

2 https://packages.zeek.org/
1 http://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-cybercrime.pdf

2

https://packages.zeek.org/
http://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-cybercrime.pdf

2. Implementation Overview

Our team’s goal is to take the remnants of the current Zeek Package Manager website and

give it a refreshing new look and feel. The current look of the website is deemed to be outdated

and gives the impression of being a website that is in need of a modern upgrade.

The first and main problem we want to solve is the current search engine. As of now, the

search engine is not up to par with what the developers at Zeek desire as it can oftentimes return

search results that are redundant or irrelevant to what the user searched for. Through extensive

team analysis of many different ranking algorithms, we plan on doing this by implementing a

new search algorithm called Okapi BM25. We have decided to use BM25 because we want

packages with long descriptions to score higher, as they are more likely to be easily used by our

clients. Although it is slightly slower than other algorithms we analyzed, we believe it will still

be fast enough to keep our website responsive, while providing the best results to our users.

Furthermore, we plan on using the FastAPI web framework for integrating the back-end

and front-end of our website and developing RESTful API’s in Python. FastAPI utilizes type

hinting in Python to ensure the data is accurate during validation. This also allows this API to be

utilized across front-end different systems if need be. This framework is also open source and

well maintained being a secure choice for our system. Along with that, FastAPI utilizes a

templating engine, Jinja, for inserting data into html files.

When facing the challenge of revamping the look of the Zeek Package Manager website,

we plan on using simple CSS tools to make the website feel more modern and refreshing.

However, we still plan on preserving the overall look and feel of the Zeek website so that the

Zeek team and its users aren’t met with a completely unfamiliar product.

3

3. Architectural Overview

Figure 3.1 Back-end Components

Figure 3.1 shows a high-level design of the various components that we have

implemented, along with the responsibilities they will have as updates are made to the website

via developers or users alike.

This figure visualizes the key responsibilities and features of each component. In this

diagram, we showcase how the various components will communicate and work with each other.

These components include the parser. linter, and search module, Jinja, and external actions. The

main communication mechanism for this diagram demonstrates two main actions, when a

package is updated or a new one is added to the site and the instance of a user searching for a

package.

4

In the case that a new update is pushed to the aggregate metadata, a webhook initiates an

action that instantly gets parsed to find the new package. Once the parser gathers all the required

information an HTTP request downloads the packages README and writes a markdown with

the package info, which finally gets passed to the linter module to find additional information

that may be in the README but not the aggregate metadata.

Furthermore, when dealing with the instance of a user searching for a package,

our search module will return a list of packages that best match their query. Once the user clicks

on a given search result HTML is generated based on the parsed package along with the

downloaded README.

5

4. Module and Interface Descriptions

4.1 - Parser Module

The parser module is the first component of the back-end of the Zeek package website.

The goal of this module is to go through all of the packages within Zeek’s packages repository to

store vital information about each package within a JSON file. Each package within the packages

repository is listed within the repository’s aggregate.meta file. This file contains metadata

information about each and every Zeek package. The role of the parser is to step through this

metadata file, package by package, and pull important information about each package.

Information from package to package varies - typically, we will find credits, aliases, GitHub

URLs, script directories, versions, build commands, and versions. The parser gleans whatever

available information is stored in a package’s entry in the metadata file.

After the parser module gets information about each and every package, it then gathers a

README file from each individual package’s GitHub page. While information can vary from

entry to entry within the aggregate.meta file, each package entry does contain a URL to it’s

GitHub repository. Using this URL, the parser is able to make a request to GitHub for that

package’s README file. The parser needs this information, as the README is where most of

the information for a given package can be found.

After getting READMEs for each package, the parser module stores information about

each package in its own JSON file. JSON files are used over a database as there are only about

220 packages, and it has been decided that using a database to store so little would be overkill.

The parser module is the module of the back-end of the website to go into action. The

other back-end modules, such as the search and the linter require information stored within the

6

JSON files created by the parser module in order to operate. As such, the parser module must be

called upon whenever the website is first initialized. Additionally, the parser must occasionally

run, so that any changes made to packages are reflected by the website.

Figure 4.1.1: The sub-componenets of the parser module

The three actions that are done within the parser module are the gathering of data from

the Zeek package repository’s aggregate.meta file, making HTTP requests to gather READMEs

for the packages, and finally, dumping all of the information gathered to JSON files. These

actions all happen linearly, meaning that the aggregate.meta must be parsed before READMEs

can be gathered, and READMEs must be gathered before the data is dumped.

The public interface for this component consists of two functions: parse_data() and

dump(). The function parse_data() does not require any arguments, and simply saves all of the

relevant information for each package into a dictionary. It calls the get_readme function during

7

its execution, as these steps should not be split up. The function dump() requires the parse_data()

function to be already called so that it can have the information about each package. It simply

writes the contents of each package’s dictionary to a file. The reason why these two functions are

called separately is because there may not be a need to rewrite files for each package whenever

the parse_data() function is called. This is because many packages are not frequently updated, so

rewriting their JSON files when there is no new information would be inefficient. To make use of

the parser module, one would just need to import the functions, as they would with any other

Python library.

4.2 - Search Module

The search module is the main way through which users of the Zeek package website will

find packages. The search module will be called whenever a user inputs a search on the website.

The module implements the Okapi BM25 search algorithm to search through each package’s

README to figure out how relevant each package is to the search query. This algorithm is a

term frequency-inverse document frequency (tf-idf) algorithm. This means that the algorithm

considers how often a term within the query appears within a package’s README file - the term

frequency. It also calculates the inverse document frequency - the measure of how much

information this term actually provides. Essentially, the more documents a term within the search

query appears in, the less information it provides. This ensures that very common terms do not

skew search results and provide irrelevant packages at the top of the search results. Furthermore,

since some packages have been deemed rather relevant to certain search queries, we have added

an additional bias checking if the search term is contained in the name of the package. Finally,

we have created a cutoff point, which will remove particularly irrelevant packages from the

search results, so as not to lead the user astray. As searching relies on README files gathered by

8

the parser module, the parser module must run before any search can take place. After the parser

has been run, and all of the JSON files have been populated, the search module can be called

upon at any time.

Figure 4.2.1 - The sub-components of the search module

The search module’s subcomponents include the rank(), bias(), sort(), and cutoff()

functions. The rank function uses the Okapi BM25 algorithm to generate scores for each

package. It expects the list of package names along with the search term to be passed as

arguments. The rank() function returns a list of the score values for each package. From there,

the scores can be sent to the bias() function along with the search query, which will add a bias

9

value to a package’s score if it meets the bias criteria. Then, the packages are sorted from highest

score to lowest. Finally, the sorted list of packages and scores is sent to the cutoff function,

where the line of irrelevance is established. All packages with a score below the line will be

omitted from the results. Much like the parser module, these steps are all linear, one must be

taken before the next one is taken.

All of this is wrapped in a simple search() function to provide a clean interface for

interaction with the front-end of the website. So, all a front-end developer needs to do to make a

call to the search module is to call this function and pass along the search query. They will

receive a list of results containing the relevant packages, along with their scores as determined by

the search algorithm.

4.3 - README Scraper module

The README scraper is the final module within the back-end of the system. The job of

the README scraper is to sift through each README file gathered by the parser module to find

important information to be highlighted on a package’s page on the website. Ideally, all of this

information would be contained within a package’s entry in the aggregate.meta file, but through

some digging, we have determined that some important information, like build commands, are

often omitted from a package’s entry in the aggregate.meta, and instead included in the

package’s README. We hope to have centralized locations on a package’s page for such

information so that users do not have to unnecessarily skim through a long README file to find

one specific piece of information. To do this, the README scraper must first identify what was

missing from a package’s entry in the aggregate.meta file by comparing what fields have been

filled in to what fields could be filled in but are not. Using this process of deduction, it can

decide what it needs to look for in a package’s README file. Then, it can step through the

10

markdown in the README looking for specific terms that would match empty fields from the

aggregate.meta file. The README scraper relies on the parser module, as it needs for the

aggregate.meta file to be parsed into JSON files, and for READMEs to be gathered.

Figure 4.3.1 - The sub-components of the README scraper module

The find_missing() function goes through the JSON files to determine what is missing

from each and creates a list of missing fields for each package, which it will pass on to the

scrape() function. The scrape() function uses this list of missing fields, along with regular

expressions, to find any information about these missing fields that is contained within the

README, and pass a list of this information to the backfill() function. The backfill() function

uses this list to open each JSON file, and put the information into the proper field within the

JSON file.

11

All of this functionality is incorporated into one singular scrape_readme() function that

will serve as the interface for the front-end to access this module. This function can be called by

the front-end of the system, after the parser module has been called, and it can carry out all of the

previously listed functionality of the README scraper.

12

5. Implementation Plan

Over the course of the past 9 months our team has made substantial progress towards a

newly refined website for Zeek’s available packages. Our focus in the first semester was on

implementing a base skeleton of our project in primarily two parts, front and backend. We started

with a parser module to gather package information to fill various fields for each package. As the

parser module came to completion, the work on our search functionality and frontend

environment came together. The integration between the search utility, frontend, and the parser

module was seamless and was the first step in tying our project together. Both the search utility

and frontend kept user experience as a forethought for development as the existing Zeek package

website is severely lacking in those regards.

13

During this final semester, our focus is primarily on testing, fixing bugs and issues, and

overall refinement in collaboration with our client. Our client, Tim, and his team open new issues

and bugs within our github repositories interface for us to easily navigate and track. Our main

priority is to monitor those issues and implement solutions to solve them. Another focus is to

implement a suite of unit tests to verify the functionality implemented for this website. Proper

checks to ensure the accuracy of our parser module to collect the correct information, assurances

around our search functionality to return the proper results, and verification in our frontend to

display information correctly and reliably. All this in preparation for demonstrations to our client

for the last rounds of testing and feature input for final handoff.

14

6. Conclusion

As technology continues to expand, this calls for the network security sector to keep pace and

evaluate how new risks can be mitigated. Fortunately, the Zeek Package Manager has been an

excellent means to allow users to develop and share packages to enhance network analysis.

Nonetheless, developers on the Zeek team feel that the user experience of the site can be

reworked and will then alleviate the current technological challenges users face.

The problem revolves around improving the current user experience by making

discovering and managing new packages easier. This is detrimental to the workflow because it

adds to the time spent filtering through packages and can cause users to lose confidence in the

utility of Zeek. Another problem we are faced with is revamping the quality of the website. Zeek

wants the package manager website to have a modern up to date look while still preserving the

overall look and feel of Zeek.

As a team, we are confident in our plan to manufacture a new website that will retain a

modern, sleek design and will provide users with an intuitive experience with regard to

discovering packages. On top of that, we plan on implementing a new search engine utilizing the

BM25 ranking algorithm. While also developing a new package parser and scraper that allows us

to generate the standard information of each package and scrape the captured README files to

potentially gain more information of a given package.

In this document, we discussed the features and functions of our proposed solution,

including the actual implementation and an overview of the architecture. We also highlighted the

potential risks of our system and our current plan of execution moving forward. As a result, this

solidifies a thorough set of requirements that will guide the fruition of the new Zeek Package

15

Manager website, and we look forward to providing Zeek and its users a newly enriched user

experience.

16

