

AirFlow Processing Pipeline

Design Review December 2nd, 2022

Who We Are

<u>The Team</u>

- Chris McCorkle
- Isaiah Raspet
- Richard McCormick
- Quinton Jasper
- Hunter Woodruff

Our Mentor Vahid Nikoonejad Fard

Our Sponsor Trent Hare USGS Astrogeology Cartographer

Our Client's Problem...

Main Problems

- ISIS3 has over 300 different applications
- Currently using terminal to run bash shells to compile images
- Researchers cannot save pipelines they want to use efficiently

AND WE EXECUTE mosrange TO CREATE A MAP THAT WILL BE USED TO MAP PROJECTING THE REST OF THE IMGES

mosrange fromlist=range.lis to=equi.map projection=equirectangular

THE MAP IS USED TO PROJECT THE FIRST IMAGE, AND THEN THE REST OF THE IMAGES ARE PROJECTED TO THE FIRST ONE:

cam2map from=FC21B0007101_11273005958F3G.cub to=FC21B0007101_11273005958F3G-CO-EQ.cub map=equi.map pixres=map lonseam=continue

cam2map from=FC21B0007102_11273010009F4G.cub to=FC21B0007102_11273010009F4G-EQ.cub map=FC21B0007101_11273005958F3G-CO-EQ.cub matchmap=true

cam2map from=FC21B0007106_11273010035F8G.cub to=FC21B0007106_11273010035F8G-EQ.cub map=FC21B0007101_11273005958F3G-CO-EQ.cub matchmap=true

COMPARE THE NON-PROJECTED AND THE PROJECTED IMAGES:

qview FC21B0007102_11273010009F4G.cub FC21B0007102_11273010009F4G-EQ.cub &

USING coreg WE ASSURE THAT EACH FILTER IS CORRECTLY ALIGNED

coreg from=FC21B0007102_11273010009F4G-EQ.cub match=FC21B0007101_11273005958F3G-CO-EQ.cub to=FC21B0007102_11273010009F4G-CO.cub deffile=coreg.def onet=FC21B0007102_11273010009F4G.co.net transform=translate interp=bilinear rows=32 columns=32

coreg from=FC21B0007106_11273010035F8G-EQ.cub match=FC21B0007101_11273005958F3G-CO-EQ.cub to=FC21B0007106_11273010035F8G.co.net transform=translate interp=bilinear rows=32 columns=32

#THIS EXAMPLE SHOWS THE PROCESS FOR USING ISIS TO CREATE A COLOR-RATIO IMAGE FROM DAWN IMAGES OF VESTA #CODE WRITTEN BY CHRISTOPHER LUKE HAWLEY AND MODIFIED BY JULIA DE LEON

Our Client's Problem...

Minimum Viable Product

- Access to prebuilt commonly used pipelines or "Recipes"
- Ability to create and run unique workflow pipelines efficiently
- A user friendly interface
- A container to be able to efficiently deploy the project on any number of systems. Stretch Goals:
- Minimal or non coding creation of pipeline
- Export support for cloud optimized metadata files
- Export support for main output directly to web services hosted by the U.S. Geological Survey

Our Proposed Solution

- Through the use of the 'Airflow processing pipeline software', we propose a system of python-wrapped ISIS3 'Nodes' which will allow the scientists at USGS to accurately, efficiently, and quickly create actionable products.
- Python-based module wrapperers would allow for the creation of pipelines that can be automated using the AirFlow system.
- Pre-built pipelines can also be built to allow for frequently used configurations to be easily accessed.

Feasibility & Risks

• All things considered, our team believes that we will be able to implement our proposed solution within the allotted time frame.

• Several stretch goals outlined by the client are also obtainable within the time frame, such as exporting final products directly to a live web map.

 The risks for this project are relatively low. It is possible for malformed data or nodes to produce a final image which is not correct, but this will not result in significant or permanent damage to the system or data.

Key Requirements

How we got here:

- Collaboration and communication with our client
 - Multiple meetings with client
 - Discord and email communication
- Understanding the problem and reading provided documents
 - Going over the requirements set out by client
 - Doing personal research into the technologies
- Team brainstorming

Key requirements

Our goals:

- User Visibility
 - Track and watch progress
- User interactivity
 - Environment that is adaptable and flexible
- Ability to save and create pipelines seamlessly
 - Ability to effortlessly create and save work
- Single instance environments
 - Run inside of a single instance
- Customizable DAGs
 - Directed acyclic graphs that are fully customizable

Key Requirements

In depth:

- Saving and Creating Pipelines
 - Functional: Apache Airflow, Elyra
 - In Airflow, users will be able to take individual ISIS3 commands, which our team will be wrapping in python to be accessible to Airflow, and create directed acyclic graphs.
 - These DAGs, or pipelines, will be able to take a base image input, then run through the pipeline's commands in the order that the user chose, to generate an actionable image product.

XAirflow D	AGs Data Pro	filing - Bro	wse+ Admi	n • Docs	About-					
on DAG: e>	ample_dag	g In Task Dura	tion 📫 Task	Tries 🛧	Landing Times	E Gantt	i Details	∳ Code	C Refresh	O Delete
running Base date:	2019-10-22 12:0	6:01	Number of runs:	5 T F	un: scheduler	d2019-10-22	T12:06:00+00:0	0 • Layout	Left->Right	• Go
PythonProgramOperator										
collect_data_f	rom_database_1	aggregat	le_collected_dat	a_1		_	build_a_report_	using_transfor	med_data	
collect_data_fro	m_external_api_1	5		tran	sform_aggregate	ed_data	store_transform	ned_data_in_v	arehouse	
collect_data_fre	om_internal_api_1		le collected dat	/		\frown	post_transform	ed_data_to_in	ternal_api	
collect_data_fro	m_external_api_2]	ic_concolou_dal	<u> </u>		6	arry_out_alertin	g_using_transt	ormed_data	

Architecture

- We are focused on keeping our architecture simple and straightforward
 - This project involves connecting many complicated modules in a specific manner to create a system that is easy to use and hopefully be extensible in the future

Development Schedule

- Previous Developments
 - Client Collaboration
 - Technology/Tool Analysis
 - Outcome Expectations

Development Schedule

- Previous Developments
 - Client Collaboration
 - Technology/Tool Analysis
 - Outcome Expectations
- Current Progress
 - Fast Approaching Week 16

Development Schedule

- Previous Developments
 - Client Collaboration
 - Technology/Tool Analysis
 - Outcome Expectations
- Current Progress
 - Fast Approaching Week 16
- The Future
 - Spring 2023
 - Details to come

In Review

USGS Astrogeology

- Image and Data processing
- Generate Accurate Planetary Maps

• A Pipeline Management System

- Accessibility
- Portability
- Reusability

• Our solution

- Develop a Base
- Combine Technologies

	DAGs Data Pro	ofiling - Browse	·▼ Admin •	Docs - Al	pout -				
on DAG: e	xample_da	g							
🗰 Graph View	🕈 Tree View	II Task Duration	Task Tries	Landing) Times 🛛 🗮 Gar	ntt 📕 Details		C Refresh	Oelete
running Base date:	2019-10-22 12:0	06:01 Num	ber of runs: 5	• Run:	cheduled2019-1	0-22T12:06:00+00:	00 v Layout	Left->Right	t v Go
PythonProgramOperator)								
collect_data_	from_database_1								
collect_data_	from_database_2	aggregate_c	ollected_data_1	>		- build_a_report	_using_transfo	rmed_data	
collect_data_fr	om_external_api_			transform_a	iggregated_data	store_transform	med_data_in_v	warehouse	
collect_data_fr	rom_internal_api_1	aggregate_c	ollected_data_2			→ post_transform	ned_data_to_ir	nternal_api	
collect_data_fr	om_external_api_3	2				carry_out_alertin	ig_using_trans	formed_data	

Thank You!

We will now accept any questions