
Final Report
4 May 2022

Team Truthseeker

Garry Ancheta
Georgia Buchanan

Jaime Garcia Gomez
Kyler Carling

Project Sponsor

NOBL Media – Jacob Bailly

Team Faculty Mentor

Felicity H. Escarzaga

Table of Contents

1- INTRODUCTION 1

2 - PROCESS OVERVIEW 3

3 - REQUIREMENTS 6

4 - ARCHITECTURE AND IMPLEMENTATION 11

5 - TESTING 23

UNIT TESTING 23
INTEGRATION TESTING 28
USABILITY TESTING 32

6 - PROJECT TIMELINE 35

7 - FUTURE WORK 37

8 - CONCLUSION 39

9 - GLOSSARY 41

APPENDIX A 42

1

1 - Introduction

Today, misinformation is widespread on the internet. Different platforms
intentionally spread misinformation to harm individuals and groups. The internet,
however, is just another representation of many businesses through websites. For
most businesses, websites are another source of income through the showing of
advertisements. Demand Site Platforms (DSPs) are what allow placement of
advertisements on websites and currently, DSPs deal with misinformation by
blacklisting or demonetizing websites, but only do so when they are actively told
by the advertiser. Thus, an advertiser can be damaged by being associated
with misinformation when their advertisement is placed on the wrong website;
an example of this would be a police department recruitment advertisement
that shows up on a far-right website. In this case, some people might take this as
though the police department is specifically recruiting people with far-right
ideology, when in reality, they are not. Not only does this harm the police
department’s reputation, but it also wastes money due to the fact that the
advertisement is having the exact opposite effect of what the advertisement is
intended to do.

Fortunately, NOBL Media has taken the initiative to prevent this. NOBL Media has
developed a proprietary artificial intelligence which allows preemptive
prevention of advertisements from appearing on certain web pages. NOBL
Media’s artificial intelligence scans web pages and rates how credible each
web page is through linguistics. Using this service, advertisers can set a rating
threshold through NOBL Media and then NOBL Media will take care of the rest:
scanning web pages, and preventing the advertisers’ advertisement from
showing up on web pages that are below the set rating threshold.

However, NOBL Media does not have a way for their customers to visualize or
obtain this data in any way and therefore, their customers cannot see the value

2

in NOBL Media’s service. This is where Team Truthseeker has aided NOBL Media
through the creation of a web application and an Application Programming
Interface (API). These two components allow NOBL Media to solve the problem
with their business flow through the implementation of the following features:

1. The web application must be able to create and authenticate customer
accounts to allow secure access to the customer’s data using integrated
technology Auth0.

2. The API must be able to handle user authentication requests. Once
authenticated, the API must handle a request to be parsed into NOBL’S
MySQL database.

3. The web application must be able to abstract JSON data coming from
the NOBL Media MySQL database and represent these to customers
through graphs and charts using technologies such as ECharts.

4. The API must be able to retrieve the JSON data from the NOBL Media
MySQL database and return an HTTP 200 level response with JSON data to
NOBL’s web application or the client's own site.

5. The web application must allow customers to download customer ad
data in a formatted file such as in a CSV or Excel file.

Once that information is collected, advertisers will be able to see how their
advertisement is performing in terms of supporting misinformation and how
much money NOBL Media is saving the advertiser.

3

2 - Process Overview

This section describes the different parts of Team Truthseeker’s process of
planning and implementing the project. This section will walk through different
tools that were used to keep track of the team’s progress as well.

Version Control

The team used Github for version control for an easy interface for using Git.
Additionally, some members of the team specifically used Github Desktop as
well to further simplify the team’s version control. For most of the contributions
towards the API and the Web Application, the team used pull requests to
request a review for individual contributions. Furthermore, the team also created
different branches for further development or whenever there needed to be a
study of different implementations that the team had thought of.

Task Manager

The team used Trello to keep track of tasks. Every week, the team convened at
the beginning of the week and made use of uploading the different tasks that
were designated to be completed within the current week. Each team member
was responsible for updating the status of the tasks assigned to them. The team
lead, in the days before the end of the week, would check the Trello board to
see the progress of each task and will communicate with each team member
individually should a team member fall behind.

4

Roles

There were 7 roles in total for the team:

1. Team Lead
2. Customer Communicator
3. Editor
4. Architect

5. Coder
6. Release Manager
7. Quality Assurance Manager

Team Lead

● The Team Lead organizes each week and ensures that there are tasks that
can be completed in the current week for each team member. The Team
Lead also ensures that the meetings are held and ensures that the
agenda for the meeting is followed. Additionally, the Team Lead also aids
other team members should they fall behind in their tasks.

Customer Communicator

● The Customer Communicator is the team member who is responsible for
relaying information to the team’s client. Additionally, the Customer
Communicator is also responsible for getting the different deliverables
signed should the deliverable need the client’s approval.

Editor

● The Editor is the team member responsible for revising and ensuring that
deliverables have the required sections. The Editor also notifies individual
team members if the team member’s assigned section(s) on the
deliverable needs improvement.

5

Architect

● The Architect is the team member responsible for creating the workflow of
the project’s different components and how the components
communicate with one another. This role is responsible for planning the
guidelines of how the project is to be built and ensures that it is followed
during implementation.

Coder

● This role is universal within the team. However, this role is for those who are
coding and actually implementing the project.

Release Manager

● This role is the team member responsible for ensuring that each push, pull
request, and branch into the two components of the project are of good
quality code and documentation.

Quality Assurance Manager

● The Quality Assurance Manager is the team member responsible for going
through the different deliverables and code being pushed. Basically, an
assistant and a second eye for the Release Manager and the Editor.

6

3 - Requirements

Functional Requirements

Functional requirements are what the project is expected to perform for the
user. These requirements define the features of each component of the project
that are either expected to have or a possible stretch goal. The functional
requirements for the project are split into three components: user
authentication, data visualization, and API functionality.

User Authentication

This section describes the functional requirements for a user to log in to this
service.

Customer

The customer will be the organization who has paid for NOBL’s service.
Additionally, all users will be tied to an organization within the web application
since an organization might want to have multiple users keeping track of their
ad campaigns.

Default Log-In

The system must allow users to log into the web application using their email and
a password.

7

Private Registration

The system must not allow the user to register on their own volition. For the
customer to have an account on the web application, the user must directly
request the creation of an account to an administrator by email. The
administrator will then log into the Auth0 dashboard to generate a password
and account for the user.

Selection of Ad Campaigns

The system must allow the user to select a campaign that the user wants to see
data for. After logging in, the user will be prompted to select a campaign
before proceeding to the dashboard.

Data Visualization

This section describes the functional requirements for the users to view their
organization’s ad campaign data results.

Graphical Data Results

The system must allow users to see their data to be shown on charts and graphs.
This abstracts the data so that the users can understand what it actually means
for the ad campaign data.

Export Data

The system must allow users to export a graph or data as part of a document or
just an image (.png) file. When a graph or data is exported as part of a
document, this means that the graph is rendered onto the document or in the
case of the data, it will be rendered in an understandable form onto the

8

document. Additionally, data can also be exported not just in .pdf form, but also
in different formats such as .csv.

API Functionality

This section describes the functional requirements for the API. The API is required
for data retrieval.

Retrieve Specific Data Fields

The system must allow users to retrieve specific data fields, not the entirety of a
database table. For example, the user would be able to retrieve the nobl_score
data field of the NOBL database for a specific page or the number of
impressions for a page.

Connect to NOBL Database

The API must ensure a connection to the database without revealing the
connection certification which would allow unauthorized access to the NOBL
database.

9

Performance Requirements

Performance requirements are what allows the system to serve the users with
adequate efficiency. If performance requirements are not met, the functionality
of the system will be degraded and the user’s experience will suffer as a result.

Data Visualization Rendering Speed

The rendering speed of the graphs and charts must be under 250 milliseconds to
ensure that the user is not waiting too much to visualize the ad campaign data.
With the challenges the team found in the Technology Feasibility document, the
team concluded that it is imperative that 250 milliseconds since this is above
average when it comes to the results of the time it took for all the data
visualization libraries to render 50,000 data points. This is the main purpose of the
project and thus, it is of utmost importance that the system renders the graphs
and charts as fast as possible.

API Response Time

The data retrieval speed of the API must be at a maximum under 1 second. The
purpose of this performance requirement is to ensure that the data will be there
at a proper time to allow the graphs and charts to populate. If the API data
retrieval process takes longer than 1 second, it will become a detriment to the
user experience since this is the first step in rendering the graphs/charts.

10

API Error Rate

There are two kinds of errors that can occur in an HTTP request to a rest API. User
error which is typically represented by the API returning a 400 level HTTP response
code and server side errors which are typically represented by 500 level HTTP
response code. The project must aim to keep both kinds of errors below a
certain threshold as it would be a disruption to the service that the project
provides to NOBL customers.

 API Startup Speed

While downtime is undesirable, it is sometimes inevitable. In the case of
downtime, it is important to be able to restore service quickly. Discounting the
time needed for the server operating system to boot, the API startup sequence is
the next most costly element in terms of downtime cost and thus, it is important
to make sure that the API is able to quickly begin serving requests after a reboot.

11

4 - Architecture and Implementation

Figure 4.1 - Overview of the Project System

The system is divided into three parts: Auth0, a third-party component that
handles authentication shown in Figure 4.1 in gray. Note the absence of an
account creation mechanism because all account creations will take place via
direct communication with NOBL.

After authenticating via Auth0, the user will reach the front-end web application
(colored in shades of red in figure 4.1) powered by Gatsby.js, the framework that
is responsible for quickly rendering the static elements of the webpage while
ECharts is used to display the graphical depictions of NOBL’s data. The two

12

technologies work in tandem to produce the form and functionality of the web
dashboard frontend and are expected to be the main interface to NOBL’s data
that NOBL’s customers make use of.

In order to populate the web application with graphical data elements, data is
queried from a MySQL database. The REST API translates HTTP requests into
equivalent SQL queries, queries NOBL’s backend MySQL database (denoted in
darker-tan in Figure 4.1), aggregates the data, and returns the result in JSON
notation for ECharts to process into graphical elements. The API’s responsibility is
not limited to the web application and may be used outside of it for
organizations that wish to process the aggregated data themselves for their
own reports or to display on their own websites.

This interaction between the web application and NOBL’s backend MySQL
database via REST API forms the core general loop of information flow within the
project. The specific flow of information will be determined by the action the
user takes when using the website.

Another thing to note about Figure 4.1 is that it does not depict the
aforementioned technical users who may make use of direct access to the API
and bypass the web dashboard. They can be thought of as existing in the
frontend area given that they will still need to authenticate via Auth0 and query
via the REST API effectively opting for a command line interface to the data as
opposed to a graphical user interface.

There are a variety of components to this architecture design. It serves as an
overview to a deeper description of software components. Each component
will be described in this chapter.

13

Web Application

Three components are needed for the web application: a login page, a
campaign selection page, and the dashboard page. The components will
provide a familiar interface to NOBL client’s. Aesthetics aside, the web
application’s functionality will allow NOBL clients to analyze and interact with
their campaign data securely and effortlessly.

Login Page

The login page is the user’s first module from the Misinformation and Credible
News Analysis Tool they will interface with. NOBL Media provides clients with a
username and password to login for their businesses account. Once the user
enters their credentials, Auth0 will check if the user exists and if the passwords
match. For security purposes, the login page will not tell users if the email is
incorrect. The login page will present the user with a message saying the
credentials were typed in wrong. If the login credentials are correct, the user will
be sent to the campaign selector page.

14

Figure 4.2 - Current implementation of the Login Page

Figure 4.2 shows the current team design for the login page. The user is
prompted for their email address (username) and for their password. Should
users find that they have forgotten their passwords, they will be able to reset
their password by clicking the “Forgot Password?” button that is at the bottom in
between the password input form and the continue button.

15

Figure 4.3 - Process diagram for the login page

Figure 4.3 shows a state diagram of the user process of logging in. It starts with
the user entering their username and password. Should the user forget their
password, they will have to click on the “Forgot password?” button and will be
then sent a link to reset their password to their email. Once they have clicked
the link and reset their password, they will then have to re-enter their username
and password. Should the user enter their correct email address and password,
authentication will proceed and check if the email address is found and the
password for that specific email address matches the one inputted by the user.
If both are found to be true, then the user is authenticated and can proceed to
the campaign selector page. Should the user fail to authenticate themselves,
they will be prompted with a notification that either their email address or
password were wrong and will have to re-enter them once more.

16

Figure 4.4 - Current Implementation of the Campaign Selector Page

Campaign Selector

NOBL Media clients can have multiple ad campaigns per account. At this point
in the login process, a user will have to pick a single campaign to proceed to
the user dashboard.

Referring to Figure 4.4, the header section of the page is where the organization
name and the greeting of the day is located. Both the greeting of the day and
the organization name is dynamically displayed, pulling data from the NOBL
database to retrieve the user’s first name and last name and the organization
that the user is under. Additionally, the menu below the header section is also
dynamically created and will only be fully initialized once the web application
has retrieved all the campaigns that the user is associated with. Additionally,
Figure 4.4 also shows the “Confirm” button, grayed out. This is controlled by the

17

web application so that the button cannot be clicked by the user before
clicking on a campaign. Once a campaign is selected, which the user will know
since it will be highlighted on the menu, the confirm button will brighten and turn
blue making it known that it can be clicked.

Figure 4.5 - User process diagram of the Campaign Selector page

Figure 4.5 shows the basic workflow of the campaign selector page. Once the
user has completed the authentication process referred to in Figure 4.3, as soon
as the user is logged in, the web application will start the process at the
beginning of Figure 4.5. In the underlying processes of the web application, the
campaign selector page will connect to the API, which will then go to the REST
API route for campaign data retrieval. The route will then attempt a query to the
database to retrieve all campaign data that the user is associated with. This is
where there are three possible results: an error, no campaigns found, or

18

campaigns were found. If there is an error, this will be sent back to the web
application and the user will be prompted with an error message. If there are no
campaigns found, the menu section will prompt that no campaigns have been
found for the user and should contact a NOBL administrator. If campaigns are
found, the API will then send the information to the web application. The web
application will then display the campaigns, allowing the user to pick one. Once
the user has picked a campaign and has pressed the confirm button, they will
be sent to the campaign dashboard.

Campaign Dashboard

After logging in and choosing an ad campaign users will finally arrive at the
campaign dashboard page. This is the main page users will spend their time on.

The dashboard contains tabs for different campaign information. The main tab
at the top allows the user to switch between their account’s ad campaigns. As
seen on Figure 4.6 there are additional tabs showing different views of the
campaign data. Figure 4.7 shows a close up view of the tabs.

● Overview
○ A summary of all campaign data. Provides a quick look at how the

campaign is performing at this time.
● Reports

○ Allows users to retrieve specific campaign data in the form of a CSV
file.

19

Figure 4.6 - Current implementation of the Dashboard Page

20

Figure 4.7 - Current implementation of a Graph

Figure 4.8 - Current implementation of the Dashboard Sidebar

21

As seen on Figure 4.6, there are different components to the entire Dashboard.
On the left within Figure 4.6 is the sidebar which the user is able to use to
navigate through different parts of the dashboard. Figure 4.8 is a deeper look at
the side bar and the two tabs that are currently offered: the Overview tab and
the Reports tab. At the top within Figure 4.6 is the NavBar, which allows the user
to see their account icon and their name. The account icon can be clicked to
open a menu which shows different settings such as changing the campaign
and logging out. Immediately below the NavBar is the header which retrieves
data about the current campaign being looked at using the API and displays
the Campaign name, start date, status, and ID. Figure 4.7 shows a graph
implementation which the user can interact with through zooming in and
zooming out. Additionally, the graph itself can be downloaded as a picture in
.png format for the user to use in different reports should they want to.

Figure 4.9 - Current implementation of the Reports view

22

Figure 4.9 shows the current implementation of the Reports view. Here, the user
can generate reports that are outputted in .csv format. The user can decide to
get different metrics such as NOBL Score, impressions, or both. Clicking the
“Generate” button will then pull data from the NOBL Database using the API
and will automatically allow the browser to download the report.

23

5 - Testing
Unit Testing

Unit Testing is the process of testing small functional parts of the software to
make sure that these parts are working as intended. To be more precise, Unit
Testing is targeted towards functions within the software, which are the smallest
“group” of code that is intended to output a desired result. Unit Testing can be
seen as the first line of defense when it comes to prevention of bugs; which in
the long run, prevents costly changes to the code base for NOBL Media, our
client.

Additionally, Unit Testing is not just something that happens whenever a cycle of
development finishes, it can be done as the development progresses or even
before the development begins. The latter is what is known as Test-Driven
Development (TDD) where the unit test is created first and then the functions are
created in a way that it should pass the unit test. However, Team Truthseeker has
not implemented TDD, but rather performed unit testing as the development
progresses. Due to the nature of the project, being that it is split into the
front-end user interface and the back-end application programming interface
(API), unit testing can only be performed with the API. The API is the perfect
environment to have unit testing because of the two following characteristics:

1. Small, modular functions
2. The API’s purpose is to output data

The majority of APIs deal with pulling and inserting data from a source (usually a
database) and then sending it to where the users are meant to see, manipulate,
and create data. The NOBL API is designed to retrieve data from the NOBL
MySQL database and take this data to display it onto the front-end. In terms of

24

unit testing, it would be targeted towards the “simulation” of the front-end
asking the API for data. The API that Team Truthseeker has built is, unintentionally,
designed so that it is perfect for unit testing. Therefore, Team Truthseeker does
not need to modify the API so that it fits unit testing, instead, the team has been
able to directly go straight to unit testing. Furthermore, the UI (user interface),
which is the front-end of the project, does not need unit testing since UI testing is
more complex and cannot be broken down to simple components like how
unit tests should be.

To make unit testing the API easier, Team Truthseeker will be using AVA which
streamlines the process. AVA is a minimalistic unit testing framework which skips
over the need to create unit testing functions. One way of performing unit tests
is called matching, where parameters are set for a certain function whose
output will be matched with an expected output. If the function’s output does
not match the expected output, then the unit test fails, and if it passes, the unit
test passes. An example of this type of unit testing is if there was a function which
performs addition. The unit test would put in different numbers (ex. 4 and 5) and
then would match this with the expected output (ex. 9). If the function outputs 5,
then the unit test fails, which then means that there is a bug in the function.

The NOBL API is is structured into three main components:

1. Routes
2. Models
3. Types

25

Figure 5.1 - A User Type

The Routes component allows for the front-end to navigate through the API,
allowing it to retrieve specific data that it needs, not just everything the API
provides. The Types component allows the API to define what it expects the
data to be when it pulls it from the NOBL database. Referring to Figure 5.1, this is
an example of a type, this allows the Team to omit unit testing between the API
and the NOBL database because when the API pulls data from the NOBL
Database, it matches the data to the type first to make sure that the data is
actually what is intended and remove any other data. So in the case of Figure
5.1, if the API was to pull data for a user, it would ask the database for the data
and then check the data that was sent with the type. So, as seen in Figure 5.1, if
there was a birth_data field that was sent to the API by the NOBL database
when being pulled, the API will just throw that data away since it is not needed.

26

Figure 5.2 - One Part of the User Model

The Models component is where unit testing comes in. The Models component
contains the functions that retrieve data from the database. In this case, the unit
tests are for when requests from the web application are sent to the API and are
waiting for a response. Referring to Figure 5.2, this function is ready for unit
testing since it is possible that there might be an underlying bug or an improper
error handling that can be prevented.

27

Figure 5.3 - Snippet of Unit Testing Code

Figure 5.3 shows a code snippet of a unit test for the NOBL API. There are two
tests within the picture shown, one for when a proper input is provided, and
when an improper one is not. In both tests, data is being actively pulled from the
API endpoint (a URL that the API has set up from which the web application or a
unit test can grab what the API is grabbing). The test has a variable for
expected data, the variable “expectedData'' which it uses to compare the
response from the API endpoint. It then uses the deepEqual function to
compare the data grabbed from the endpoint and the expected data. Should
they be equal, then the test passes.

28

Figure 5.4 - Results of the Unit Test

Figure 5.4 shows the result of the Unit Test snippet. In this case, both tests pass
and therefore, it can be concluded that the API endpoint for users provides the
proper responses for both using a proper input as well as an improper input.

Within the coming weeks, Team Truthseeker intends to actively perform unit tests
as the API changes. By the end of the project, the unit tests should be
comprehensive enough to cover all API routes.

Integration Testing

While unit testing is important for ensuring intra-module quality assurance by
verifying the expected functionality of functions execution, modern software
applications are complex multi-module systems which often have separate
teams working on each module with limited communication between them. This
has the potential to degrade the cohesion of the software product and in
extreme cases cause significant development delays in otherwise well
managed projects. This is where integration testing complements unit testing.
Integration testing is the process of ensuring that software modules integrate in
the expected way during software usage. This can be thought of as the
inter-module counterpart to the work done via unit testing.

29

To further illustrate this distinction, consider the following metaphor: if unit testing
is doing quality control checks on car parts at the factory, integration testing is
the process of taking the car out on the test track and making sure the brake
pedal module integrates with the wheel module and stops the car as expected
when the two components are used together and that unrelated systems do
not affect each other such as making sure that turning on the radio does not
turn on cruise control or vice versa.

While the team is quite small and in communication about the work the team is
doing on the software modules the general principle of integration testing is still
quite important to the project given the projects two modules together result in
a minimum of 4 changes in technical context for any given user interaction.
These 4 changes in technical context during execution of program functionality
form the basis for the testing plan.

The web application begins by taking client HTTP requests to Auth0’s third party
authentication server from which is passed an authentication token which logs
the user in and displays their information. Here lies the first challenge of testing
for proper integration of the third party authentication system with the first party
website software. This particular technical context switch is especially important
because failure to authenticate properly risks allowing access to data from both
NOBL media and their clients.

Thankfully, easing the difficulty of testing this section is Auth0’s well documented
ready made libraries designed for integration in small projects such as the web
application and its associated API. One of the functionalities included in this
library is error generation if the authentication process fails. This means that
barring some implementation specific mistake in the codebase this context
switch from third party authentication to first party website content should be
largely seamless and any failures that occur should be highly visible during

30

usability testing and related activities meaning that little if any integration testing
specific code needs to be written by the team to cover this case.

The next change in technical context to be considered in when the web
application once the user is logged in queries API data via HTTP requests which
are translated into SQL queries and executed against NOBL Media’s backend
MySQL database. This is arguably the most complex and error prone context
switch because it involves not only the translation of HTTP requests into SQL
queries via the API’s SQL query templating engine but is also responsible for
passing the Auth0 authentication state from the website to the API to allow the
API to query only data related to the currently logged in user.

The test for this using the AVA framework will be run using a variety of both
correct and malformed requests to check that SQL queries are produced as
expected for correctly defined requests and that the system fails gracefully and
returns an error rather than passing a malformed query with undefined behavior
to the MySQL Backend.

Following along this code flow is the next step of testing whether or not the SQL
queries return the expected results from NOBL Media’s backend MySQL server.
Given that the functionality of this component is largely dependent on NOBL
Media’s database architecture the only real non blackbox component to be
tested is whether or not the API fails gracefully if the database is not available or
a malformed SQL query is passed to the backend MySQL server and returned to
the API.

31

Figure 5.5 - Results of the Unit Test

This section is tricky to test because the output of a query can change when the
backend database changes making reproducible results difficult for certain
kinds of queries. Because of this it makes the most sense to test for the structure
of the data being transferred correctly more than the data itself.

As seen In pursuit of this goal this section of the codebase already has implicit
data structure validation and early callback exit on error through the
codebase's use of Typescript which enforces object and variable structure
through its static typing capabilities. Testing is only needed for edge cases such
as queries that are valid but return empty results or queries that return very large
amounts of data.

32

The final context change the data goes through is that it is converted into JSON
notation before being returned to the user as an HTTP response. This is arguably
the most straightforward conversion and is done in literally one library call so the
procedure here is much the same as previously where we verify the
JSONification library call is resulting in the expected output for a standardized
set of Typescript object inputs. After the response object is JSONified it is simply
returned to the website which reads and displays the data graphically

If we implement these tests at each context change that occurs during normal
program execution it should support the existing mitigation measures in ensuring
a high quality codebase where anomalous behavior stemming from module
interaction is discovered and prevented prior to deployment of our software in a
production environment which should reduce both the number of customer
complaints and increase code maintainability in the long run.

Usability Testing

With the integration testing having been completed, the last test is the usability
test which is described within this section of the document. Also referred to as
user testing, usability testing measures the overall user experience on a product.
Specifically with this tool, the test is to assess how user-friendly and functional this
web application is. In the planning stages of this test, a selected number of users
were chosen to test out various functions throughout the web application. In
doing so, the users described their experience and answered a series of
questions.

In testing end-users on the Misinformation and Credible Analysis Tool, at least 6
users were selected. Since NOBL Media’s clients were not accessible for testing,
the criteria of the chosen testers needed to be aligned with NOBL Media’s
clientele, who are the intended users. NOBL Media is a company that mainly
services companies that do any sort of advertising; the audience they reach out

33

to are employers of these companies who work in the marketing and advertising
division. This means the end-users needed to simulate a similar background. So,
the team sent out an email to 20 users of similar backgrounds in order to obtain
at least 6 users to test this software product. This number of users was enough to
give adequate feedback, but not too much to dilute the results.

This test used techniques to ultimately gather qualitative data, where the team
recorded and analyzed user interactions with this product. About 6 users were
needed to set up pair testing, which was used to compare specific user
interactions. Each pair test needed to be set up similarly in order to keep the
results aligned with one another, so the team created a script asking the users
questions over their interactions and overall experience. This also helped guide
the usability test to ensure the users interact with specific functionalities that
needed to be tested and assessed.

Diving deeper into the specifics of the user testing for this web application, each
pair test was asked a set of questions guiding them to cover the following
functionalities:

● User invitation
● Failed log-in
● Successful log-in
● Select Campaign
● Switch between tabs on the dashboard
● Download data
● Logout

Once the team added the user’s emails to the authentication system, the test
began with user invitation. After this, each user attempted to log into the web
application twice; once with an incorrect email or password and once with a
correct email and password. Once the user attempted the failed log-in, they

34

were prompted to select the button labeled as “forgot password” to ensure
they were redirected to a new page where they could input their email. Before
attempting a log-in with the correct credentials, the user checked to ensure
they received an email to reset their password and whether resetting the
password was successful. Following this, the user had to go back to the web
application to successfully log-in so they could be directed to the campaign
selector. Here the user was able to view all campaigns associated with their
account and click on whichever campaign they desire. From here the user was
directed to interact with the overall dashboard: switching between tabs,
refreshing the page to see accurate data, and being able to download this
data. Once the users interacted with the dashboard in these areas, they were
prompted to select the tab to log out of their account.

After the user testing sessions were complete, the team gathered all collected
data to come to a conclusion over the usability for this product. The overall
consensus was that this product was very straightforward and easy to use. Users
had very little to no complications in performing each task without much
direction from the team. However, a bit of guidance seemed to be needed in
regards to the dashboard metrics as most users were not too familiar with things
such as the difference between average and median.

35

6 - Project Timeline

Figure 6.1- Final Project Timeline

Our project timeline consists of the start of the team’s implementation of the
project on 21 November up until the Project Handoff that is scheduled for May
4th. Once the Login Page was set up, at the beginning of the Spring 2022
semester was when the team started to hike up the implementation process
and was able to implement the Campaign Selector and integrate the current
API into Amplify, an Amazon cloud hosting service. Once the integration and
Campaign Selector was complete, the team moved on to implementing the
Dashboard and the backend functions for the Campaign Selector. The
dashboard took the longest to complete, but the team was able to accomplish
a full Alpha prototype by 10 March. After the Alpha Prototype and Spring Break,
the team moved on to stretch goal implementation as well as debugging &

36

testing. Finally, the team is looking forward to meeting with our client to officially
transfer all information and data.

Throughout the entire implementation timeline, the team was split up into two
groups: one responsible for the web application and the other responsible for
the API. Additionally, the most complicated part of the project was not actually
any implementation of the different components needed, but rather the usage
of Amplify with the project. Amplify brought a lot of complications even up to
the end when the team was finalizing the project. However, the benefits of using
Amplify far outweighs the complications that the team has faced.

37

7 - Future Work

This section talks about some aspects of the project that the team believes can
be extremely beneficial to the service the project provides or extremely useful in
optimizing the web application and the API.

Campaign Selection Sorting/Filtering

In the case of the Campaign Selection, there is a simple sorting feature that has
been implemented by the team. However, this sorting feature only allows for the
alphabetically ascending/descending order of the campaigns as well as an
ascending order of the dates the campaigns were created. Further
improvements on this feature should be made to make it extensive enough to
satisfy most user use cases.

Campaign Comparisons

This was something that was discussed by the client because of its importance
to showing NOBL Media’s service. Being able to go to the dashboard and start
comparing the current campaign selected to a different campaign can show
more benefits of NOBL Media’s service. While this was something that the team
had entertained to implement, the plan was scrapped due to time constraints.

Real Time Analysis

Currently in the dashboard, there are tooltips that can be hovered upon to learn
more about to learn more about a specific metric. However, the team has
thought of somehow providing real-time feedback towards the user about what
the metric actually means towards their campaign. For example, a user would

38

be able to hover over the NOBL Score tooltip and then instead of just defining
the NOBL Score, the tooltip would instead give insight on what this means for the
campaign as a whole; i.e. “The NOBL Score for the campaign shows that the
advertisements appeared in extremely un-credible web pages. This can be
changed through increasing the NOBL Score threshold. “

Live Campaigns

This feature would tremendously help NOBL Media provide a better service
whenever an ad campaign is still being run. NOBL Media’s database is updated
consistently currently, it is just the web application that needs to be modified to
ensure that data is actively being pulled.

39

8 - Conclusion

Due to the lack of proof that can be shown to NOBL Media customers, NOBL
Media cannot truly show that their service has any benefits. The project has two
components, the web application and the API. These two components work
together to achieve the solution to NOBL Media’s problem: show how NOBL’s
service actually benefits their customers.

To provide a good solution for NOBL Media’s problem, the two components
mentioned above have the following features:

1. The web application must be able to authenticate users to allow secure
access to the customer’s data using integrated technology Auth0.

2. The API must be able to handle user authentication requests.

3. The web application must be able to abstract JSON data to represent
these to customers through graphs and charts.

4. The API must be able to retrieve the JSON data from the NOBL Media
MySQL database.

5. The web application must allow customers to download customer ad
data in a formatted file such as in a CSV or Excel file.

The project has been fully realized and the team has implemented some stretch
goals to further provide a better experience for the user. Due to the completion
of the project, NOBL Media can now integrate the project with their service to
provide a good example of what NOBL Media’s service can provide to their

40

customers’ advertisements. The project at its completion calculates 5 different
data metrics and renders 2 graphs with more than 1000 data points.

Over the course of the academic year, Team Truthseeker has had their fair share
of stressful moments but enjoyable moments as well. Luckily, all of the project’s
technologies were of great use and there were no extreme troubles regarding
any implementation of the technologies the project used. Additionally, the
project’s process was extremely straightforward thanks to Team Truthseeker’s
careful planning. Overall, Team Truthseeker is extremely satisfied with the
project’s outcome and even wanted to work more in providing NOBL Media
with the best possible state of the product.

41

9 - Glossary
This is a Glossary for different definitions that need to be defined to ensure
understanding for the reader of different terminologies.

Repo - Short for “repository”; repo refers to the specific storage location of
data; in the case of the project, this would refer to the location of the project’s
components.

CLI - Stands for “Command Line Interface”; this refers to any packages that are
specifically for a service such as Amazon AWS, that is used using the computer
terminal.

Fork - to create a new copy of a repo disassociated entirely from the original
repo. This forked repo can be merged into the original copy as well by way of a
pull request.

42

Appendix A:

Development Environment and Toolchain
This appendix will talk about the different tools that have been used in the
implementation of the project. Additionally, this appending will also walk
through how to set up the project itself and the production cycle used to
progress the project.

Hardware

The project, composed of the API and the Web Application, was run on two
platforms: MacOS and Windows. There was an attempt to run the project using
Linux, however, only the API was successfully run. However, due to the similarities
with MacOS and Linux as they are both Unix-based, the team believes that the
web application can be run when using Linux. The MacOS was run in a
Macbook with an M1 Chip bought just last year and had no problems with
running either components. There were two devices that ran both the API and
the Web Application and used Windows. The first is a desktop that is fairly new,
bought within the past year. The desktop was able to run the API and the Web
Application without any problems. The second is a laptop that is much older; this
laptop was able to run the API successfully, but had trouble running the Web
Application at the start of the implementation of the project. This was eventually
resolved through reinstallation of the Web Application development
environment. The Linux laptop was also old and as of this writing, still had
problems running the web application completely.

The errors that occurred are usually pertaining to the packages that need to be
installed for the project. Team members were able to solve some package
incompatibility issues, but had not run the web application successfully.

43

Conclusion:

The project can be run under Linux, MacOS, and Windows operating systems. A
newer model of device is ideal for the web application to be run, though it can
be run on older models, but be aware of errors that might occur.

Tools

Here, the tools that were used to create and implement the project will be
discussed.

Microsoft Visual Studio Code

Microsoft Visual Studio Code was the source code editor that was used by the
team to implement the project. No additional extensions were needed within
Visual Studio Code to implement the project, though some stylistic themes can
be added to make the software look and feel better when used. Visual Studio
Code provided a simple way for the team members to look at the code and
contribute to the project.

Github / Github Desktop

Github was the git repository the team used for version and quality control for
the project. Github Desktop further simplifies the process of creating, pushing,
pulling, and committing code into the project. With Github Desktop, cloning the
project is extremely simplified in comparison to using the command line as well.
The team used Github Desktop to streamline the process of pushing and pulling
code that was being contributed to the project; additionally, Github Desktop
was useful whenever the project needed to be transferred to a new device
without the hassle of ensuring that the project was cloned properly. Additionally,

44

Github Desktop works directly with Visual Studio Code, and thus it makes
contributing to the project easier.

Setup

Here, setting up the development environment for the web application and the
API.

API

1. Clone the Github Repository into your computer.
a. Using Github Desktop:

i. Once Github Desktop is opened, on the top left corner of the
software, click the Current Repository button to bring up the
dropdown menu.

ii. At the top of the dropdown menu, click the “Add” button.
iii. A menu will appear, click Clone Repository.

1. NOTE: In this menu, the location of where the repo will
be stored in the computer can be set at the very
bottom of the popup.

iv. Scroll to find the repo, named “NOBL-API” and click on it.
v. The API should now be stored locally.

NOTE: Github Desktop has functionalities to easily open the project with
Visual Studio Code; it is recommended to use Visual Studio Code to contribute
to the project.

b. Clone using the command line using Git or the Github CLI

45

2. Open the repo in an IDE of your choice.
a. NOTE: it is recommended to use Visual Studio Code

46

3. Confirm that the repo looks like the following picture:

47

4. In the main directory, create a new file and name it “.env”. The repo
should now look like the following picture:

5. Open the “.env” file and ensure that the each variable is in the file as
such:

a. For the PORT, DB_HOST, DB_PWD, and DB_NAME, ensure that you
insert the credentials that are needed to connect to the NOBL

48

Media Database. Otherwise, the API cannot connect to the
database and will not run properly.

6. Open up a terminal in your IDE.

a. Visual Studio Code ONLY: On the toolbar at the top, click on
Terminal and then new Terminal.

7. Within the terminal, enter “npm install” on the command line, and run the
command. This will then install all the necessary packages that the repo
needs which can be seen being installed in the terminal. At the end, a
new folder should have been created named “node_modules.”

8. Finally, on the command line in the terminal, enter “npm start”. This will try
to launch the API locally and if everything works, you can visit the link
“localhost:[PORT]”, where PORT is the port in the “.env” file and you will
then see the following on the terminal:

49

Web Application

1. Clone the Github Repository into your computer.

a. Using Github Desktop:
i. Once Github Desktop is opened, on the top left corner of the

software, click the Current Repository button to bring up the
dropdown menu.

ii. At the top of the dropdown menu, click the “Add” button.
iii. A menu will appear, click Clone Repository.

1. NOTE: In this menu, the location of where the repo will
be stored in the computer can be set at the very
bottom of the popup.

iv. Scroll to find the repo, named “NOBL-Webapp” and click on
it.

v. The Web App should now be stored locally.
b. Clone using the command line with Git or the Github CLI

2. Open the repo in an IDE of your choice.
a. NOTE: it is recommended to use Visual Studio Code

50

3. Confirm the the repo looks like the following repo:

4. Open up a terminal in your IDE.

a. Visual Studio Code ONLY: On the toolbar at the top, click on
Terminal and then new Terminal.

5. Within the terminal, enter “npm install” on the command line, and run the
command. This will then install all the necessary packages that the repo
needs which can be seen being installed in the terminal. At the end, a
new folder should have been created named “node_modules.” Ensure
that the repo now looks like the following picture:

51

6. In the terminal once again, install the Gatsby CLI by entering:

a. npm install -g gatsby-cli

i. NOTE: This might require special privileges by using “sudo” in
Unix-based operating systems or running Visual Studio Code
as an administrator in the Windows operating system.

NOTE: At this point, the installation of the web application is complete.
HOWEVER, it will not work with the NOBL API locally since at its current
implementation, the Web Application uses AWS Amplify to work with the API. TO
MAKE IT WORK WITH THE NOBL API THAT STORED IN YOUR COMPUTER LOCALLY,
you must make changes to the data handling functions within the repo.

These can be seen in the components specifically for data visualization and will
be limited to the pages folder within the src folder, ensuring everything related
to Amplify is removed. Once everything has been converted to work locally, you
may use “gatsby develop” to launch the web app.

52

To use Amplify which is currently recommended, continue to the rest of the
instructions.

NOTE: The following instructions are ONLY RELEVANT if you intend to use AWS
Amplify.

7. In the terminal, type the following command:
a. npm install -g @aws-amplify/cli

8. Configure you Amazon AWS IAm User to work with the Amplify CLI. Use the
following link for a guide on how to do this:

a. https://docs.amplify.aws/cli/start/install/#option-2-follow-the-instru
ctions

9. In the terminal once again, enter the following command:

a. amplify pull --appId [REDACTED] --envName [REDACTED]

i. NOTE: This might open up your web browser to log into AWS
Amplify; use your credentials to log in. Once logged in, it
should show a success prompt and you can return to the
terminal.

https://docs.amplify.aws/cli/start/install/#option-2-follow-the-instructions
https://docs.amplify.aws/cli/start/install/#option-2-follow-the-instructions

53

10. The terminal will start to ask questions and confirm what you have
requested. At the beginning, this should be what you end up with:

Note: The last two lines are questions that you will be given options to
select. The last line must be chosen as javascript.

11. The terminal will now ask your more questions that must be answered, the
first question in the following picture must have “react” chosen. While the
other questions are up to your discretion:

12.At this point, the terminal will now start pulling data from AWS. Ensure that
the pull was successful on the terminal since it will prompt a success
message should the pull be successful.

54

13. If the AWS Amplify is pulled successfully, the repo should now look like the
following picture, notice the new “amplify” folder:

14. Now the web application is ready to be run. In the terminal, enter:

a. gatsby develop

55

15. At the end, should the command be successful, there should be a
prompt of where the web application is being hosted. You may now visit
the web application through that, as shown below!

56

Production Cycle

In this section, how the team has allowed for editing any component of the
project will be discussed. For the team’s production cycle, it consisted of the
following phases:

1. Research/Planning
2. Editing
3. Creating a Pull Request
4. Pull Request Review
5. Merging

Research/Planning

Here, the team member would first research the different ways to implement
whatever the feature or optimization they are assigned to. This might take a
couple of days, but it is to ensure that the team member has a picture of how
the goal can be implemented.

Editing

The team member, once research and planning is complete, will now edit the
web application or the API depending on what they are working on. The team
member should also be, at this point, documenting everything that is being
created or edited. Once editing is complete, the team member must ensure
that what they have created is tested. The team has a unit testing package that
is used to test different parts of the project. Once testing is completed and
verified, the team member will now move to creating a pull request.

57

Creating a Pull Request

A pull request is a request to merge the contributions of a team member to the
repo. To do this, the team member must fork the repo and perform a pull
request on Github for the original repo. Once a pull request has been made, the
team member will notify the Release Manager for review.

Pull Request Review

Once the Release Manager has been notified, the Release Manager will then
look over the code and ensure that documentation as well as the code quality
is of the standards. If they are not in standards, then the Release Manager will
inform the team member who had requested the pull request that there were
discrepancies that needed to be corrected.Once the team member has
corrected the discrepancies, the Release Manager will be notified and then
review the pull request once again.

Merging

Once the Release Manager has approved the pull request, the Release
Manager will handle merging the pull request to the main branch of whichever
component that the pull request was for. Once the merge is complete, the
entire production cycle has been completed.

