
School of Informatics, Computing & Cyber Systems

Serpent Studios
Team 4 Sej Online

Spring 2023

Sponsor:
Dr. Patrick Kelley

Mentor:
Italo Santos

TeamMembers:
David Hermann
Johnathan Ray
Tyler Morales
Nick Shugrue

Nickolas Maxwell

Table of Contents

Table of Contents.. 2

1 Introduction..3

2 Unit Testing...4

3 Integration Testing...8

4 Usability Testing...10

Conclusion... 13

1 Introduction
Sej Online is an online version of an earlier project created by our sponsor Patrick Kelley.

The original digitized Sej was a project made for fun that lacks key features which we hope to

implement in Sej Online. The key features include two-player networked gameplay, persistent

scorekeeping, an elegant user interface, and improved graphics. The project is built in the Unity

game engine which includes a testing framework.

In general, software testing is used to judge whether a software product is free of bugs

and other defects while it is still in a developmental stage. It does not include concerns stemming

from design issues but it may be able to diagnose the symptoms. Software testing is an

overarching category that includes numerous different types of testing such as unit testing,

integration testing, usability testing, and near the end of development, acceptance testing. Unit

testing is concerned with testing individual code functions, methods, or modules. Integration

testing judges whether individual functions, methods, or modules work together properly.

Usability testing is a black box approach that looks at the user experience in general from the

perspective of a user. Acceptance testing judges whether a software project has met the goals

outlined in previous design documents and determines whether the project is ready for delivery

to a client.

For Sej Online, we plan on conducting unit, integration, and usability testing. We do not

include any plans for acceptance testing yet since we have several more weeks of development

left. For unit testing, we will use the Unity Test Framework which allows for testing in both

"Edit Mode" where the game elements are manipulated through editing tools and "Play Mode"

where the game is played as normal with special input parameters. For integration testing, we

will use the results of our work with unit testing to combine game elements together in a testing

environment. We will have some limited testing for usability but it will not be our focus since the

entire UI has been extensively prototyped and tested throughout development. The upcoming

sections in this document lay out our testing plans in more detail, beginning with unit testing.

2 Unit Testing
Unit testing determines whether key functions, methods, and/or modules work correctly

by themselves with known input/output values. The goal is to determine whether a wide range of

values produce expected behavior Typically, in unit testing, portions of the code or system are

broken up into measurable smaller “units” These tests are usually automated, and used by devs to

determine if the “unit” that has been defined is operating as desired.. For Sej Online, we will use

the Unity Test Framework as it is included with the Unity game engine development

environment. The Unity Testing Framework includes options to conduct tests in Edit Mode and

Play Mode. For Edit Mode tests, we will create test assemblies, which are groups of tests. Tests

in test assemblies can be prompted to run as long as no compilation errors are found in the tests

or scripts they test. Play Mode tests require separate assemblies from Edit Mode tests. Play Mode

tests will allow us to conduct tests while the game is running as if it were being played through

the Unity editor. Conveniently, the Unity Testing Framework automatically generates code

coverage reports as tests and test assemblies are made. We will use these automatically generated

reports to ensure that most important scripts and assets work correctly. A list of scripts, classes,

and functions we will test is detailed in subsequent subsections. It should be noted that many of

these unit tests do not contain boundary values because the functions/scripts are either called

without any values or they generate self-contained values. Additionally, most of these scripts are

modular which means erroneous values are impossible.

2.1 StartMenu

● Boundary values: None

● Expected input 1: Game executable started

● Expected output 1: StartMenu initialized, menu aesthetics initialized

● Expected input 2: Any key press

● Expected output 2: StartMenu fades and scene passes control to MainMenu

● Erroneous input: None

● Fallback output: None

2.2 MainMenu

● Boundary values: None

● Expected input 1: Control given from StartMenu

● Expected output 1: MainMenu fades in, set as active

● Expected input 2: Options button clicked

● Expected output 2: Button click sound played. OptionsMenu given control

● Erroneous input: None

● Fallback output: None

2.3 OptionsMenu

● Boundary values: PlayerPrefs values if present

● Expected input 1: Control given from MainMenu

● Expected output 1: Options menu set as active

● Expected input 2: User selects a new resolution

● Expected output 2: The game resolution refreshes itself

● Expected input 3: User selects a new volume with the slider

● Expected output 3: The game updates the volume value

● Erroneous input: None

● Fallback output: None

2.4 ProfileMenu

● Boundary values: None

● Expected input 1: Control given from MainMenu

● Expected output 1: Options menu set as active

● Expected input 2: User inputs a player name

● Expected output 2: The statistics of the player are fetched from the database and

displayed

● Erroneous input: The user inputs an invalid username or is not logged in

● Fallback output: The game displays "0" for all values and "Not logged in!" on screen

2.5 DiceScript

● Boundary values: None

● Expected input 1: Script called when dice rolled

● Expected output 1: Randomized direction/force vectors applied to dice for rolling

simulation

● Erroneous input: None

● Fallback output: None

2.6 WandScript

● Boundary values: None

● Expected input 1: Script called when wands rolled

● Expected output 1: Randomized direction/force vectors applied to wands for rolling

simulation

● Erroneous input: None

● Fallback output: None

2.7 DiceCheckZoneScript

● Boundary values: Dice collision value

● Expected input 1: Dice collision value

● Expected output 1: Script determines which side the dice is on and returns that value to

all players connected to the game

● Erroneous input: None

● Fallback output: None

2.8 WandCheckZoneScript

● Boundary values: Wand collision value

● Expected input 1: Wand collision value

● Expected output 1: Script determines which side the wand is on and returns that value to

all players connected to the game

● Erroneous input: None

● Fallback output: None

2.9 DBManager

● Boundary values: username, score

● Expected input 1: Script called

● Expected output 1: Script returns whether the user is logged in

● Erroneous input: None

● Fallback output: None

2.10 CloudSave

● Boundary values: username, games played, games won, games lost

● Expected input 1: Script called with a new user

● Expected output 1: The script initializes username, games played, games won, games lost

and sends them to the cloud database

● Expected input 2: RetrieveKeys() function called

● Expected output 2: Debug log prints all keys currently stored

● Erroneous input: None

● Fallback output: None

3 Integration Testing
Integration testing is the process of ensuring that the transfer of information between

modules is functioning properly. A lot of Sej Online involves getting several pieces of

information from one part of the game to another. If a line of code does not execute properly,

then it could result in a vital piece of info not being displayed to the user, resulting in, at best,

confusion and, at worst, a non-functioning game. By using integration testing, we hope to avoid

these pitfalls as often as possible. We plan on observing whether or not data is passed between

the different modules properly, specifically to the multiplayer server from the main menu and the

actions taken by the users, as well as from the multiplayer server to the database.

When a user navigates from the main menu to hosting an online game of Sej, they are

given a six character code that they can give to other users so that they may play with each other.

If this code is not displayed to the host user, then other users will be unable to join the game and

the host will have no one to play with. We believe that implementing an integration test here

would be appropriate: when a user decides to press the button on the main menu that allows them

to host a game, they should be brought to a level that has the game itself and a code that they can

share with others. Additionally, a user who wishes to join will also have to press a button on the

main menu, as well as a text prompt where they can enter the code. Once this is complete, the

user joins the game being hosted by another user and the two can play together. If this does not

work, then one user is stuck in the game, and the other is stuck on the main menu. Here, another

test can be implemented: if the user enters the correct code, then they will join a game that is

already being hosted by another user.

Once these two actions occur, an actual game of Sej can commence. During the game, a

user can interact with the buttons, dice, and wands found in the scene. These interactions need to

be visible not only to the user who initiates these actions, but to the user who is waiting for their

turn. If one of the users does not see the interaction occur, not only will it cause confusion on

their end, but it will give an unfair advantage to the user who can see it occur. Because of this, an

integration test is needed here: if a user interacts with any of the objects in a scene, the server

needs to show it to both users. In addition, due to the fact that Sej is a turn-based game, there

need to be moments where a user is unable to interact with certain objects. For example, if it is

currently the host’s turn to throw the wands, the other client should not be able to throw the

wands. If this were to happen, it could result in abuse from users who want to ruin other people’s

fun. It would be appropriate to have another test here: if it is not the user’s turn, then the server

should make it so that they cannot interact with game objects in the scene.

When a game is complete, each user’s number of wins and losses is updated in a

database. The server looks at the scores of the current game and, based on their values,

communicates with the database which user won and which user lost. This transfer of data must

be precise; if the data does not go through or if the wrong data is sent through, then the database

will contain inaccurate information. This will confuse users who want to keep track of how many

games they have won and lost. An integration test is needed here to prevent this from happening:

if the server detects that a user has won, it will inform the database of this and the database will

update the user’s won games value. Additionally, if the server detects that a user has lost, it will

inform the database of this and the database will update the user’s lost games value.

4 Usability Testing
Usability testing refers to examining how users will react to a product. This is vital to the

development of a product because it allows for the creators to get direct feedback from potential

users. In developing Sej online there must be a large emphasis on user intractability. The core of

a game is its playability. Determining playability, however, can prove to be quite difficult. The

goal of this would be to measure how usable your product is for the average user. Our project,

Sej Online, is fairly linear, making usability testing straight forward. As we will be able to design

and test for specific features and usability as the game is designed and production progresses.

That being said, it may be more intuitive to certain users and less intuitive to others.

Users who already play video games will be familiar with navigating with and through a game’s

user interface, as they have no doubt done so before, which is why we intend on making this

game’s UI similar to those that are already on the market. This practice is common in the

industry as many users will prefer a game that has a similar look and feel, allowing them to

easily get into the content and not spend time learning how to use the games interface or various

other systems. The games industry has spent large amounts of time in developing what are

considered the most intuitive and well designed user experiences, that has been slowly learned

and used by smaller developers, and as such there is a large wealth of common knowledge to

draw upon in developing Sej with usability in mind. However, regardless of industry practices,

users who have played little to no video games may still not be as familiar with these tropes. In

keeping with this thought, we will take special care in ensuring that every aspect of the game has

an obvious purpose that the user can understand easily and quickly. As well as incorporating

numerous usability tests catered to our specific platform.

We could begin by starting the game, and analyzing the opening menu for any aspects

that may enhance or hinder its usability. This can be done in a professional way by following in

tandem with industry standards and guidelines. Next, we continue to analyze each sub menu.

Here we can select each of the options and gauge the user's reactions to said options to get

feedback. They can interact with each interactable item to see its function and, upon a later exit

interview give possible comments. Next the player usability test could transition into getting into

a game, either locally or online. Here we could record the user's interaction while loading the

game. Finally, we inspect how easy it is to play the game by playing through a few games of Sej

to get the user familiar with the rules and gameplay. Any aspects that take away from the game

play, poor HUD, blocky movements or buggy/confusing gameplay could be addressed here. We

took all of these aspects into account in pre-development, however we left room for any

necessary improvements. The aspects we took into consideration when designing the usability of

our program focused mainly on displaying a presentable, user friendly game. Each team member

has an inherent background as end users as we have had comprehensive amounts of experience

with the game in development. The novelty of the game was accented with enhanced graphics

and UI to allow for smooth gameplay for the player.

When analyzing how a user navigates each of the starting menus, we will analyze how

quickly and intuitively they can get from the starting menu to other parts of the game. In general,

if the user wants to play a game of Sej online, they should be able to click through each of the

menus without getting lost and while having a full understanding of what each submenu can

offer them. If they can do so without getting confused, then we can consider this test a success.

We suspect that users that are already familiar with video games will have an easier time

navigating than those who are not, which is why we should pay close attention to how

non-gamers navigate the menus. If they are unable to get to where they need to go, then we may

want to reconsider how we can better accommodate the game so that it is more intuitive to

operate.

In creating the above mentioned, and with a desire to create a professional more suitable

usability test for Sej we look to other companies and studios that have created relevant content in

the industry for inspiration, and how they defined their own usability tests. It is common in the

industry for studios and designers to look at their users in great detail. In order to develop a

successful system that can be used, you must know the capabilities and actions that these users

may be capable of taking. Once a good baseline of who the user is, what they are capable of

doing as far as interacting with the game can begin the testing. Examples of such testing include

measuring the difficulty that our users face when performing certain actions within the system. In

utilizing the Unity test framework we are able to access various bits of data that allow us to

formulate statistics that allow us to analyze various things like user menu navigation, how long it

takes for our users to access to the areas of the game desired. We can view such things as how

often users adjust volume, to better judge the proper levels or audio. This allows us to make the

adjustments necessary that allow users the experience desired. User exit interviews can be done

for play testers to help determine what they felt was functioning correctly, and what they felt

made it more difficult to play the game. Testing is done on Sej across multiple devices to monitor

the usability on the vast amounts of hardware available to users. By ensuring that Sej can be

played on as many machines as possible we guarantee maximum device usability to users.

As usability is based on the features developed, it will progress in short bursts as Sej

development continues, by selecting users of the developers to be our play testers, composed of

friends and family the group is roughly half regular game players, and half composed of non

game players. Initially tests are made to determine connectivity is working. We then allow the

users to test various functionality as it is developed, functions like using codes to join games,

interacting with the interface and getting appropriate output such as animations, game

information, or audio cues. We follow this course with more testing of later features, graphics/

audio and user appeal, clarity of the in game rules for Sej users and the way we display them in

game. These various stages continue to the end of Sej development where users are offered an

exit interview to gain final insight on the nearly finished product.

Conclusion
To conclude, this Software Testing Plan for Sej Online outlines three critical sections of

testing to ensure the project is as bug-free and stable as possible. Each of our unit tests outlines

the most important functions, modules, and scripts we plan on testing and ensures that all the

minute details of our game function as intended. The integration tests outline how the large

portions of the system, such as our database integrations, game rules, and the multiplayer server,

work together and how information is passed between each of them. Finally, the usability tests

focus on tests that measure how simple it is for a user to interact with the game and whether the

results of those tests meet our standards for an easy to use product. Ultimately, it is our goal to

make Sej Online as error-free as possible with these testing strategies. We believe that, by

creating tests that focus on displaying the correct information to the user and preserving data

between modules, any user who picks up the game can intuitively understand what is going on,

will have a fun time playing it, and will want to come back to play it again.

