

1 | P a g e

Technical Feasibility

November 10, 2022

Team Teacher To-Do

Project Sponsor: Chris Aungst

Faculty Mentor: Italo Santos

Faculty Mentor: Michael Leverington

Team Members:

Sam Gerstner (Team Lead)

Alexander Frenette

Noah Nannen

Shlok Sheth

Bronwyn Wedig

2 | P a g e

TABLE OF CONTENTS

Introduction 3

Technological Challenges 5

Technological Analysis 7

Languages

Web Pages and Frameworks

Obtaining Reliable Student Records

Authenticating Student

Storing Auxiliary Student Data

Accessing our Application Data

Documenting our API

User Interface & User Experience

Securing Student Data

Technology Integration 20

Conclusion 22

3 | P a g e

Project Introduction

Arizona is currently facing a massive teacher shortage in our state. To help address

this issue, the Arizona Department of Education has introduced a new program that will

allow student teachers in their final semester of their undergraduate degree to fill some

of these vacant teaching positions. As you can imagine, this process involves tracking

many documents and requirements to ensure students meet the needed criteria.

Currently the NAU College of Education spends hundreds of hours each semester

tracking these requirements for their students in order for them to participate in this

student-teacher program.

The current solution involves a great deal of data being input into an excel

spreadsheet; this process is currently a manual one. Hence the tremendous amount of

time being spent. The spreadsheet is used to track completed courses, along with other

completed requirements. Some of these requirements need to be confirmed by students,

yet they are unable to directly report and modify the spreadsheet. This requires them to

report to an individual, who has access to the spreadsheet, which can then update said

information. This interaction introduces additional work, and delays.

To streamline the process of tracking and confirming eligibility for students to

participate in the student-teacher program, we will be designing a web-based application

that will be able to automatically interact with student records eliminating the need to

manually import data, as well as provide the functionality to self-report external

information regarding requirement. Our application will allow for both staff and students

to view the progress for necessary requirements, as well as save a tremendous amount

of time by having a single source of truth for eligibility status.

4 | P a g e

Document Introduction

The purpose of this technical feasibility document is to outline the high-level

project requirements, technologies to be used, as well as the technical feasibility and

any foreseeable problems with any project requirement or chosen product or

technology. This document aims to provide an in-depth analysis of all MVP requirements

and the technologies and platforms that will be used to help us accomplish our goals.

This document will be used as a reference point for the remainder of the project

and will be one of the primary documents that guide our development and decision-

making processes. One of the primary goals of this document is to outline potential

problems, their solutions, and to help all stakeholders gain a better understanding of

roadblocks that may be encountered during the development process.

5 | P a g e

Technological Challenges

Our minimum goal for the project would be to at least give the student their

overall progress for fulfilling all the requirements and steps to achieve other

requirements. In simpler terms, we could describe the website as a professionally

modeled website that imports the student information from their NAU login using CAS.

The student can track and follow through their career path for their Student Teacher

Intern Certificate (STIC).

STIC has a hefty list of requirements a student must fulfill; hence the website

would give the student a gist of that. The model will also represent the requirements that

are completed by the student. It has a dashboard where the student can see their

overall progress for the program. The website will also provide a feature to share, and

upload signed documents on the server. The main objective of the website is to help the

student be on the path for the STIC plan and give a user-friendly insight into their overall

standing making it easier and less time-consuming for the student to track their

progress. The website will create a path for the student and give the student a plan to

follow through in order to fulfill the requirements. We also plan to accommodate the

website by importing the NES exam scores from the Pearson website which plays a vital

role in making the student eligible for the certificate program. For the backend part of

the website, we would like to structure it in a way that it will import data from FileMaker

Pro software that will use an application program interface, and it will use the student

USER ID to fetch and identify the data from the database. As specified by Dr.

Leverington, the minimum requirements for our website using sensitive data should be

able to create a hashed value for the student user id in order to make the website

secure and then search the student’s delicate information in the FileMaker Pro

database. This process demands a hashing algorithm in the program.

Another focus of ours is to model the website’s appearance on existing NAU

systems, as well as provide an administrative panel for staff of the College of Education.

6 | P a g e

While not currently a priority, a future desired ability would be to enable e-signatures to

be managed through the app. For now, we will consider this ability outside of the scope

of our tasks.

As it stands, our project is somewhat of a greenfield. There are two systems in

place that we hope to interact with: these being the collection of student records, as well

as the school’s user authentication system CAS. Besides these two systems, we are free

to choose how to best implement our system. That being said, we are faced with several

technological challenges:

- Selecting a robust language to build our system upon

- Selecting a robust framework for delivering web pages

- Obtaining and accessing reliable student records

- Authenticating the identity of students

- Storing auxiliary student requirement data

- Accessing our application data

- Documenting our API

- FERPA Compliance and securing the student data

- Creating a uniform user experience

7 | P a g e

Technological Analysis

Languages

One of the first challenges we faced with this project when coming up with our

development plan was what backend programming language we should use. This is a

critical decision, as it is the foundation of our project’s development. The languages we

considered using included C#, & NodeJS, and Java. While all these languages are

capable of being used to create web apps, we must select the best fit for us.

Our selection criteria were based on several factors. We wanted a language we

were familiar with or at least capable of learning in a short period of time and is efficient

with respect to developer time spent programming. We were also interested in industry

adoption, and long-term support. We did not want to be using libraries that were not

production tested, as security is critical to our app. Another concern of ours was type

safety. A huge source of bugs stems from a lack of type safety; to avoid any potential

type mishaps we are very focused on this.

Looking at each language, we start with C#. C# offers a great deal of the features

we want. It has some industry support along with extensive documentation, is type safe,

and offers production tested libraries. The major downside is that the majority of the

group is unfamiliar with it.

NodeJS is a server-side implementation of JavaScript. It is incredibly easy to

write simple applications with and is great for those interested in expanding from front-

end development to back-end development as well. The issues for our group are that

even fewer members are familiar with it, and it does not provide the same robustness

and type safety as other languages. As our system grows, it becomes more difficult to

manage the code base of a dynamic language and ensure safety.

8 | P a g e

Java ended up our winner. It is one of the most commonly used languages in

industry, has extensive libraries and documentation, the language is static and strict

which will ensure safety. The group also has more familiarity with it than with other

languages. To prove the feasibility of this language, we have gone ahead and further

refreshed ourselves on the language and gained confidence in our ability to use it.

 C# Node.js Java

Developer

familiarity

2 1 3

Developer

efficiency

3 4 3

Industry adoption 3 2 5

Type safety 5 1 5

Total Score 13 8 16

Web Pages and Frameworks

Our next challenge is delivering the actual web application. As it stands, there are

two dominant players in the world of web applications. Dynamic pages, and static web

pages. A dynamic webpage is an architecture that involves the client sending the server

a “skeleton” webpage, which is then populated on the client side though calls to a

backend API. Two of the major benefits are reducing load times of pages, and

minimizing data transmitted. A static webpage is an architecture involving the

generation of the webpage each time upon request. While the page itself will have data

that is dependent on which user is logged in, hence dynamic, once it reaches the user’s

web browser, it is in its final state, hence the term static. As a group we were able to

immediately eliminate the option of developing a dynamic website. This being we have

limited familiarity with the technologies involved such as React.js and Vue.js.

9 | P a g e

Having made this decision, we began our search for a java framework for making

webpages. Specifically, a framework designed around the MVC architecture. MVC

allows for the separation of our model (data), view (webpage) and our controller

(application logic). This separation allows for easy division of development tasks among

our team members based on individual’s strengths. The frameworks we investigated

using were Spring Boot, Quarkus, and Micronaut.

While Quarkus will provide the MVC functionality that is desired, it relies on

Kubernetes to function. This added complexity is something that is beyond our current

resources, making it a non-viable option simply due to the ease of deployment. Spring

Boot is the most popular option amongst Java developers and provides extensive

documentation and tutorials for new users. Because of these clear advantages, we

chose to use Spring Boot for this project.

Micronaut is a more traditional framework. It does not provide the same

horizontal scalability out of the box, but it provides relative simplicity. It too is currently

used in production environments and offers extremely thorough documentation. The

major drawback is the complexity of the framework and lack of digestible tutorials.

Our choice was ultimately Spring Boot, as it offers a relatively streamlined

development and deployment process. The Spring Boot framework will allow us to write

our application in languages that are familiar to us (Java, HTML, CSS, etc.) and easily

package our application into a JAR or WAR file that can easily be deployed to an

Apache Tomcat web server. The documentation is excellent and offers simple and

digestible tutorials to get you started. An added benefit of spring is the modules that

have been developed for the framework. These modules offer features such as

database connections, security, and authentication. We believe therefore Spring Boot’s

adoption in the industry is so high.

10 | P a g e

To prove feasibility of using Spring Boot, we will go ahead and implement the

demo apps that are provided in the extensive tutorials. We will then expand upon them

to further develop our app.

 Quarkus Micronaut Spring Boot

Documentation 2 2 5

Simplicity 2 2 4

Industry adoption 2 2 5

Deployment 1 4 5

Total Score 7 10 19

Obtaining Reliable Student Records

Our next challenge is to obtain reliable student records for our application. The

foundation of our app is a task list, and these tasks depend on the state of the academic

record of a student. Due to FERPA privacy concerns, this data is highly regulated. In

order to gain access to this data our group first had to complete FERPA certification

through the university. While we have been told we will have access to the data, it has

not yet happened. Due to this, we must take several things into consideration. There are

three scenarios we are currently faced with. First, we get access to the FileMaker Pro

API, which is the system the College of Education uses to keep track of student records.

This API will allow us to query sensitive records of students, to then determine eligibility,

and status. The second option is that we are not given access to this API, and instead

we must find a way to export this data to a file such as a CSV, that the College of

Education can then import into our system. This has major drawbacks or adds additional

exposure opportunities if our database is compromised. The attacker would then have

access to the student record data. The final option is that we create a mock API that will

generate fake student record data and treat it as though it were FileMaker Pro. This has

the major downside of making the app non-functional.

11 | P a g e

Ultimately our decision is to assume we get access to FileMaker Pro’s API that

way we can create a functional application. It also means that administrators at the

College of Education do not need to manually administrate our application, while also

limiting the amount of sensitive data stored in our database.

Once we gain access to the FileMaker Pro API we will begin proving feasibility by

creating simple calls to the API to confirm our ability to interact with it.

 FileMaker Pro API Importing Data Mock API

Admin simplicity 5 1 4

Student record

security

4 1 5

Usefulness of

application

5 5 0

Total Score 14 7 9

Authenticating Student

As our system will need to interact with student permanent records,

authentication is critical and mandatory per FERPA. The ability to uniquely identify

students and verify such identity will be critical in preventing individuals from accessing

data that is not their own. We have several options to handle this. We could gain access

to the university’s authentication services, authenticate users based off student e-mails

alone, or have administrators create accounts for each student.

Our main criterion for our decision is security, ease of account creation, and ease

of administrator management.

If we can use the university’s CAS (Central authentication service) we are

guaranteed that a user is who they say they are. We also get the benefit that we do not

12 | P a g e

have to manage user passwords or accounts, which is handled by CAS. It also means

that the administrators at the college of education do not have to manage accounts.

If we verify users based off e-mails, we gain the same benefit of knowing they are

who they say they are, but we have the downside of an additional piece of data we must

protect and manage. That being their account password. On the plus side,

administrators do not need to be involved in the account creation process.

Our final option is to have administrators create accounts. This is in no way ideal

as it is not an automated process, and would require additional person hours being

spent, somewhat defeating the purpose of our application.

As a result of our requirements, we have decided to plan on using the CAS

system but will resort to student e-mail account creation if we are unable to gain access

to CAS.

Our method of proving the feasibility of CAS we will have to begin by either

requesting a “dummy” user account be made to test our ability to log in and

authenticate a student. If this fails, we will then have to explore our secondary option.

 CAS Student e-mail Admin created

Admin simplicity 5 5 0

Account Security 5 3 3

Ease of account

creation

5 3 0

Total Score 15 11 3

Storing Auxiliary Student Data

While we will not be storing student records, we will still have a need to store

student information specific to our application. This includes status on tasks as well as

13 | P a g e

specific documents. This leads us to two main options for databases. A simple relational

database or a document store.

For simple relational databases, we have the option of MySQL or MariaDB. While

for document storing, we would be using MongoDB. Our main criterion is familiarity,

speed of development, feature set, and cost.

Both MySQL and MariaDB can be thought of as equivalent for our sake. They are

both SQL databases, which means they are very familiar. The only downside is their

feature set. Neither database is good for storing large pieces of data such as files. As

such we will need to use an external blob store and reference the blob IDS within the

database. As a note, the only difference between MySQL and MariaDB is that MySQL is

propriety and has an additional cost.

If we were to select MongoDB we would lose familiarity with the database

technology but gain the benefit of having dynamic schemas. This feature might be

useful for some data sets, but as we are going to define our schemas, we do not benefit

from this. We would however benefit from the ability to store large documents from

within the database using GridFS.

 Ultimately due to familiarity, we have chosen to go with MariaDB, which if needed

can be changed in production to MySQL without issue. We shall prove feasibility by

creating a sample database, and create a simple Java application to interact with said

database.

14 | P a g e

 MySQL MariaDB MongoDB

Developer

familiarity

4 4 2

Development

speed

4 4 1

Feature set 4 4 5

Cost 3 5 5

Total Score 15 17 13

Having selected a relational database, there remains the need for document

storage. Our 3 options are to use a traditional cloud storage provider such as Google

Drive or Dropbox, self-hosting a filesystem on a VPS, or use a more general blob

storage option. Here are concerns data integrity it in case of fault, simplicity, and cost.

There are two main differences between self-hosting and using a service such as

Google Drive. The cost, as Google Drive is significantly more expensive than using a vps

to run your own file system. The other being that google drive is more tolerant to faults.

There is almost zero chance of losing your data due to Google’s servers failing.

A blob storage on the other hand offers an even more affordable solution to data

storage than google drive, while providing a simple API to interact with the data. You

also have the benefit of the data being replicated, which means there is no chance of

data loss. Due to these benefits, we have decided to go with blob storage, and in our

case there is no difference between S3, Azure, or any other provider, as they all have

the same functionality we need.

To prove the feasibility of using a blob system we will start by creating a simple

application to store and retrieve a small number of blobs. This shall confirm our ability to

interact with the API provided.

15 | P a g e

 VPS Google Drive Blob Storage

Data replication 0 5 5

Simplicity 2 2 4

cost 5 3 4

Total Score 7 10 13

Accessing our Application Data

Access to data is critical to our app. Due to privacy and security constraints, a

great deal of our data will be held externally, but we will still have to provide an interface

to access remotely held data as well as data specific to our application.

With the architecture of our system, we have decided to make the front end and

back end loosely coupled. Access to the data should also be platform agnostic. This

means that if we wish to swap our front end, the existing back end shall remain. This

separation of logic and responsibility, will also allow for the addition of alternate front

ends; an example being a mobile app.

Having our front-end logic separate from our backend logic will constitute the need for

an access mechanism. Our options are a standardized remote procedure call such as

gRPC, a REST API over http, or a GraphQL implementation. Our concerns are

developer familiarity, industry adoption, simplicity to implement, and appropriateness for

external API.

Looking at gRPC first we see that its primary focus is on communication between

two servers. That being said it does have a high industry adoption rate, and is most likely

the most simple to implement. The issue is that it is not appropriate for front-end to

back-end communication, and our developers lack familiarity.

GraphQL on the other hand is a “replacement” for REST. It is designed to

minimize the number of calls to the back-end, by allowing front-end services to query

16 | P a g e

more effectively. The downside is the added complexity in developing a GraphQL

implementation, and our developers lack familiarity.

REST is our winner It is currently the industry standard for communicating

between back-end and front-end services, while remaining simple to implement. To

prove the feasibility of our rest API we will create a rest API that returns dummy data

and stores requests within the data.

 gRPC GraphQL REST

Developer

familiarity

1 1 4

Industry adoption 3 3 5

Simplicity 5 3 5

Appropriateness 0 5 5

Total Score 9 12 19

Documenting our API

To ensure we know the capability of our API it is critical to document the

endpoints. This includes the endpoints, the verbs, the expected schema for requests,

and the response schema. This is critical to ensure that future developers are able use

our API to provide additional front ends such as a mobile app. Our main concerns are

consistency/ease of updating, ability to generate code from our specification, and ability

to generate documentation.

Our first option is to manually manage documentation per endpoint. This option is

tedious and prone to error, all while not providing any auto generation features. The

second option to document our code from within our application code using

Annotations. The major issue is that is that it does not allow for generation of code. The

final option is to the OpenAPI spec which allows for endpoint definitions as well as

17 | P a g e

schema definitions. It is clear to us, that OpenAPI is the winner as it is it provides the

best representation of our endpoints, all while having the added benefit of being able to

generate our server-side code using our OpenAPI specification.

 Manual Java Docs OpenAPI

Consistency/ ease

of updating

1 2 5

Code generation 0 0 5

Documentation

Generation

1 3 5

Total Score 2 5 15

User Interface & User Experience

For our user interface, we had to decide on what sort of style to go with to ensure

that the websites generated for the project were aesthetically pleasing as well as useful

to the users that would be accessing them. We already knew that we would have to use

HTML to create the website, but the challenge arose when we needed to decide on a

style to use. We ended up with 3 possible options for our styling. The first was

Bootstrap, which allows for higher functionality and integration of complex tools into a

site, as well as having complete access to whatever else needs to be added on in terms

of tools and plugins. The second option is Bulma, a native HTML import that also allows

for extended use and additional plugins to be added in the future, but less focus on

integration of some of the higher end tools we were planning on using, like Spring Boot.

The last option was Custom CSS styling, which is just using CSS stylesheets for each

webpage. This is incredibly clunky and creating stylish webpages is very difficult to

accomplish without large amounts of dedication, but it is still one of our options if one of

the other two exclude something vital to the project.

18 | P a g e

 Bootstrap Bulma Custom CSS

Industry adoption 4 3 5

Ease of Use 5 4 1

Components

Included

5 4 1

Development

Speed

4 2 2

Project Support 5 3 2

Total Score 23 16 11

We chose to use Bootstrap not only because of its high functionality or inclusion

of other project types, but also because NAU already has a custom Bootstrap that we

can use to ensure that the website can be recognized as an NAU webpage and has all

the functionality of a NAU website built in.

To prove the feasibility of Bootstrap we plan on creating a simple landing page to

better familiarize ourselves with the library. This will allow us to see if it meets our needs.

Securing Student Data

Keeping the student data safe and sound from the outside world is one the

biggest challenges our team is facing, it has been an anchor to our ship. One of the

requirements for the website to be secure is to not have stored any type of FERPA-

related information on its database. In order to minimize the exposure surface of the

website to the FERPA data, we can hash the student details to some extent like test

scores, student name, and GPA. To merrily carry this information securely and display it

on the website we must create a hashing algorithm, this builds an environment where

there is no direct relationship between the student's name and their respective data.

This hashed value will be linked to the Filmmaker Pro database, so that it will be used as

a unique value to fetch data in real-time every time the user logs in. Hence, it is not

19 | P a g e

saved in our website’s database.

 MD5 SHA2 SHA3

Security Rating 2 3 4

Ease of Use to
members

2 2 2

Industry Rating
3 4 5

Total Score 7 9 11

20 | P a g e

Technology Integration

During the analysis of our technical challenges we made sure to select

technologies and design philosophies that would allow us to componentize our system.

Each part of our system is able to be developed by separate teams, and have minimal

dependency relations on other components. Broadly speaking our system can be

broken up into two primary parts, front-end and back-end. The back-end is accessed

through our REST API, which will be designed such that it is loosely coupled from any

front-end architecture. This will allow future developers to replace the front-end system,

or create additional views of our back-end system such as a mobile app.

Right now, most of our focus is into figuring out two main components of our

application: CAS and the data structure of FileMaker Pro. As we are in the process of

getting access to the FileMaker Pro application, we are unaware of the schema of the

data, and the structure of the data and how it is being saved on the server. The closest

we have been to that data is that FileMaker Pro can export all the data to an excel file in

a form of CSV file, which is nothing but columns and rows of data, worst case scenario

we could use this file to process our data, but we are planning on sticking to the strategy

of using FileMaker Pro application in order to facilitate the idea of security and

efficiency.

21 | P a g e

Integration Diagram

22 | P a g e

Conclusion

In these times of shortage of teachers in the education industry, there is a need

for a change in the system, to enhance the quality and quantity of student teachers

graduating. Our application would be able to make it easy and simple for the students

and the department to track and follow through the checklist of requirements for the

STIC program. Our program is not only restricted to Northern Arizona University but can

be instilled upon other universities with similar program offerings across the states.

Our next steps are to confirm access to the services such as FileMaker Pro and

CAS. This way if we are not able to obtain access we can then adjust our development

plan accordingly. The other challenges at hand are ones that offer us an opportunity to

combine our skills to create this new product.

