
School of Informatics, Computing & Cyber Systems

Technological Feasibility Analysis
Serpent Studios

November 9, 2022

Sponsor:
Dr. Patrick Kelley

Mentor:
Italo Santos

Team Members:
David Hermann
Johnathan Ray
Tyler Morales

Nickolas Maxwell
Nick Shugrue



Table of Contents
1 Introduction 3

2 Technological Challenges 6
2.1 Game Engine 7
2.2 User Interface 8
2.3 User Statistics Database 9
2.4 Network Connected Two-Player Mode 10
2.5 Animations and Graphics 11

3 Technology Analysis 12
3.1 Game Engines 12
3.2 UI & Graphics 16
3.3 Support Online Two-Player Mode 19
3.4 Create User Account 23

4 Technology Integration 26

5 Conclusion 28



1 Introduction

Large companies such as Electronic Arts, Activision-Blizzard, and Bethesda with

multi-million dollar franchises such as FIFA, Diablo, and Fallout respectively dominate the

gaming industry. These studios produce games en masse, and as such ship products that are

lackluster and stale. For example, a new FIFA game is released yearly but updates mostly consist

of new characters based on roster changes made to teams registered with the International

Federation of Association Football (FIFA). Recently, there has been an uptick in the gaming

community's interest in original projects, new versions of older genres, or games that have been

recreated from older works. A notable example is the roguelike genre renaissance which includes

titles such as The Binding of Isaac, FTL: Faster Than Light, and Hades. This genre derives its

name from Rogue, which was released in 1980. It features procedurally generated environments

and permadeath, where losing a character means restarting a playthrough. New games often have

innovative features either due to their rejection of conventional game loops or by improving

upon previous design paradigms with new technology. Developments include engaging new

stories which may be adapted from previous works of fiction that evoke nostalgia from older

players while allowing a new generation of players to experience classic works in a fresh

medium.

Large game studios inherit the resources of their parent companies whereas smaller

independent developers cannot afford such tools. Previously, this would give larger studios an

advantage. However, several smaller and more affordable "game engines", software packages

with a large set of features for game development, have been made freely available to

independent developers. In fact, some larger studios have even adapted these game engines for

their titles, demonstrating how powerful such engines are.

Our sponsor, Patrick Kelley, was fond of a game found in Serpent's Reach, a novel he

read when he was younger. He wanted to know if the game was something that could be played

in the real world. He set out to use his programming abilities to bring the game to life digitally.

Our client decided to use the game engine Unity, and made a basic version of the game based on

rules proved by C. J. Cherryh, the author. This prototype has simplistic two dimensional visuals

and an ambiguous user interface as to what is happening in the current game. Additionally, it

does not contain features such as persistent scoring or peer to peer multiplayer. The prototype's



code was written with only the developer in mind and as such it is inextensible; no additions can

be made without rewriting the entire codebase. While Sej has a score system for tallying points,

it does not work in the prototype. As for multiplayer, the current implementation requires two

players to share one machine and take turns inputting their turns in order, which leads to possible

confusion and errors as to whose turn it is.

Figure 1.1: A screenshot of Patrick Kelley's Sej prototype.

Having done research into pertinent technologies this document expands upon the

technological feasibility of Sej Online. Our team will implement key professional studio

practices, techniques, technologies, challenges, and solutions that we believe will take our small

independent project to the next level, capable of competition with larger development studios. By

using Unity, a game engine known for its feature-rich codebase and extensive third-party

support, we intend to implement persistent user scoring, a better user interface, online

multiplayer and improved graphics for the minimum viable product. To solve the problem of

persistent scoring, Database Control acts as a script that translates C code into instructions on

what data to store in a database. This data can be retrieved later so that players can see previous

scores and statistics. The planned user interface will include a better dice and wand rolling



system, responsive button input, and cleaner visual clarity to avoid ambiguity. Since local

multiplayer using a single machine is not scalable, we will utilize engine related plugins, already

developed and in use by gaming studios to provide a networked multiplayer solution to our

players. Finally, Unity provides many libraries and tools for advanced graphics, both in

two-dimensional and three-dimensional formats. Our implementation will provide cleaner

visuals and possibly some advanced graphics such as three-dimensional dice and wands.

This document discusses the technological challenges we expect to face, an analysis of

available technologies and why Unity was chosen as the game engine, and how we intend to

integrate Unity and other technologies into our development cycle. The technological challenges

of Sej Online include the usage of a game engine, the design and implementation of an improved

user interface, a database for user statistics and score tallying, network connected multiplayer,

and animations and graphics. In our research, multiple possible technologies were found that

meet the needs of the minimum viable product. The technology analysis section discusses

candidates for each of the features mentioned in the technology challenges section and discusses

the desired characteristics, alternatives, and chosen approach for each feature. Finally, the

technological integration section discusses how all of the features will be implemented in

conjunction with Unity.



2 Technological Challenges

When creating an online game, each possible feature requires thorough research,

discussion and revision. This section identifies and discusses many of the potential challenges

that may arise once development of Sej Online begins. First, an appropriate game engine must be

chosen to act as a framework for the game. There are many great engines to choose from, and the

features and drawbacks of several will be discussed in the technology analysis section. To guide

that discussion, factors to consider include the ability to create an intuitive and interesting user

interface, animation and graphical display capabilities, being able to transfer data to and from an

external database, and support for network connected online play. Below is a basic outline of the

expected Sej Online architecture.

Figure 2.1: A simplified Sej Online structure.

The key elements needed to achieve our envisioned solution for Sej Online are as follows:

● Game Engine - The first and most important decision that must be made before

development can begin. Game engines provide a useful framework for game

development, offering helpful libraries and support programs. The benefits and

drawbacks of several are discussed in the technology analysis section.

● User Interface - This can make or break the entire user experience for any game. An

intuitive and interesting UI is key to keeping users engaged. A poor UI can make a game



feel lifeless and hard to navigate. The Sej Online UI will contain both a menu system and

a play window while the game is running.

● User Statistics Database - Any and all user statistics will be cumulatively stored in some

sort of database. This adds a sort of progression that can incentivize users to continue

playing the game, as well as creates a competitive aspect to the game. Users will be able

to access and compare their states with other users.

● Network Connected Two-Player Mode - Sej Online will allow users to play against

other users on different machines. This will create a community around the game and

allow users to interact with each other without having to be in the same room.

● Animations and Graphics - These can come in a variety of forms both simple and

complex. Animations and graphics help make the game more interesting to look at. They

can also keep the user interested for longer sessions of play.

The following subsections introduce each challenge and qualify the important aspects to

consider.

2.1 Game Engine

Sej Online will be developed with the assistance of a game engine. Game engines provide

an important framework for developing games. They offer tons of features and resources for

developers to create all kinds of games. Many engines have dozens of libraries and supporting

programs that aid in making the development process more efficient. Ideally, the game engine we

choose to go with will give us all the tools we need to overcome the challenges we will face

while developing the game.

Most game engines allow developers to add the following features:

● Physics

● Input

● Rendering

● Scripting

● Collision Detection



● Artificial Intelligence

● And more, without the need to program them from scratch

For our purposes, we will not need most of these features until the minimum viable

product is complete. The main feature necessary for Sej Online is multiplayer support within the

engine. Since the project will be an online game, we will need to implement multiplayer

functionality, and having those tools built into the engine itself will make that task much easier.

It will also be important to look at the practical features of the engine for quality of life and ease

of use purposes. The aspects we will be looking at are:

● Pricing - How much does it cost to use the engine?

● Learning Curve - How long will it take to become familiar with the engine?

● Languages - Which programming languages does the engine use?

The engine will hopefully give us a good balance between functionality and efficiency.

2.2 User Interface

A simple but attractive user interface (UI) will be necessary for both the menu and play

window of the game. The UI will have to be intuitive and functional while also being interesting

to look at for the user. Creating a good looking UI that does everything we need it to may be

challenging without a significant background in design work. Luckily, there are several common

elements that make up a successful UI:

● Simplicity - The best interfaces avoid unnecessary elements and are clearly labeled.

● Consistency - Creating consistent patterns in the layout and design can facilitate

efficiency. Users should be able to transfer knowledge between different parts of the

game.

● Purpose - Careful placement of items can help draw attention to the most important

pieces of information and can improve readability. It is important to consider the spatial

relationships between items, and the structure should be based on importance.



● Strategy - Color and texture direct attention toward or away from items.

● Typography - Careful consideration of the typefaces used can increase legibility and

readability. Use different sizes, fonts, and arrangements.

● Communication - Always inform users of any changes, actions, or errors in order to

reduce confusion and frustration.

Using these UI best practices, we can develop a user interface that is pleasant to use and easy to

understand.

2.3 User Statistics Database

Sej Online will utilize a database management system (DBMS) in order to store

gameplay statistics for its users. A DBMS is software that manages the storage, retrieval, and

updating of data. Most databases store this data in some sort of table to make it easy to

understand how the data relates to each other. A database would be able to retrieve and compare

different data sets for user analysis. For example, users should be able to see how many games

they have played, won, and lost in total, as well as against a specific opponent. The database

used for Sej Online should be able to accomplish the following:

● Create secured accounts for users - Players will have an account linked to their

machine that tracks any and all progress made. This will include statistics such as games

played, wins, losses, etc.

● Compare statistics between users - Players will be able to compare their own stats with

those of other players. They will also be able to access stats against specific opponents.

● Display relevant statistics to all users - It might be interesting to create a type of global

leaderboard that shows all time statistics for the best players globally. This would require

the ability to rank players by their statistics and display that information to all users

through the game menu.

If a DBMS is to fulfill the above requirements, it must have the following characteristics:



● Maintainability - The DBMS should be easily maintained and managed. It should not be

hard or confusing for changes or improvements to be made. It also should not need

frequent changes to function properly. It should continue working consistently with little

downtime. It is possible that users could be playing the game at any time, so the database

should not be hard to keep running otherwise a core mechanic of the game could become

unavailable.

● Extensibility - It does not make sense for there to be any limit on the number of users

that can create accounts for the game. The database should be able to handle an

increasing number of player accounts for the foreseeable future. It should also be able to

handle new game features that require database access beyond the initial scope of the

original product.

● Accessibility - Since the database will be used for several aspects of the user interface

and gameplay, it should not be hard to access the necessary data. It should be easy to

access and update user data every time a Sej match is completed. It should also be trivial

to retrieve user data every time a user looks at their statistics on their profile.

A viable DBMS will meet or exceed the characteristics outlined above.

2.4 Network Connected Two-Player Mode

Sej Online will obviously be an online game, so networked, multiplayer supported

gameplay is required. This is a key factor in creating an interesting and interactive game, so

getting it right is vital to the success of the product. Unfortunately, perfect online play does not

exist. Even the most modern and advanced online games still fall victim to poor, unstable, or lost

connections. There are many issues to consider when creating an online game. Some of the

major issues include:

● Consistency - A consistent connection between users will be vital to the gameplay

experience of Sej Online. Lag, jitter, dropped packets, lost connections, etc. can be

massively detrimental to the success of the game.



● Reliability - Online play should be accessible at any and all times of the day or night.

Users should be able to play whenever they want for as long as they want without having

to worry about network issues.

● Latency - It should not take hours or even minutes for actions to be transmitted from one

user to another. There should be very little delay for any process in the game, otherwise

users may believe the game has stopped working.

2.5 Animations and Graphics

The most successful games are ones that keep the user wanting to come back for more. A

great way to keep users interested and engaged is with appealing graphics and lively animations.

These do not have to be amazing or groundbreaking; they should be enough to impress new and

returning players. Good graphics and animations may include some of the following elements:

● Simple - It is easy to overdo it with super flashy visuals, but it is important not to

overstimulate the user, especially in the case of photosensitive individuals. Simple is

better in this case.

● Informative - Visuals should be informational and signal some sort of action or event to

the user. This creates a more engaging and understandable gameplay experience.

● Relevant - An out of place visual ruins immersion and engagement when playing any

game. It is important to make sure all visuals fit into the theme of the game so nothing

feels out of place.

● High Quality - Low quality graphics or animations can be a distracting and unpleasing

sight. Visuals should be of good quality and add to the experience, rather than take away.

Good visuals can aid in creating an enjoyable experience and atmosphere for the user. Any

graphics or animations used should follow the guidelines above.



3 Technology Analysis

As stated previously, the biggest challenge that we must address is choosing a game

engine. The engine needs to allow us to solve four challenges: ensuring that two users can play

with each other on separate machines, allowing users to create an account that will record their

wins and losses, and creating an intuitive UI and appealing graphics. After researching the wide

variety of engines that are available, we found that Unity, Unreal, and Godot were the best three

options in accomplishing these tasks. The table below provides an overview of each of the

challenges and the pros and cons of how the engine can solve them. This will be discussed

further in the rest of this section.

Engine Programming
Languages

Supported
platforms

UI; Graphics Multiplayer
support

Database
support

Unity C# All UI toolkit,
Unity
interface
package,
IMGUI;
high-end
graphical
capabilities

Built-in library
(Netcode), 3rd
party (Mirror)

Database
Control

Unreal C++,
Blueprint

All Widgen
Blueprint;
high-end
graphical
capabilities

Built-in library N/A

GoDot GDScript,
C++,C#

All Built-in tools;
2D graphical
capabilities

Built-in library N/A

Figure 3.1: An overview of how each engine can be used to solve the four challenges.

3.1 Game Engines

Each part of the project is important, but the game engine serves as the foundation of

creating our project. If the team chooses the wrong one to create Sej, then the entire project is



unfeasible from the start. It needs to allow us to implement the game’s ruleset without too much

difficulty. The difficulties that we may encounter are expanded upon in the following sections.

● Desired Characteristics - When selecting an engine, we first need a tool that does not

take very long to set up on our computers. That is, we need an engine that is free and

takes up a reasonable amount of storage space so that it can actually be used and will

allow us to make a game that does not take up much more additional space. Once that is

found, we then need an engine that will allow us to create a game like Sej (that is, a

tabletop game that involves making strategic decisions based on randomly generated

scenarios). It also needs to be able to support all major platforms, including console,

mobile, PC, and Mac.

● Alternatives - The three engines that we are considering are Unity, Unreal, and Godot.

Unity first released in 2005, and the earliest long term support (LTS) build came out in

2020. Unity is considered to be a “jack of all trades”, which can be exemplified by the

wide variety of games made in the engine, including Among Us, Monument Valley, and

Hearthstone. It uses C# as its scripting language and supports all major platforms.

Unreal first released in 1998 by Epic Games. Many modern games that have used

Unreal used Unreal Engine 4, a version that was released in 2014. This year, however,

Epic released a newer version, Unreal Engine 5, that is slowly being picked up by

developers in the industry. The majority of games made with Unreal are 3D and have

high-end graphics. It uses C++ as its scripting language, as well as Blueprint, a built-in

language that uses a click-and-drag system to provide functionality to different objects in

a game. It also supports all major platforms

Godot first released in 2014, and the current version was released in 2022. While

it can make 2D and 3D games, the majority of games are primarily 2D. Unlike Unity and

Unreal, Godot organizes the objects in a game as nodes in a tree. It uses C# and C++ as

its scripting languages, as well as GDScript, a built-in language that is similar to Python

in syntax. It supports all major platforms except for consoles.

● Analysis - As most of our team has experience working with Unity, we understand its ins

and outs fairly well. The base LTS build released in 2020 that we installed weighs in at

around seven gigabytes and is free to use. According to our research, the other LTS builds

are of similar size. This allows us to install other tools and assets without having to worry



about freeing more space. As stated previously, the engine is a “jack of all trades”,

meaning that it allows one to make any type of game they want. When testing this claim

ourselves, we found that one could select from a list of prebuilt level templates (e.g.

third-person, top-down, etc.). Unity also allows developers to port their games to all

major platforms. When testing this, we found that this can easily be done by selecting a

platform from a provided list and saving the files to a zip file.

Unreal Engine 5 is the biggest engine of the three, with its free base version

weighing in at around fifty-five gigabytes. Even without taking into account the other

tools and assets that we may want to use, the amount of storage this takes up is already

very large. When making our own test projects in Unreal, we found that it had many

similarities to Unity: it allows a developer to choose from a selection of template levels

which can be ported to any major platform by choosing from a list provided by Epic. The

graphic capabilities of the engine are much greater than that of Unity. Making a version

of Sej with graphics of such a high caliber, however, is beyond the scope of this project.

Even if the team wanted to do so, we found that loading in shaders from example projects

provided by Epic can take extended periods of time to load in and may even result in a

system crash.

Godot is the smallest of the three engines, weighing in at around 500 megabytes.

Despite its size, however, it still provides a development environment similar to that of

Unity and Unreal. Its graphical capabilities are similar to those of Unity as well. Unlike

the two engines, however, Godot does not provide a selection of template levels for a

developer to choose from. Additionally, it does not port to consoles. It is also the black

sheep of the three due to it using GDScript, its own scripting language. While it is

Pythonic in its syntax, having to learn another language may not be feasible, given the

amount of time we have to develop this project.

● Chosen approach - Each of the three game engines has its own pros and cons. All of

them are free and use languages that are familiar to all of us (e.g. C#, C++), but they also

have their unique nuances. Some of them allow a developer to make a specific type of

game, while others are more flexible. Some are large in size, while others are fairly small.

Some port to all platforms, while others port to some. Figure 3.2 lists all the pros and



cons of the engines in terms of desired characteristics listed previously, as well as a rating

based on our analysis.

Storage Size Types of
Games

Programming
Languages

Supported
Platforms

Overall
Rating

Unity 7 GB (4/5) Any (5/5) C# (5/5) Console,
mobile, PC,
Mac (5/5)

4.5/5

Unreal 55 GB (2/5) 3D Games
with high-end
graphics (3/5)

C++ (4/5) Console,
mobile, PC,
Mac (5/5)

3/5

Godot 500 MB (5/5) 2D Games
(3/5)

C#, C++,
GDScript
(4/5)

Mobile, PC,
Mac (2/5)

3.5/5

Figure 3.2: An overview of how each engine contributes to the desired characteristics listed in

each column, along with a rating for each characteristic.

After analyzing the benefits and flaws of each of the engines, we believe that Unity

seems to be the best fit for our project. Our group is familiar with both the engine itself and C#.

Not only that, but it fulfills all of the desired characteristics that we need in a game engine. Its

storage size is not the smallest, but it is small enough that we can make our game without having

to worry about it taking up too much space alongside Unity. It is also a versatile engine that can

make any game we want, which is desirable for the specific type of game we want to make.

Finally, it supports all major platforms and allows developers to easily choose which ones they

want to port their game to.

● Proving feasibility - Our client has already demonstrated that implementing the rules of

Sej is feasible. In our future tests with Unity, we will ensure that this is so and expand on

the initial concept that was presented to us. For instance, we will create 2D and 3D builds

of Sej to see which medium is a better fit for the game. This will be determined by

analyzing how much space it takes up in storage, the simplicity/complexity of the two

mediums, and which one is more engaging to play.



3.2 UI & Graphics

The initial prototype shown by our client does not have the best graphics. In short, they

are unengaging and do a poor job at providing the necessary information needed to play Sej.

While this is an aspect that we believe we can improve upon, an aspect that we must improve

upon is the user interface. The client’s prototype’s UI is clunky and also unengaging. In order to

create a top-notch version of this game, both the UI and graphics need to be overhauled in a

significant way.

● Desired Characteristics - At first, it may seem that the UI and graphics are two separate

challenges. As seen in the previous section, however, they have many similarities. They

both need to be simple and consistent enough so that the user can quickly understand how

Sej works, even before understanding the full ruleset, and is not confused by all the

information on the screen. The user interface specifically needs to contain information

that has a purpose, so an engine should allow for a UI element to be customizable enough

that our game can communicate this information to the user. The graphics specifically

need to be high quality, allowing the player to play the game without being displeased by

what they are looking at. An engine should be capable of producing graphics that allows

for this. In addition, it should allow for a developer to be flexible with how their game’s

graphics look in the event that the game starts to take up too much space.

● Alternatives - Much like Unity itself, the graphical capabilities of the engine are flexible.

One can make a game with high-end or low-end graphics. Unity also has several systems

for developing UI elements, including the UI Toolkit, the Unity user interface package,

and Immediate Mode GUI (IMGUI).

Unreal is one of the best engines out there for making games with high-end

graphics. Specifically, Unreal Engine 5 has implemented new technologies that allow for

developers to make some of the best looking games on the market. That being said, it can

still be used to create games that do not demand high graphical quality. Additionally,

Unreal uses a tool called a Widget Blueprint that uses the engine’s built-in scripting

language to create a user interface.



As stated previously, Godot is primarily used to make 2D games, so its graphical

capabilities are designed with that in mind. The engine’s UI tools are integrated with the

rest of its tree structure elements, much like Godot’s other tools.

● Analysis - Considering the user interface and graphics have so much in common it is

only natural that they would share applications for their development. In our research we

discovered several tools that will help in our approach to creating visuals for both

avenues that maintain the foundations of simplicity, consistency, that contain relevant

information and are informative, and finally that are of high quality.

For creating user interfaces unity offers three distinct systems, UI Toolkit, the

newest system and well optimized. It can provide runtime UI for games built within the

engine. Second, is the unity user interface package, allowing further runtime user

interfaces to be built within the engine itself. Finally, IMGUI which is designed primarily

for aiding in debugging and editing the engine interface. Unreal has a tool called the

Widget Blueprint that can create robust UI elements. While it does provide a good

amount of flexibility in creating simple and purposeful user interfaces, it does not provide

near the amount that Unity has. Godot’s UI tools function similarly to Unreal’s. Again,

though, it offers nowhere near the amount of flexibility that Unity offers. Despite this,

both Unreal and Godot’s tools would provide the flexibility necessary to design the UI we

had in mind.

Each of these UI tools are great, but we still need to find a solution with better

graphic capabilities. There are options such as Blender, a great program for making 3D

assets. Unfortunately this may be outside of the scope for our project, as we intend to

focus first on two-dimensional graphics. Unreal offers immensely strong graphics

capabilities, but again, this engine is designed to take on much larger tasks. Godot offers

a limited amount of graphical capabilities that can still deliver in terms of simplicity and

quality.

One such example of a simpler solution is the program Aseprite, a pixel drawing

and animation tool that is very simple and easy to approach. The software has a multitude

of features for animating and creating great looking interface designs and integrates well

with Unity. It even has several plugins that help to facilitate the importing and exporting

between the two pieces of software. Combining the Unity game engine built in user



interface tools, in unison with Aseprite we are capable of avoiding overly complex asset

creation tools, while still maintaining professional level quality.

User Interface
Capability and
Flexibility

Graphical Quality
and Capability

Overall Rating

Unity Has three different
systems for
producing UI
elements. Each one
provides a great
amount of flexibility.
(5/5)

Capable of producing
high- and low-end
graphics, allowing
developers to be
flexible and create
simple and easy to
understand visuals.
(5/5)

5/5

Unreal Has built-in tools that
allow for the creation
of UI elements;
provide an average
amount of flexibility
in terms of creating
these elements. (4/5)

Produces some of the
highest quality
graphics in the
industry, but this may
be beyond the scope
of the team’s vision
(4/5)

4/5

Godot Has built-in tools that
provide an average
amount of flexibility
when creating UI
elements. (4/5)

Has the capability of
producing
high-quality visuals;
on par with Unity.
(5/5)

4.5/5

Figure 3.3: An overview of what each engine’s graphical and UI capabilities can contribute to

the desired characteristics, along with ratings for each one.

● Chosen approach - Figure 3.3 shows that, when all is said and done, each engine’s

graphic and UI tools can get the job done. There are some, however, that are capable of

achieving the desired characteristics better than others. The flexibility of each of these

tools plays a large role in how they can overcome this challenge. After analyzing all of

these tools, we reached the conclusion that Unity’s graphic and user interface are the best

fit for our project. The flexibility that its UI tools provide will allow us to create a simple



interface that allows the user to easily understand the purpose of everything that they are

taking in. Additionally, the graphical capabilities of Unity allow to create visuals that are

high quality while, at the same time, are simple enough to assist the player in

understanding how the game works. On top of that, if we want to improve the visuals in

any way, the tools are easily scalable and can allow us to do so.

● Proving feasibility - In choosing tools that are already used at the industry level for user

interface, graphics, animation, and all other assets, the studio ensures the development of

a quality product. Pre-built industry standard tools avoids the need to worry about

whether the tools selected will allow our artists to do what they need, and rather allows

them to simply focus on creating quality assets, when concerning the development of user

interfaces, and graphics.

3.3 Support Online Two-Player Mode

While the build of Sej provided by the client includes a local two-player mode, it does

not include an online multiplayer mode. At a minimum, an online version of this game should do

the same things as an offline version: two players should be able to play a standard game of Sej

without any interruptions or pauses (apart from those made by the players). In order to

accomplish this, we need a networking library that can fulfill two desired characteristics, which

are explained below.

● Desired Characteristics - Since Sej is a multiplayer game by design, a user should have

the ability to find other people to play with easily. Otherwise, the game is pointless.

Additionally, when they find someone to play with, the two players should not have to

wait an extended period of time to get started with their game. Finding a server to play on

should take the same amount of time as setting up a game of Sej in real life. With this in

mind, we believe that, when a user is ready to play a game of Sej, they should be able to

search for another user and join a server in a short period of time.

● Alternatives - Unity has a library called Netcode that was released on June 27, 2022.

This built-in tool was created by the Unity team and supports all LTS versions of Unity

from 2020 on. As this was recently released, there are not many developers that have

used this in their games. In fact, many of them used Unity’s previous networking library:

UNet. According to its documentation, however, Netcode has many similarities to Unet



and allows developers to smoothly transition between the two libraries. In addition to

Netcode, Unity also has numerous third party libraries, such as Mirror and Photon, that

are similar to Netcode and its predecessor and have been supported for longer periods of

time.

Unreal has a built-in library that has been supported since 2014. The docu-

mentation provides an extensive exploration of what a developer needs to do in order to

make a multiplayer network. Additionally, unlike Unity and Godot, it delves into how

one can create a dedicated server. This would allow a session between two users to run

smoothly without much wait time during the game.

Godot offers a multiplayer API that, by default, provides implementations based

on ENet, WebRTC, or WebSocket. Additionally, it provides higher level facilities that one

can use if they do not want/need to deal with the specifics of the previously mentioned

network implementations.

● Analysis - As stated previously, Netcode has a descriptive documentation page that

clearly states what needs to be done in order to get a multiplayer server up and running.

Additionally, there are numerous video tutorials that clearly explain how this library

works. After viewing these two resources, the team created a small Unity project that

utilized the tools provided in Netcode and were able to create a server without too much

difficulty. The server we made was responsive and did not have any delays on either side.

In the event that delays occur, however, the documentation provides advice on how to

handle this. There are also several third-party plug-ins that allow for quality of life

improvements when working with Netcode. ParrelSync, for instance, allows developers

to test the network without having to rebuild the game every time.

Overall, Netcode fulfills all the desired characteristics. Again, though, Netcode

has only been publicly available for a few months, so there are not too many resources

that provide explanations for any hiccups that the team will inevitably run into. Not only

that, but the documentation states that it does not support WebGL, meaning that we could

not run the game in a web browser. For these reasons, it may be beneficial to use the

Mirror library in the event that Netcode is not the right fit for Sej. While the team has not

yet made a project to test its capabilities, it is our understanding that Mirror has a similar

functionality to Netcode.



The team has also yet to make a project that tests Unreal and Godot’s networking

libraries. Upon reading the documentation for both, however, we believe that they could

still be good fits for creating Sej, albeit with their own shortcomings. For instance, Unreal

Engine 5 shares many similarities with Unreal Engine 4. Because of this, we believe that

Unreal’s networking tools have been supported since Unreal Engine 4’s release in 2014.

Simply put, the library is widely used and there are plenty of resources that can provide

information on how it works and how it can go wrong. The documentation describes how

a server should be set up and provides advice for how to smoothly connect two players

and keep that connection up and running. However, it does not provide a succinct

explanation for how two players can find each other, so it is unknown how quickly two

players can find each other. It also describes how one can design a dedicated server for

their multiplayer game, which we may want to use to minimize wait time for the two

users. Other resources state that running a dedicated server may cost money, however,

which we want to avoid if at all possible.

Godot’s networking library, much like Unreal, has also been supported for an

extended period of time. This means that there are also numerous resources explaining

how it works and what can go wrong when working with it. It provides a high-level API

for developers who do not want to mess with the specifics of the network sockets. That

being said, it also has a mid-level API for those who want to change the specifics for the

game they have in mind. If we were to use this library, we would most likely utilize the

high-level API. While it may be useful in the event that we need to deal with the minute

details of a network, using the mid-level API is beyond the scope of the project and has

the potential to get in the way of development. Apart from that, the library seems to be

able to find and connect two users quickly and keep the server running without any wait

time on either end.



Networking
Library

Finding Other
Players

Wait
Time/Lag

Shortcomings Overall
Rating

Unity Built-in
library
(Netcode),
3rd party
(Mirror)

In our tests, we
found that
connecting two
players was
simple and fast.
(5/5)

None (5/5) Netcode is
new and does
not have
many
resources that
show how
things can go
wrong. (2/5)

4/5

Unreal Built-in
library

The
documentation
provides a
succinct
explanation for
setting up a
server, but it
does not state
how quickly
two players can
find each other
(3/5)

None
(based on
our
research
into
running
dedicated
server)
(5/5)

Running a
dedicated
server in
Unreal may
cost money.
(1/5)

3/5

Godot Built-in
library

Based on our
research, we
found that
setting up a
server with
Godot is simple
and does not
take too much
time. (5/5)

None
(based on
our
research)
(5/5)

The
mid-level
API is
beyond the
scope of our
project and
may get in
the way of
development.
(2/5)

4/5

Figure 3.4: An overview of how each engine’s networking library contributes to the desired

characteristics listed in each column, along with a rating.



● Chosen approach - Including a built-in library for networking tools is very helpful for

the average developer, and it is amazing that all three engines have this feature. Not only

that, but they all run fairly smoothly and have little to no lag between users. However,

they still have their shortcomings. Figure 3.4 lists all the pros and cons each of the

networking libraries provides in terms of the desired characteristics listed previously, as

well as a rating based on our analysis.

After analyzing the benefits and flaws of each of the libraries, it was a toss-up

between Netcode and Godot’s built-in library. However, based on the tools we want to

use for our other challenges, we believe that Netcode is the better choice. First and

foremost, it satisfies the desired characteristics of a multiplayer network in our game, one

that allows two users to easily find each other and stay connected without there being too

much lag. The biggest downside to using this library is the fact that there are few

resources that explain how things can go wrong. Because of this, we may find that it is

not a great fit for Sej. In the event that this happens, we can always switch to Mirror. It

has a similar functionality to Netcode, but it has been supported for a longer period of

time. This should smooth out the process of troubleshooting in the event that we run into

problems while working with it.

● Proving feasibility - While we have already run tests to learn how Netcode works, we do

not know how well it works with games like Sej. Because of this, we will develop a test

build that demonstrates that Netcode can run Sej. The test will include a barebones

version of the game that includes the core mechanics such as the dice, wands, and player

score, and none of the extra material such as a copy of the rules or high-end graphics.

3.4 Create User Account

The build we received unfortunately had no capabilities for persistent scoring. Today's

games have user data that far exceeds just that of persistent scoring. Our game solves this by

creating user accounts, with scores, games played including those won and lost. This data will be

offered in a fashion such that players may refer to games won or lost against other players. There

are many ways to attempt this, and we have found the approach of a lightweight scalable



database to be the best fit for our user data. This allows us a way to keep all of the data safe and

secure, and readily available for players.

● Desired Characteristics - The database for Sej does not require too much information

from a given user; all it needs is a username and a password. Given that the latter must be

confidential, however, the database should provide some level of security. Once the user

creates their account, it should record and provide their wins, losses, and other

information that they may find relevant.

● Alternatives - In the above section we mentioned the use of SQLite as a solution. In a

situation needing more customizability, or possibly the design of new more advanced

features requiring a new database solution, we believe SQLite in combination with the

web programming language PHP will be the most appropriate solution as this will offer

unparalleled customizability. In this alternative approach we will write the database as

needed in SQLite using the C programming language. Then, in order to send and receive

our data we will utilize PHP, where php acts as an interface to this database with the

game client, thus providing a unique database solution.

● Analysis - In deciding to use the game engine Unity, we have been fortunate to find that

there are a multitude of solutions for data storage. Traditionally in games a player

database containing all pertinent information is written in a language such as MYSQL,

hosted on a server somewhere, and finally the database is usually connected or interfaced

with the game client via languages such as PHP.

This method of approach is time consuming, and requires team capabilities in

several areas. This can be difficult for smaller studios such as ours. One example of such

a database solution that is used in the professional gaming industry is SQLite. SQLite is

the most used database engine in the world. It is small, fast, fully capable of performing

all tasks required of a database, and is highly reliable. Although, as stated, we do not need

large amounts of information from a user, rather our user data primarily consists of

simply a few strings and integers. This allows us a new approach to select from simple

and lightweight plugins designed for the unity game engine instead of the larger overhaul

of training for, and developing a complex database solution using tools such as SQLite.

● Chosen approach - Database Control (Unity plugin). Our desired approach is to use the

Unity plugin Database Control. The plugin is simply imported into the Unity game



engine workspace. From there the designer is granted access to a multitude of tools to

create and integrate a database for any project. These tools include features to edit a

database, such as empty, removing all users and data from the table. Database control

provides features via a C# script to allow users to register accounts, these accounts are

integrated with the database, and the user may then login using these newly recognized

credentials. Database control offers the ability to set and get data using the same c script

feature within the tool. The plugin offers further customization if the default script does

not suffice, allowing developers to change the look and layout of the database interface to

their liking.

Database Solutions: Complexity Standalone Security

Database Control Yes All features within

game engine

Very little(with Pro version)

SQLite No Requires use of web

programming

language to link client

and database

Great Security Features.

Requires some knowledge of

SQL programming

MongoDB Yes, but no

current

Unity

support

Must be done through

http requests made via

game client

Security features can be

implemented via code.

Figure 3.5: An overview of the different solutions researched, and their capabilities.

● Proving feasibility - In proving feasibility we can look into other projects created with

the same tools for the efficacy of database control. When reviewing the product we have

found several tutorials, and video tutorials demonstrating the product and its capabilities

in action. The database control plugin is offered in the Unity asset store, and as such has

met rigorous standards and quality control before being allowed as an offering. There are

also several other developer accounts of using the software and their experiences. We

know having a product that offers great support by both the developer and the community

that uses it is a solution that will be in our favor.



4 Technology Integration

Building a video game requires intense detail to ensure that all of the moving parts are

running smoothly. This section outlines how we plan to integrate and unify the technologies

discussed in the technology analysis section into one solution. Since Unity was deemed the best

candidate for game engine, this gives our architecture a solid base on how we will structure our

solutions for implementing the rules of Sej, the user interface, database, and networking.

Figure 4.1: An overview of how Unity can contribute to each of our key features



The minimum viable product for Sej Online includes implementing the rules of Sej,

setting up networking capabilities, creating an appealing UI/experience, and finally saving our

users account information in a third party database through Unity. Unity is what joins everything

together. Many of the key features that we will incorporate are tools that Unity provides. For

example, implementing the Sej rules and game mechanics can be done in a variety of ways using

Unity such as manually writing the necessary scripts; Unity also offers dice rolling assets. Unity

further presents a plethora of choices when it comes to UI Design. Both two and

three-dimensional graphics are offered as well as an extensive amount of tools (Visual tree, UI

Renderer, Debugger) in the UI tool box. Netcode for GameObjects is also used by Unity to

handle its networking. Unity describes Netcode as “a high-level networking library built for

Unity for you to abstract networking logic.” Netcode allows users to send GameObjects and

other in-game data across a networking session to multiple players at once. Finally for data

storage Unity has a plugin called Database Control. Unity describes the plugin as “a quick and

easy solution for an online user account database in your game”. This will be the main choice for

use however an alternative would be to use SQLite. SQlite is a third party database engine

written in C that acts more as a library for developers to save important assets. The integration of

all of the technology required to create Sej Online was simplified with Unity. Unity brings

everything together acting as a base for us to create this game as well as providing a multitude of

useful resources.

https://docs.unity3d.com/Manual/UIE-VisualTree.html


5 Conclusion

To conclude, Sej Online seems technologically feasible and has potential to demonstrate

small projects with vision can adapt from older works to deliver a unique experience in an

industry pushed to deliver products with widespread appeal but bland experiences. Research into

the technological challenges of what game engine to use, the design of the user interface, how to

store user data, networking, and graphics has yielded useful tools that will come in handy in the

implementation of Sej Online. Unity seems to be the engine with the best fit that has support for

all of the requirements of the minimum viable product including the user interface and graphics,

hooks into a database, and networking. Integrating these features into one product was proven

plausible in the technological analysis and integration sections. Serpent Studios looks forward to

using these technologies to implement a fully-featured and mature version of Sej that caters to

both readers of Serpent's Reach and players unfamiliar with science fiction in the coming weeks.


