
Technological Feasibility

11/10/2022

Floor Explorer Algorithms Team

Sponsored by: Michael Leverington

Mentored by: Rudhira Talla

Members:

Jacob Doyle, Armando Martinez, Luke Domby, Aidan Halili, Vincent Machado

Table of Contents

1. Introduction 1

2. Technological challenges 3

Image 1.1 3

3. Technological Analysis 5

3.1 Alternatives: 7

3.2 Analysis: 8

3.3 Chosen approach: 9

Table 3.1 9

3.4 Proving feasibility: 10

Table 3.2 10

Table 3.3 11

Table 3.4 11

Table 3.5 11

Table 3.6 11

Table 3.7 12

4. Technological Integration 13

5. Conclusion 15

1. Introduction

As the years have gone by we have seen an increase in the use of robotics in many

different fields, but unfortunately, classrooms have not been able to keep up with this rising

demand. We have seen non-trivial simulators and limited functionality robots in the classroom

setting, but what if we had a higher standard for robotics software? What if there was a way to

integrate more of this at an “affordable” cost? When we say affordable, it’s important to denote

that this means affordable in terms of the average household, not that of an academic

organization.

Our sponsor, Michael E. Leverington, has been attempting for years to create both; a

robot capable of being modular in its use and programmability; and modular software

implementing a basic navigational component. He recently came up with the idea of using the

IRobot Create 3, to help test the navigational software components. The Create 3 is a small

circular robot with similar sensors and capabilities to that of a Roomba vacuum, a common robot

found in society today. The Create 3 is a relatively cheap (under $500) solution, and easily

accessible to those with access to computers. It comes standard with basic mobility actuators

and a variety of sensors, all which can be programmed to complete user decided tasks. Team

F.E.A.T. is dedicated to creating a robotics platform that can be programmed as needed to a

variety of similarly functioning robots. If it seems vague when we say, ‘similarly functioning

robots' ', that’s because it is, we will discuss this in more detail later. Aside from creating a

modular platform, it will show proof of concept and function as a tour guide for the 2023-2024

academic year at Northern Arizona University.

We begin this challenge by looking at the previous versions of the project, which have,

intuitively, ended in failure. Of course with the addition of the Create 3 robot, the project does

vary in multiple aspects, but the major milestone continues to be the navigational component.

One previous team, in fact, did not actually have access to a functioning robot. Furthermore, it is

1

Chapter 1. Introduction

quite ironic that this was the team that seemed to have actually gotten the closest to the goal.

This change, while useful for F.E.A.T., is not the only problem the project has encountered in

past iterations. Multiple teams’ failures have stemmed from multiple areas, but the biggest and

most glaring issue seems to be with their original feasibility reports. More specifically it was and

their focus on one specific aspect of their robots sensor capabilities to control navigation. For

example, one team chose to focus solely on self localization via router triangulation. This proved

to be far too slow to accomplish the minimum viable product. Another team chose to focus on a

virtual map creation which called for a high dependency on the robots hardware. As you can

see, there are many things to consider when attempting to overcome this challenge.

Our solution is a more practical and modular approach to programming the robot. We

aim to combine the different attempts that previous projects attempted, in tandem with the newly

provided resources. This includes the robust yet simple nature of the Create 3 to create a

program capable of self navigation that could be moved to other robot platforms with minimal

amounts of configuration. The goal being to use the robots wifi capabilities to help it self locate

after a short length of time when it believes it has reached certain checkpoints in its digital map.

More specifically, it will use its various physical sensors and odometry mechanisms to keep

track of its location and movements in real time. This combination of approaches should allow

the robot to successfully navigate around unforeseen obstacles, while maintaining a backup

system, should it move off course. Our code will also maintain modularity by containing multiple

changeable constants that can be calibrated to fit sensors and actuators of those of which are

not provided or compatible to our Create 3. We believe these changes from previous attempts

will be enough to successfully solve the programming problem with robots, and in turn, help

push their use in various classroom environments. With that said, in the exploration of the

Create 3 capabilities and have come upon a few different technical challenges.

2

2. Technological Challenges

When we began looking into Create 3, a few issues immediately arose. The most

obvious problem we faced was the robot's method of connecting to wifi. By default the robot

only accepted a single password for connecting to wifi so that we could communicate with it and

issue it various commands. This led to us having to use a hotspot to initially connect to the

robot. We are looking into how to overcome this design flaw through a variety of methods, with

the most current direction being the use of its MAC address to facilitate a connection to wifi

manually. If necessary, we will write additional code that will allow us to directly connect the

robot to a school's network. Another more prominent issue that we are facing is the robot's

sensors. While being highly accurate, they are significantly worse than initially thought. Our

preliminary tests indicate that the IR sensors have a very short range of only about a foot for

strong/usable feedback. We will have to adjust our approach and make design decisions for our

code that will take into account the IR sensors shortcomings. This means, the implementation of

code that will be compatible/compliant with varying sensor types, such as LIDAR and SONAR.

Image 1.1

3

Chapter 2. Technological Challenges

The next hurdle we have to overcome is the coding language that is used for the robot

itself. The Create 3 uses ROS2 Galactic which is the most stable on the outdated version of

Ubuntu 20.04. This has led those in the team who do not use linux to search for various

solutions to the problem. Virtual machines have been our solution so far but come with a few

problems of their own, such as the simulated computer not counting itself as being on the same

network as the robot. We’ve acquired a project specific linux machine running that specific

version of Ubuntu that will accompany the robot wherever it goes to help lessen the complexity

of connecting to the robot. Another temporary solution is the use of the Create 3 Web

Playground in Python. This has given us access via bluetooth to the robot, in which we are able

to send limited commands that were provided by IRobot Education. We used this to thoroughly

test various mechanisms of the standard Create 3 robot when ROS2 access was not available.

Our approach to programming the robot includes the ability to create a digital map using

the robot and its sensors to map its surroundings. The idea is to allow the robot to hypothetically

navigate any area if it is given the time to prepare. We will also have to be sure of the robots

ability to navigate on any surface and that our code will not experience significant interruptions

due to different flooring. This also includes the robots ability to avoid unforeseen obstacles

appearing in its path (including humans) and be able to stop at a distance that would give the

robot and the person enough time to properly avoid each other. To be able to successfully

accomplish these goals and overcome the challenges that lay before us we have begun running

tests on different alternatives and the sensor capabilities the robot offers.

4

3. Technological Analysis

Our goal is to program a robot that can navigate from one position to another without

colliding with any obstacles or parts of its environment. On top of this our code should be able to

function in different robotic platforms both to expand upon this in the future but also to allow it to

be used as an educational tool in various classes and projects. The code also needs to be able

to function with robots that use differing sensors from ours, for example changing from Infrared

sensors to sonar based sensors. Both of these should be able to accomplish a similar job but

the sonar sensors may be able to get more accurate reading from longer distances both

allowing for more delicate responses and for planning future actions further ahead than our IR

sensors would allow. On top of this the Create 3 is not set up to connect to networks that require

both a password and username and as such is going to be a major hurdle for us to overcome.

Finally our robot seems to have trouble with differing materials, some of the sensors seem to

perform slightly worse than normal on reflective materials and the robot may not be as accurate

on carpet as it is on tile.

Our ideal solution would be to create a program that works on any platform with only

changes to constants that control the distances at which the robot would react and how the

calculations would be done. For example our robot only has a reliable sensing range of one foot

ahead of it but future robots may have different sensors that allow for more range and return

different numbers as its output. Our goal is to have our code set up in a way that allows for easy

modifications as well. We also need our code to use as little to no proprietary code that comes

with the Create 3 as that would not work on non-Create 3 platforms.

For our first problem of creating code that is capable of moving the robot from place to

place without hitting any obstacles we have come up with a two pronged approach. We have

gone over what we could from the previous groups that attempted this and found that their

approach was too focused on one singular aspect of the robot and in one case they had the

5

Chapter 3. Technological Analysis

unfortunate case of lacking a robot entirely. However, we learned that their approaches had their

own merits, the group that used wifi to help localize the robot were able to do so accurately but

took too long. Conversely the group that used sensors to track the robots position were able to

make digital maps for the robot but they struggled to successfully keep the robot going where it

needed to. So our approach will take advantage of both of those ideas, using wifi to get the

robot back on track to its proper location at certain “checkpoints” and using the sensors with a

digital map for real time calculations and movement. We plan on using the inbuilt cliff detection

sensors to make sure the robot avoids any dangerous cliffs.

Issue:
We are looking for a platform that would let us cover both of the functions we are looking

for: mapping the second floor using the IR sensors and reacting to obstacles in real time.

Desired Characteristics:

To accomplish this goal, we need a platform that offers libraries that not only add to our

work, but that are as modular as possible in order for this project to be applied to other robots

from a different manufacturer (or even self-made!). It also needs to be highly configurable in

order to tackle edge cases or specific requests from our client in the future.

6

Chapter 3. Technological Analysis

3.1 Alternatives:

Upon research, we found two alternatives:

- Python Playground Implementation: This alternative was recommended as a

beginner's experience to the Create 3 Robot by iRobot Education. It allows FEAT

to connect to the robot via Bluetooth and run a series of commands through

Python and irobot’s educational package.

- ROS2 libraries + iCreate custom messages (Python or C++): A much more

robust interface and implementation, recommended by the client. ROS2 is a

series of libraries widely used in the development of robot related applications.

The set up that iRobot Education recommends includes custom “messages”

(commands sent to the robot) developed by them, that allow even more

interaction between FEAT and the Robot.

7

Chapter 3. Technological Analysis

3.2 Analysis:

Python Playground Implementation: While developed by the same company that

designed the iRobot Create 3 robot, this alternative might not be effective in the long run, due to

the several limitations it could bring to the project:

- Even though the functions that the education package provides are useful, they are

limited by the scope of “educational”. These libraries are designed to work around the

concept of “teaching” and not a practical implementation.

- To use the Python Playground application, it assumes that the robot is one designed by

the company, which goes against one of the main desired characteristics mentioned

above (modularity).

Even though the Python Playground is not effective enough to satisfy our desired

characteristics, we found it highly useful to test the capabilities of the Robot.

ROS2 libraries + iCreate custom messages (Python or C++): In contrast to the previous

alternative, the ROS2 alternative provided by the client satisfies all the desired characteristics

that we look for in the project.

- It provides modular functions and libraries that can be combined with the Icreate custom

messages, but do not rely entirely on them.

- After running several tests, we found that the implementation of ROS2 libraries is slightly

faster than the first alternative.

- Through our research, we found many examples of both libraries and applications that

deal with similar goals to the project’s goals.

Even though the ROS2 alternative could be considered harder to be set up (compared to the

Python Playground), the variety of functions and libraries it provides outclass the ones from the

first alternative.

8

Chapter 3. Technological Analysis

3.3 Chosen approach:

After testing both alternatives intensively, we have decided that the ROS2

implementation is the most adequate alternative to support our project. While the Python

Playground provided easement of access and interaction, ROS2 showed to be much more

modular and effective to tackle the task at hand for this project.

Alternative Modularity Ease of use Reliance on Third
party services

Python Playground Low High High

ROS2 + Custom
Messages (C++ /
Python)

High Medium Low

Table 3.1

9

Chapter 3. Technological Analysis

3.4 Proving feasibility:

Our plan is to try several implementations of ROS2: some that implement the most basic

functions available in the ROS2 libraries, and another that mixes the use of ROS2 libraries and

the custom messages provided by the API of the Robot. The next problem is modularity, our

code must be able to work with other robots in the future and as such we must make our

program in consideration for future changes. Any code that works with the IR sensors must be

configured in a way that will allow for quick and easy changes that will allow for them to be

calibrated as needed for differing sensors. It is also important to note the short range of our IR

sensors on our Create 3, the code must be able to work with our current sensors but be ready

for improved sensors in the future.

The final problem is a technical one rather than a problem with physical sensors. The

Create 3 cannot connect to wifi unless it only uses a password, something which NAU wifi does

not offer. The bright side is, that when we connect using a hotspot the robot is responsive and

does not seem to require too much bandwidth for its operation.

We have completed a series of tests on the aforementioned aspects of the Create 3 and

have received some interesting data from them. That should help us with our

implementation/creation of code. For example our IR sensors are unable to give feedback that

is notable beyond about 1 foot away.

Actuators Tile Flooring Carpet Flooring

Expected Distance 6’ 6’

Actual Distance 10’ 10’

Table 3.2

10

Chapter 3. Technological Analysis

Cliff Sensors Responsivity

Touching the ground Responding and Detecting

1 Foot above the ground Responding but not detecting distance

Table 3.3

Non-reflective material Reflective material

Responsivity of IR sensors Normal Signal Strength Weaker Signal Strength

Table 3.4

IR Sensors Distance of 1 Foot Distance of 3 Feet Distance of 5+ Feet

Sensor 1 Notable Response No Notable
Response

No Notable
Response

Sensor 2 Notable Response No Notable
Response

No Notable
Response

Sensor 3 Notable Response No Notable
Response

No Notable
Response

Sensor 4 Notable Response No Notable
Response

No Notable
Response

Sensor 5 Notable Response No Notable
Response

No Notable
Response

Sensor 6 Notable Response No Notable
Response

No Notable
Response

Sensor 7 Notable Response No Notable
Response

No Notable
Response

Table 3.5

Rotating and Move Accurate on Tile Accurate on Carpet

90 Degrees Yes Yes

.3 Radians Yes Yes

11

Chapter 3. Technological Analysis

Table 3.6

We conducted the above tests by creating small snippets of code that specifically affect

only the tested aspect of the robot and can record the data at various times throughout the

tests. These gave us accurate readings of what the robot was detecting and how it was

responding to different commands. For distance and rotation measurements we used physical

markers and measuring tape to ensure that our tests were accurate. From these tests we

learned that we could not solely depend on the IR sensors for our robots traversal and that we

would need to take advantage of the router triangulation method that a previous group

attempted to ensure that its movements are accurate and that it is able to properly position

itself. As such we have weighted the following on importance.

Criteria Alternative

1. Able to navigate to a location Digital mapping and Wifi triangulation

2. Able to avoid ledges Use of both IR sensors and cliff sensors

3. Able to avoid obstacles Code that takes into account the sensors
range

4. Able to accurately move between
locations

The use of code that takes advantage of the
robots accurate rotation and accounts for its
inaccuracy in movement

Table 3.7

Further testing will need to be done to ensure that we are on the right path. Our current

course of action is to create more complex code that will allow us to test the parts in use

together. From creating a small obstacle course for testing the actuators in combination with

sensors to creating a small map that the robot can navigate to test its ability to recognize

checkpoints and reorient itself. If we can get these aspects working together then the robot

should be able to function in a specified environment.

12

4. Technological Integration

With all of the previous problems/challenges combined we have had to take a few steps

back to analyze our available options and how we can combine them together into a robust and

modular system. We are planning to combine the sensors on the robot with digital mapping to

allow whatever robot that our code is used on to be able to navigate its surroundings with only

minor modifications to the code. The plan consists of 5 interconnecting parts: the ability for the

robot to follow a nearby wall to help it navigate its surroundings, the robot being able to create a

digital map of its environment and follow instructions to move to different points, the ability to

self localize independent of its IR sensors using router distance to triangulate its position, the

use of its downward facing sensors to ensure the robot has no problems with cliffs, and the

ability to avoid obstacles in its path.

The most basic task for the robot is to be able to move from point A to point B and our

plan to accomplish this is for the robot to use the walls as guides for it to navigate between

those two points. A problem that came up with our testing of the Create 3 is that it is made by

the same company that makes the Roomba. That robot uses a mixture of IR and bumper

detection to help it follow nearby walls and as such any pre-existing programs would use a

similar system for following walls. We cannot use the bumpers due to the requirement that the

robot does not hit anything during its navigation. As such our program must be able to follow the

wall at a safe distance without losing track of it during corners or any gaps. On top of that we

must be sure that our actuators and odometry are entirely accurate to mitigate any problems

that may occur during transit. Something that our testing has shown to be accurate on all

flooring for its turning but struggling to move the specified distance on most types of flooring. On

top of this we have to be aware of the robots inbuilt coordinate system that uses quaternions

and has its positive x coordinates facing forwards while the positive y is directed left.

13

Chapter 4. Technological Integration

To be able to follow walls and be sure of where it is going the robot must have a digital

map that it is able to both reference and use to help track its location as it moves. We hope to

make the map making process automatic and allow the robot to be able to map out its

environment with minimal outside interference. This would allow for the robot to function almost

anywhere if given enough time and preparation, something that will be important in the future.

However, a big problem with letting the robot control itself to map out the room is the

danger of environmental hazards. That’s where the cliff sensors and IR sensors will be used,

they both have incredibly short range and as such it may be necessary to take advantage of

both to successfully achieve our task.

The combination of all the previously mentioned aspects will create a system that is

adaptable to most environments and is easy to implement.

14

5. Conclusion

Robots are becoming more and more common throughout the world and our lives but

educational institutions are falling behind in having accessible ways for students to learn and

experiment with them. As such, our goal with this project is to create a base line that allows for

different robot platforms to be used by schools to help educate students on how robots function

and allow for expansion upon that code. Our project will have usable features that can be

experimented with from navigation through digital maps and wifi triangulation to using the

sensors to navigate from one location to another without colliding with any obstacles. All the

while the code will be modular and easy to implement into any future robot that would continue

to use ROS2. As we continue to test how each sensor interacts with the others and continue to

work on implementing the ability to connect to more secure wifi networks we will continue to

improve both our knowledge and our implementation. We are aiming to not only encourage the

learning process through our coding but to inspire creativity in future students that follow.

15

