
S.A.R.C.I
Search And Rescue Coastal Intelligence

Final As-Built Report

5/03/2022

Team Mentor: Han Peng

Group Members: Dylan Woolley, Vidal Martinez,
Randy Duerinck, Jabril Gray

Team Sponsor: General Dynamics Mission Systems

Table of Contents

Table of Contents

1. Introduction 1

2. Process Overview 3

3. Requirements 4

4. Architecture and Implementation 12

5. Testing 16

6. Project Timeline 24

7. Future Work 26

8. Conclusion 27

9. Glossary 28

10. Appendix A: Development Environment and Toolchain 30

1

1. Introduction
The United States Coast Guard (USCG) oversees 296,000 nautical miles of sea, utilizing

the Rescue21 system for Search and Rescue missions. General Dynamics Mission Systems
(GDMS) assists the USCG by maintaining the Rescue21 system. The Rescue21 system is made
up of a system of antenna towers called remote fixed facilities (RFFs), each placed strategically
off the coast of the Continental US (CONUS), major rivers, lakes, and islands (Hawaii, Puerto
Rico, and Guam). Each RFF features very high-frequency radios capable of picking up distress
signals. Last year’s capstone team developed a Site Weather And Power Recorder (SWAPR)
device for GDMS to collect power and weather data at an RFF; however, the current
functionality produces data that is difficult to access and read. Our project expands on the
functionality of the SWAPR device to provide software capable of collecting, storing, and
analyzing weather data collected by SWAPRs. It displays this information through a clean and
concise Graphical User Interface (GUI) for technicians and coast guard operators to access and
use. This information is then used to improve time spent on maintenance and help reduce
maintenance costs. The project is broken into five different subsystems: the Simulator, Reader,
Database, Website, and Orchestra Subsystems. Each subsystem has been categorized to serve
specific functions.

The essential user-level requirements of this system include actions across all five
subsystems. The Simulator Subsystem must create data imitating the SWAPR device’s output to
emulate the real-world SWAPR hardware, collecting data and producing a string list of data to be
sent to the system’s database. The Reader Subsystem must receive this SWAPR data, and then it
can be securely transmitted to the database and stored. The Website Subsystem must establish a
secure website environment with authentication. On the website, there must be two summary
views for the SWAPR devices: the list view and the map view. The list view includes a website
page presenting every SWAPR device visualized as informative boxes showing real-time data.
The map view similarly offers every SWAPR device, but as a node on a map providing the
geographical location and operational status of the RFF. The website must also provide a
graphical view of historical data stored in the database. Historical data refers to data that has
been collected previously. The views will include graphs or charts such as a line, bar, scatterplot,
and wind rose compass. The Website Subsystem must create a notification if an RFF has
operational issues. The notification will be viewable by admin users and will give a general
status code for the RFF site and a short description of what caused the status change. The
Website Subsystem must also provide the option of exporting data as a .csv file for users who
need to store the data locally on their machine. The Orchestra Subsystem is considered a stretch
goal for our project. The Orchestra Subsystem will allow us to emulate a network containing
hundreds of SWAPR devices to stress test our system to find any bugs or vulnerabilities.

2

We also have several functional requirements for each subsystem. The Simulator
Subsystem needs to be able to generate SWAPR data for valid and invalid data randomly. It also
needs to be able to send data over virtualized com ports via RS-232 protocol. Next, our Reader
Subsystem must be able to read data over virtualized com port via RS-232 protocol and establish
a TCP client connection with the database queue. For our Database Subsystem, there are several
functional requirements. The Database Subsystem needs to establish a connection with the
Reader Subsystem. It must queue collected SWAPR data in AWS Message Queuing Service
(SQS). The Reader Subsystem will send data to the AWS SQS queue, which will be pulled to
create database entries. Finally, our Website Subsystem is made of both the frontend and
backend. There must be secure authentication between subsystems and user accounts and
role-based permissions on the website. The website will have the ability to query the database
server safely. It will have a notification system that detects a problem with the RFF and creates
modals for specific user groups. Modals are windows that show up in front of the main screen for
particular actions and deactivate the part of the screen not occupied by said modal. The Website
Subsystem should have the ability to create a list-view, map-view, and a historical data summary
of the latest data from all SWAPR devices in the network. When in a graphical view of historical
SWAPR data, the user should be able to export the selected data to a comma-separated file. The
Orchestra Subsystem needs to be able to connect any number of Simulator and Reader
Subsystems over virtual com ports for lab environment stress testing. To achieve the
functionality of our system features, different tools were used to facilitate the process.

3

2. Process Overview
The development of our team’s project required tools to assist in task management,

communication, record keeping, and code organization. Our team used GitHub’s version control
feature to manage and order updating our project. GitHub also allowed us to manage our code
integration using a release branch, develop branch, and working branches off of the develop
branch. Together, this streamlined updating code and merging commits between multiple team
members. Our team primarily used Discord for direct messaging and communication, and
Discord was also used for document sharing and record-keeping for meetings. This platform
allowed our team to record critical events and notes and communicate effectively and efficiently.
Google Drive was also used to handle document sharing and act as the main repository for our
documents and deliverables.

Our team assigned Dylan as our team leader. In his role, he acted as the leader in
communication with our client, led the conversation on significant decisions, and arranged
events for the capstone deliverables. Jabril, Randy, and Vidal all filled support roles assisting in
submitting deliverables. The functions of architect and release manager were initially set to Vidal
and Jabril, respectively, but these roles became a shared responsibility within the team as time
went on. The recorder role was given to Randy, who maintained the recording of meeting notes.

4

3. Requirements
As stated in our introduction, our system consists of five main subsystem components

that form our project. Our aim is for this project to provide functionality for a secure website
with retrievable weather data for creating informative visuals. The performance requirements
specify our need for speed and ease of use. The Simulator, Reader, Database, Website, and
Orchestra subsystems are responsible for meeting our project requirements.

● Create data imitating the SWAPR device’s output

● Take data from a SWAPR device and send it securely off-site

● Store and serve SWAPR data in a secure manner

● Establish a safe website environment with authentication

● Create summary and historical views for the SWAPR devices and data in the

network

● Create a way to notify an operator when there is a problem with an RFF site

The Simulator Subsystem directly connects to our Reader Subsystem, and together they
drive our natural environment emulation by providing simulated SWAPR output and secure data
transfer. The Reader Subsystem must read data, then package the received data over a TCP
connection to our Database Subsystem. The data from our database is then retrievable by our
Website Subsystem. Authorization is required to access our database by user-based role
authentication from the Website Subsystem. The retrieved data can then be viewed in different
historical and summary views on our Website through the graphical user interface. The historical
perspective includes graphs or charts generated using data from the database. The summary view
provides the list and map view; both show details of each SWAPR device and give the user an
understanding of summary information such as their location, current temperature, wind speed,
and more. Notifications are needed for our system so admins are up-to-date on the status of the
devices. Data must also be stored locally from the Website so users can save data when
necessary. The Orchestra Subsystem is a stretch goal for our project. It utilizes the Simulator and
Reader Subsystem to create an easily reproducible instance of the simulated SWAPR device
output and data transmission. The Orchestra Subsystem will allow hundreds of instances to be
made to mimic a SWAPR device network. This communication occurs between the instance in
the orchestra and the Database Subsystem. The Orchestrator Subsystem will allow us to stress
various test aspects of the sending and receiving data from device to database.

5

3.1 Simulator Subsystem Requirements
The Simulator Subsystem considers the random generation of SWAPR data and data

transmission over a virtualized com port on the RS-232 protocol as the prominent functionalities.
Random data generation gives our environment a reproducible, ostensibly non-deterministic
model to provide concise and practical test cases for assessment as we develop our project. An
example of this is wind direction. Our simulator will have constantly changing wind speeds for a
given SWAPR device-produced output to simulate a real-world scenario. The Simulator
Subsystem will generate random values ranging from 0 to 360 degrees to test handling and
viewing of this data output from a given SWAPR device. Additionally, the value generated will
not be the same across multiple devices to emulate a natural environment.

Sending this generated data from our simulated SWAPR devices over the virtualized com
port allows additional testing conditions to evaluate. Altogether, we build a subsystem capable of
assessing the expected circumstances the Rescue 21 system will operate under within a
controlled environment without needing a physical SWAPR device. This is a vital function in our
system. Without a virtualized serial port in our simulation, we would have no way of sending
data between our applications, the reader software, and the database. This complicates simulating
the SWAPR device's mode of data transmission but would also leave us incapable of testing this
part of our system and potentially developing an incompatible system to work with the hardware
version of SWAPR devices.

When considering these functional requirements, we also evaluate the performance
requirements. The SWAPR device simulation will need to be capable of generating output data in
five-second intervals, or more frequently if possible. This data must be generated at such a high
frequency because this data from the SWAPR devices is the basis for all analysis and
visualization the users will execute and produce, respectively. Suppose data generated to
simulate a SWAPR device is produced on an interval different from reality. In that case, we may
face a skew in our systems expectations of the SWAPR device's performance which will likely
impact the development of our system.

The output data generated from the simulator must be transmitted by the virtual com port
to the reader software in the Reader Subsystem at a 9600 baud (Bd) rate. A baud rate refers to the
rate of bits per second. It is essential for the rate of bits transmitted from a SWAPR device
simulation to the reader software through the virtual com port to imitate real standards for bit
rates. As a maximum bit rate in the serial port, this data transfer rate guarantees our simulation
imitates a natural and expected standard. A 9600 Bd rate is an adequate speed capable of
streaming over ten lines per second.

6

3.2 Reader Subsystem Requirements
Our team needs two functional requirements in the Reader Subsystem: the data needs to

be read over the virtual com port using the RS-232 protocol, and the TCP client connection
needs to be established with the database. The read data transmitted over the com port comes
from the Simulator Subsystem. The necessity of this functionality is the same for the Simulator
Subsystem’s functionality for sending data over the virtual com port. Using the virtual com port
imitates a real-world activity a SWAPR device will have, allowing our team to test this
subsystem with realistic cases.

Establishing a TCP connection with the database queue is a process used in the actual
implementation of our system. This connection is necessary for transporting all data from a
SWAPR device to our database queue for usage in the Website Subsystem. The Reader
Subsystem is expected to handle data transportation with the assertion that our database always
receives generated SWAPR device data from our Simulated Subsystem when a TCP connection
with the database queue is acknowledged.

The functional requirements we are concerned with also impose a couple of
performance requirements for our subsystem. The virtual com port connection between the
Simulator Subsystem and Reader Subsystem must have a 9600 Bd rate; this requirement is
identical to the Simulator Subsystem performance requirement. A standard rate for
communication between both subsystems is a standard for com port data transmission and should
be met as any other adequate system requiring data transmission would.

The data received from the Simulator Subsystem needs to be transported over the TCP
connection to our database in at least five-second intervals. This means that our connection must
have a round-trip time (RTT) of five seconds, where our database queue fully receives a data
entry from the Reader Subsystem every five seconds. Our time restraints are calculated based on
storing data in our database within a feasible time to avoid delays in other subsystems down the
pipeline, such as the Database Subsystem or the Website Subsystem.

3.3 Database Subsystem Requirements
The functional requirements for the Database Subsystem are primarily concerned with

TCP connection and building the database. The TCP host connection needs to be established
with the Reader Subsystem to allow data transmission between the Database and Reader
Subsystem.

The data incoming from the Reader Subsystem will be placed in a queue using the
Amazon Web Services Simple Queue Service (AWS SQS). Storing the data from the TCP

7

connection in a queue using the AWS SQS is the first step in storing SWAPR device data in the
database and making it usable in the Website Subsystem.

Once in the queue, AWS Lambda Functions will make database entries from the SWAPR
data queue. The database entries are required for building our database on the AWS server. With
a database populated with entries acquired from the TCP connection, we will have all SWAPR
device data accessible by users in the database.

The hosting for the database server will use the Amazon Web Services Relational
Database Service (AWS RDS). The RDS will be necessary for hosting our Database Subsystem,
which can be used with our Website Subsystem. With a secure TCP connection between the
server host and Reader Subsystem client, an established database, and hosted by our AWS server,
our Website Subsystem can access any available data generated by the Simulator Subsystem.

The Database Subsystem performance requirements deal with the specifics for the
data queue in our database and the total storage expectation of our database. The data from the
TCP connection established with the Reader Subsystem must be received and placed in a queue
in five-second intervals. This time interval is necessary to guarantee adequate time for this
Subsystem to acquire data and place this data in a queue without underestimating the time it will
take.

As mentioned with the Reader Subsystem, we want to guarantee a sufficient turnaround
time for generated data from the SWAPR devices. The database needs to be capable of
communicating with more than 200 facilities, each with its own SWAPR device. Our database
should be capable of handling inputs from every connected device in an uninterrupted, real-time
stream, with each SWAPR device's data being stored in their own data entry within the database.

We need the data entries to be built within five seconds to maintain access to our
database's data. This is important to maintain a consistent speed from data generated in the
Simulator Subsystem to entry creation in the Database Subsystem. With every interval of data
entry creation and insertion into the database taking approximately 20 seconds, the data stored in
the database should be accessible reasonably and accurately. We believe this length of time may
be generous, but once our team completes our prototypes, we should understand precisely how
long this process can take.

Not only is the speed of our data generation and storing important in performance, but the
capacity of data that can be stored is essential in our Database Subsystem. The total amount of
data stored in our database should be capable of reaching at least a year. This would mean that
with a 24-hour run-time with data generated and stored from a single SWAPR device in five
seconds, we should expect to keep approximately six million data entries, with each entry being
generated from a single SWAPR device's output. This will be done for 250 SWAPR devices,
which creates about 1.5 billion data entries. Our estimate of a given file is about 50 bytes.
Therefore, the total amount of data stored on the server will reach 75 gigabytes after a year.

8

3.4 Website Subsystem Requirements
The functional requirements for the Website Subsystem Backend are hosting the Blazor

Server on AWS, generating a graphical view of historical SWAPR data, generating notifications
with a notification system, and establishing secure authentication between subsystems as well as
"faking" user accounts and role-based permissions.

We need to create a Blazor Server application that will take and display information
retrieved from our database. The Blazor Server can be hosted on AWS to allow features covered
in the following functional requirements to be achievable.

Once we can query data, we will need to use the historical data from the database to
create graphs for the user's view. Graphical views of the historical data will allow users to view
the data in organized and summarizable ways to improve the user experience. For example, a line
graph, a wind rose compass, or a radar chart.

Our notification system will be responsible for notifying users when there is problematic
information or a response signifying a critical event in a SWAPR device's output data once
received by the backend of the Website Subsystem. Our client requires the notifications to be
displayed when the following admin user logs in to the website. Upon detecting a critical event
in the backend of the Website Subsystem, a notification is created instantly in collaboration with
the frontend interface.

There are four status types for a SWAPR device. There is green which means that
everything is working correctly and the data is in acceptable ranges. Yellow represents an issue
with the weather data, which is detected from data outside of acceptable ranges. Orange means
that there is a problem with the recorded antenna power. Red means that there was no response
received from the SWAPR device, so the site is offline, and the problem is unknown. This is
important for informing technicians that are not on site of the issue and allowing the technicians
to visit a site with the knowledge of its operational status beforehand.

The Coast Guard and GDMS need to ensure that only authorized users have access
SWAPR devices and their data. We need a secure authentication system that consists of two
roles: user and administrator. We need authentication compatible with the Windows operating
system because this maintains consistency with General Dynamics' requirements. Currently, we
will fake the user and administrator roles because of budget and time constraints. The software
needed is available and applicable to the purpose, and the software will be recessed at the end of
the project for implementation.

For our Website Subsystem Backend, we have several performance-based requirements.
The Website Subsystem needs to retrieve data for summary and historical views in under five
seconds, then render the graphical map view of the SWAPR device data taking no more than six

9

seconds for retrieval and ten seconds for rendering. Our team is looking for a wait time of 30
seconds or less to view our database's most recent incoming data in the desired format.

Our backend also needs to take in historical SWAPR database information and extract it
to a CSV file in under three seconds. Creating the CSV file in this time frame helps guarantee the
data can be accessible in a downloadable, text-based format for a given user's usage.

The functional requirements for the frontend side of the Website Subsystem are focused
on the ability to create a list-view summary of the latest data from every SWAPR device in the
conceptual network of RFFs. The same is needed for our website Subsystem map visuals; we
need to create a map-view summary of the latest data from every SWAPR device. Having this
functionality provides users with alternative views to text-based displays.

Our team needs our website to create a static, graphic view of historical data for any
given SWAPR device, and as an additional stretch goal, we want to have the graphical view be
interactive. On the other end of the Website Subsystem, the frontend portion of functionality is
specifically relevant to the interface the user sees and interacts with. The historical data in the
database should be viewable as a graph, whether a wind compass, line graph, or bar graph, for
example. The interactivity we look to add expands beyond the static images generated to include
adjustable charts. This, for example, could be an adjustment of the range of dates or the content
of values affecting either axis on a graph.

The performance requirements are necessary for defining the speeds to which data is
created and updated on our website's front. Our website may suffer poor refresh times and load
times without consideration and efficiency. The time to process and make our list-view summary
widgets should be under 6 seconds and 3 seconds for the map-view summary.

The live widgets in the list view should be refreshed approximately every minute. This is
the amount of time approximated based on data generation and retrieval of data from our
database.

The map view will need to consider the Area of Responsibility (AOR). The AOR
describes the expected capacity of RFFs to view an instance. The AOR for the SWAPR devices
is currently set to 18. Our team will need a system to view these devices as their correct set sizes
for clarity in their relative responsible sectors.

To generate data for visualizations on the front end of our Website Subsystem, we need to
create requested graphs within five seconds for users.

Displaying critical event notifications generated in the backend of the Website Subsystem
needs to occur quickly due to their importance in notifying the user of critical events. The event
will need to be visible in under two seconds from the point of creation, and the notification

10

should not be cleared until the appropriate user chooses to remove it. This goes hand-in-hand
with the backend side of the Website Subsystem.

3.5 Orchestra Subsystem Requirements
The Orchestra Subsystem has several functional requirements necessary to work

properly. This Subsystem needs to be able to connect to any number of simulator and reader
subsystems over virtualized com ports for lab environment stress testing.

There are two non-functional requirements which are essentially simpler tests which will
prove our functional requirements will work. The first non functional requirement is to be able to
connect to at least one Simulator Subsystem over RS-232 protocol on a virtual com port via the
Null-modem emulator mentioned above. At least one established connection is the minimum
requirement by our clients request.

Our second non-functional requirement is for the simulator to be able to connect to the
reader subsystem in no more than five seconds per connection. The purpose of this requirement
is to make sure our system works as an individual SWAPR device and also to stress test our
system before adapting the reader software to a large-scale implementation with more SWAPR
devices.

3.6 Environmental Requirements
Our project has been developed in a Microsoft Windows environment to avoid any

complication with our other tools in our environment. The Windows Operating System (OS) is
used by our client and necessary for implementation with their systems as well. Using this OS
will allow easy implementation of Microsoft Visual Studio, the Integrated Development
Environment (IDE) and interface we have been required to use by our client for creating our
code base.

Visual Studio is needed, because it has a range of features useful to our team. Without
Visual Studio we would face more complexity in finding and using dependencies to meet the
specifications of our client. Two of these features are the .NET 5 and Blazor Server products.
.NET 5 and Blazor Server are two Microsoft products that are needed by our team for our
systems development and easily integratable with Visual Studio in a Windows environment. The
purpose of .NET and Blazor Server in our development is to provide our team with the capability
to create our systems website and database.

The usage of Visual Studio with .NET and Blazor server defines an ecosystem of
development tools with a built-in run-time environment for debugging and running tests. Our
client has also requested our team use .NET 5 with Visual Studio. .NET 5 includes an extensive
library of C# functions that can be used in our websites backend and frontend creation, database

11

entry creation, and data transmission through TCP client connection in communication with the
reader software.

The Microsoft Blazor Server is the best tool for building our website's architecture
because the Blazor Server is useful for handling live data dashboards. The Blazor Server
provides faster load times compared to Blazor Web Assembly, because the Blazor server allows
users to download files from the site as needed as opposed to all at once.

The C# programming language is an available development language for Visual Studio.
We need to use C# not only because it is available to use in Visual Studio, but because C# is a
main language supported and Visual Studio provides an expansive library for C#. C# is a
high-level, easy to implement, and dependable language we can use to create all of the
programmatic functionality in our system. Our team has been able to establish a C# based
approach to all of our programmatic problems through researching Visual Studio, .NET 5, and
Blazor Server documentation.

12

4. Architecture and Implementation
With this overview of how our team is implementing the features of our system and the

tools we plan to use, we can now explain in more detail the architecture. The architecture
consists of five subsystems each with their own important mechanisms, features, and control
flows. The Simulator Subsystem is responsible for providing our system with accurate and
testable data entries. The Reader Subsystem is responsible for acting as the communication
service between the generated data from the Simulator or SWAPR and the storing location in the
database. Once data has been placed in the database, the Database Subsystem is responsible for
making the generated data accessible to the Website subsystem. The Website Subsystem is
responsible for providing users and admins with an intractable interface where they can access
data on each RFF site's power information and weather information through various graphical
interfaces. Our Orchestra subsystem, if implemented, is responsible for creating multiple
instances of an RFF site. Within each RFF site, there is a SWAPR device and Reader Subsystem.
However, the Orchestra will connect an instance of the Simulator and Reader Subsystems over a
virtualized com port to act like a RFF site. The Orchestra Subsystem will be capable of providing
any number of simulated RFF sites to provide GDMS with a lab stress testing tool.

The Simulator Subsystem is responsible for generating realistic data identical to a real
SWAPR device. The data sent from the Simulator must be formatted the same as the SWAPR
device’s output format, contain data for every type of power and weather attribute, and generate
values within an accurate range for each type of data. The Simulator Subsystem is the starting
subsystem in the control flow which simulates real data expected to be generated by a SWAPR
device, a hardware prototype connected to weather gathering tools at an RFF site. The data
transferred will be sent as a stream of characters to the Reader Subsystem using a virtual com
port to emulate data transfer that occurs over a serial port between the SWAPR device and the
Reader software. You can find a diagram showing the components of this subsystem in Figure
4.A.

13

Figure 4.A: Simulator Subsystem Components

The Reader Subsystem is responsible for receiving the SWAPR device data and using a
connection through database library tools to send the data to a database securely. As stated with
the Simulator Subsystem responsibilities, the stream of data will be transmitted to this subsystem
using the virtual COM port emulator. The Reader Subsystem will listen on the serial port to
receive the generated data. Once the data is received it will be sent to the database using a secure
connection. On the receiving end of the connection, a queue will store the data and create entries
into the database from each element. This transmission of data between the Reader and Database
Subsystems simulates the real-world communication between the SWAPR device’s Reader
software and an external database. You can find a diagram showing the components of this
subsystem in Figure 4.B.

14

Figure 4.B: Reader Subsystem Components

The Database Subsystem will be responsible for hosting the database on a cloud server
and listening for connections with the Reader software from the RFF sites. With the database
hosted on a server, our team will be able to properly test our system in an interconnected network
as it would persist in a real world scenario. The database will interpret the received query from
the Reader Subsystem and insert the data into the database. The data will be stored into a data
table with types for our site power and weather information. This data, once stored in the
database, can be retrieved by our Website Subsystem for implementation in various graphics.

In the Website Subsystem, the website's backend will handle behind the scenes events
such as notification message creation and authentication of users. The website’s frontend will
provide users with visuals based on data stored in the database. The backend of the Website
Subsystem must handle secure authentication between subsystems in our project and user
accounts with their role-based permissions. These roles will be admin and user. The admin user
will have unrestricted access to the website while the user will not see notifications and will only
see their area of responsibility. The Coast Guard and General Dynamics need to ensure that only
authorized users can access SWAPR devices and their data. The backend must also notify
accounts with the administrator role in the event of a critical event that requires administrator
intervention. To do this a modal will be created to display a message on the website interface.
The frontend of the Website Subsystem must generate a graphical view in two forms: historical
and summary. To display these views a query is created to request data from the database when
an account attempts to view data in one of these views through the website graphical user

15

interface. The historical view refers to the visualizing of SWAPR device information as graphs
and charts. The summary view comes in two different forms. The first is a list view which shows
each SWAPR device at its RFF site as a simple widget which displays the real-time information
for the site. Each of these widgets will be side-by-side on a website page. The second is a map
view where each of the RFF sites is placed on a map of the United States. Each of the RFF site
icons on the map are collapsible with the ability to select the site and open a window providing
details on the operational status of the selected RFF site. Once data is available in the database, a
query can be created for the database to retrieve data to provide information on the sites and
weather calculations at these sites by user or admin request.

After the mandatory system features have been implemented, we will provide the
desirable Orchestra Subsystem. The Orchestra script we create will take the processes of the
Simulator and Reader Subsystem’s functionality and communication and recreate it in multiple
instances thereby replicating that control flow from the Simulator to the Database subsystems.
Creating an environment with at least 250 SWAPR devices and RFF sites will give our team the
ability to stress test our Database and Website Subsystems. We chose 250 SWAPR devices
because this is the estimate that our client gave us for the number of RFF sites in the Rescue21
system. By having this subsystem in our architecture, we will be able to provide a better tested
and reliable system.

16

5. Testing
Unit testing is when small pieces of a program are tested individually to see if they are

functioning as planned. In our case we tested small functions such as ones that create randomized
values for our weather information, and other small tests that ensure the proper formatting of our
output is met. We will possibly use unit testing C# in .NET Core using the dotnet test and xUnit
to create our solutions and tests, but we do not have extensive experience with those yet so we
will most likely create our own unit tests, since we have a clear understanding of our project and
its inner workings already. As previously mentioned, our unit testing will be extensive for the
Website Subsystem as is essential the data is produced properly and in the intended format.
Ensuring this will make our integration testing and interconnectivity between subsystems much
easier. The Simulator and Reader Subsystems are unnecessary to provide unit tests for. The
function of these systems do not face variability in input or procedure. The generation of data in
the Simulator is generated based on boundaries defined by our team and are deterministic
meaning we always know what values will be generated and the appearance of the data output by
the Simulator. The Reader Subsystem handles a standard and straight-forward process when
transmitting data over a comport. Because the Reader uses the RS-232 protocol, a standardized
and simple procedure, we do not consider it necessary to unit test this process. We will break
down the different unit tests for the Website Subsystem, and the lack of unit testing for the
Simulator, Reader, and Database Subsystems.

5.1 Simulator Unit Testing
In introducing unit testing, our team has stated the unnecessity in unit testing the

Simulator Subsystem code. Our team evaluated the change in states and the behavior in
Program.cs and Entry.cs; we concluded the methods and state changes are hands off for the user
therefore there is no benefit from creating unit tests. The data generated by the Simulator does
not involve user input capable of impacting the operations or outcomes of this subsystem.

5.2 Reader Unit Testing
Similarly, the Reader Subsystem code also does not require unit testing. Our team

evaluated the relevant files to this subsystem and determined that the objects and methods do not
need unit tests created for them. The methods for sharing information over the com0com RS-232
protocol connection do not require testing to evaluate accurate data transmission, however this
will be a necessary part to perform integration testing.

17

5.3 Database Unit Testing
Our Database Subsystem does not need unit testing. Our team assessed the Database

Subsystem and determined that data transmission was our main concern with this subsystem so
we will solely focus on integration testing of the Database Subsystem.

5.4 Website Unit Testing
The Website Subsystem involves all the frontend interaction the user experiences. Testing

each individual component of the data access, views, and notifications is integral to guaranteeing
a robust and dependable system. The List view does not provoke any opportunity for erroneous
values, because it depends on the data in the database as well as the effectiveness of the data
retrieval method. This view will however be important for larger, modularized testing.

The Data Manager is vital to the operations of many of the components. To retrieve data
to be used in the Website Subsystem the GetDatabaseEntries() must be called. Specifically, the
variant that takes an integer and two DateTime objects as arguments. The integer represents a site
identification number which is necessary for identifying sites. The DateTime objects are used to
specify a set of entries based on a range of time with the first DateTime object being the starting
time and the second being the ending time. The DateTime value can be converted to from both a
string or a long data type variable. The usage for this function requires the DateTime objects
include the Year, Month, Day, Hour, Minute, and Second. The Year is in the range of 0001 to
9999. The Month is in the range 1 to 12. The Day is in the range 1 to the number of days in the
month. This is dependent on what month as the total can vary. The Hours are in the range 0 to
23. The Minutes are in the range 0 to 59. The Seconds are in the range 0 to 59. This is the valid
partition our unit test will test for. Values that are negative or 0 in the case of the Year are
considered invalid as are values that are over the stated upper bound. The DateTime object as the
argument protects the method from having to handle erroneous input such as integer or floating
point types. The DateTime is distinct and structured in a specific way. The Id parameter may be
any integer in the range of 0 to 2,147,483,647 because of the memory capacity of an int data
type. The Id must be a valid number for a site in the database. For this unit test, sites will be used
with known Id’s to accurately test this method. We will also attempt to use an Id that is not in the
database to verify nonexistent data cannot successfully be retrieved. This will give us three
partitions for the case of a valid Id and a fourth partition to test an invalid Id.

To update notifications, the method SetNotificationStatus() is available for use by an
Admin. This method enables the display of select notifications for all user roles. The first
parameter is the notificationId. This is an int data type that represents a distinct value for the
notification message for reference. The second parameter is a boolean value. The given status
will be inverted by the method then enabling or disabling the display of the notification in the
notification list. The notificationId must be a valid Id for an existing notification in our database.

18

A unit test will be created to test a valid Id, a known Id found in the database table, as well as an
invalid Id to verify a nonexistent reference is appropriately handled. This will be what consists of
our two partitions. One with a valid Id and one with an invalid Id. It is unnecessary to test the
boolean argument, because it is in no way capable of being erroneous.

In the Website Subsystem, the views we feature are of high importance. Our team will
need to test user interactive components in our system to evaluate the accuracy. To accomplish
these operations, a data manager object is used to handle data services and the accessing of data.

The Map view provides a geographical display with site markers signaling the location of
SWAPR devices. When clicking a marker on the map a redirect occurs that loads the historical
view page for that site. The method NavigateInNewTab() has a single parameter, an Entry object.
The Entry object contains a site Id value used to determine the page to load. A unit test will be
created to test that an entry object can successfully load the historical view page for the given
site. One valid partition for the case where an existing site Id is referenced and an invalid
partition for the case where a site Id is given for a nonexistent site. Due to the entry object only
using the site Id, there is no concern for other erroneous valued attributes in the Entry object.
Additional to the map site marker locations being visible, the color of the marker will be shown.
The color is associated with the status of the site. The color is set by a status variable where it
can be: Green, Orange, Yellow Orange, Yellow, or Red. To determine this status, a function
GetColor() is used. This function has a single parameter that is an Entry object. The Entry
provides a status attribute and is checked to determine and return the status color of the site. A
unit test will be necessary to evaluate the case where a passed in Entry object with a valid status
and the case where a passed in Entry object with an invalid status. If the status code is not one of
the listed codes, then the color should not be set and the exception should be handled.

The Historical view features a line, bar, and radar as available graphics to visualize
entries from the sites in the database. All these views utilize a number of operations to perform
their functions. The method CreateDataSet() is used to take data from the database and transform
it into a usable list for the website. It has four parameters: an int data type datasetType, string
data type label, Color data type colorType, and a list of doubles data. The datasetType parameter
is used to determine the type of graphical view whether it be line, bar, or radar. The label
parameter is used to provide a display name on the graph. The colorType parameter specifies the
color of the line or bar depending on the graph type. Finally, the data parameter is a list of the
values for the points that will be placed on the graph. The label and colorType are considered
arbitrary in the context of this unit test, because they do not impact the outcome of the graphs.
The list of doubles is important; however this method only passes the data along for a later
operation. The datasetType must be one of the three mentioned values otherwise it is invalid.
This unit test will include four partitions with one partition handling an invalid datasetType value
and the other three partitions handling the three valid datasetType values.

19

The three Historical view graphs also utilize a method CreateTimeDataSet(). This method
takes the same parameters as the CreateDataSet() method excluding the list parameter data.
Instead of a list of doubles, this method takes a list of TimePoint objects. The list contains data
for the timestamp of each value placed in the graph. The same operations are completed for this
method otherwise. A list of the data is returned with the set label and color.

5.5 Orchestra Unit Testing
The Orchestra Subsystem does not require unit testing due to its purpose. The Orchestra

is a batch script performing a set sequence of operations to run the simulation of the SWAPR
data and the reading of the data to the database. With no input or test cases to handle our team
will prioritize testing this subsystem in integration testing.

For our integration testing, we are using a combination of the Hybrid and Big Bang
methods, which will accurately assess the work we have done so far.

Hybrid integration testing is an approach used to test a system of modules by testing the
communication between each connected module. The test is structured in three layers: the main
layer, top layer, and bottom layer. The approach utilizes two other approaches, the top-down and
bottom-up approach. The top layer represents the top-down approach, testing from the highest
level and down in the system, and the bottom layer represents the bottom-up approach, testing
from the lowest level and up in the system. The main layer is the central component for
communication in the system. The goal of the hybrid integration approach is to test a connected
and completed application’s working system components in the early stages of development.

Big Bang Testing is an approach to integration testing in which all the components or
modules are brought together simultaneously and then tested as a single unit. During testing, the
integrated set of features will be treated as a single object. The integration procedure will not run
unless all the components in the unit have been completed. This ensures that our system works as
a whole and will be able to detect connection issues between the main features.

The Hybrid integration approach will be implemented to test the communication in our
system from both sides of the database. For our usage of this approach, we consider the main
layer to represent the database as it is central to the functionality of our application. The top layer
represents the website, because it is the interface for the user to communicate with the database.
The bottom layer represents the simulator and reader, because these two subsystems
communicate with the database to provide it data. The database is at the center of our system
because it is the storage and access point of all information used by the system. The database
contains data tables for the notifications, site entries, and sites. These database tables are
populated using generated data from the Simulator that has been sent by the Reader and received
by the Amazon Web Services (AWS) Simple Queue Service (SQS) lambda functions. Our

20

database schema defines these data tables for usage on the website. The website will utilize data
retrieval functions to pull data from the database and generate pages.

The Simulator will begin by generating random numbers within valid and invalid ranges.
The range values we will generate are four antenna power ranges, humidity, temperature,
rainFall, wind speed and direction. The simulator will create data every 5 seconds to send the
reader. In the functions GenerateValidData and GenerateInvalidData, the System.random class
will be used. The System.IO.Ports.SerialPort class is used to send the data to the Reader after it
has been generated. We'll use the System.IO.Ports.SerialPort class in the Reader software to
accept data from the virtual com port. When called on the SerialPort object, the function Open()
establishes a connection to the Simulator. The data will be sent to the Reader where the Reader
will serialize the data into a JSON string. The string will be printed to the console to check for
the correct values and serialization happens. We will compare the generated simulator data to the
json strings for accurate code

The Reader will then send the data to be used in AWS. Using the AWS.SQS C# class, the
Reader will send the message to the Amazon Web Services (AWS) Message Queuing Service
(SQS). AWS SQS will then store the data in a queue. Once in the queue, AWS lambda functions
will be alerted of new entries, pull them, and utilize them to generate SQL queries to add rows to
the Database's Entry and Notification tables. The SQS Lambda function is expected to take and
deserialize a JSON string into an Entry object. The Entry object provides the site identification
number with all of the weather and power information at the given timestamp. This information
will then be evaluated for its status and a Notification will be generated if the status is anything
other than green. To verify the outcome, we must input an established JSON string into the
Lambda function and evaluate the database tables to confirm the new entries are identical to the
expected outcome. The test harness in this module includes creation of database entries input as a
JSON string. By verifying input into the Lambda function produces distinct entries in the
database we can assert that data placed in the AWS message queue will be accurately stored in
the database.

With a database populated with site, entries, and notifications, the website is then
integrated to communicate with the database. The Website Subsystem features the website and
the multiple graphical user interface elements. The Historical, List and Map Views, and
Notification components are tested and evaluated using pulled entries from the database. The
creation of a notification, as we previously overviewed, is completed using the AWS SQS
Lambda functions and message queue. The data loaded into the database is reviewed and
established by our team for the purposes of this integration testing. The notifications are stored in
a notification datatable and are accessed from website functionality. It is necessary to verify all
notifications pulled from the database are identical to the data stored in the database. The test
harness includes the created notifications and entries stored within the database notification and
entry datatable. This is the same case for the Historical View. The Historical View pulls the
entries from the entries datatable.

21

The website uses the various weather and power fields from a range of entry dates and
visualizes these in either a line, bar, or radar graph. The chart will have multiple tests to ensure
proper display of these graphics. In this integration testing, viewing these graphs through the
website pages will be done to evaluate the accessing and implementation of the entry data. The
data, like the notification testing, will be previewed to certify our team knows the expected
generated graphs. The generation of these graphs is specified by various parameters defined by a
user. This means the Historical View must be carefully evaluated to guarantee the user entering
graph specifics can produce the desired graph. With accurate graphs, we have verification that
our website is able to pull data from the database correctly and use this data to generate graphs.
For the test harness, the Historical View requires a user to select the parameters of the graph
which adds one extra step of testing. The test harness also includes the created entries stored
within the database entry datatable which must be retrieved using the input parameters. In
addition to the Historical View, the List view must also accomplish a similar task.

The List View does not utilize user interaction like the Historical View, but instead
implicitly accesses the database to retrieve the latest entry from all sites. The List view will be
tested to determine if the access and retrieval of data from the entries works appropriately while
also verifying every available site and its latest entry is provided in the form of an informative
panel. To ensure this, as we will do with the other views, the entry data in the datatable will be
known and verified in the website List View page to ensure the known sites are visible with
accurate entry information. The test harness for the List View includes the latest created entries
stored within the entry datatable from each site. Finally, the Map View will be tested in a similar
fashion to the List View with an additional check.

The Map View accesses and retrieves site and entry data from the datatable, but only a
certain amount of information is relevant to this view. The purpose of the Map View is to display
the sites on a map of the United States based on the declared latitude and longitude of the
physical site in the real-world. In addition to showing the location of the sites, a color system is
used based on the status of the site. This status is determined at another location of the system,
but the importance here is to give the user a clear understanding of the operational state of the
site. The database site data retrieved will need to be tested to verify they utilize the latitude and
longitude data to accurately place the site marker on the map. To color the marker the accurate
operational status color, we will need the status of the entry being evaluated which should be the
latest entry from the site. The Map View will need to provide one additional feature, interactivity
from the user through the website GUI, that must be tested. By clicking on a marker the site must
use the site identification number to determine the URL path to send the user to. This page the
user is redirected to must be a page of the Historical View already set to the site Id and ready to
generate a desired graph. Verifying this will be important to not only ensure the Map View
displays accurate information from the database, but also guarantee the click of a site marker on
the map redirects the user to the appropriate Historical View page. The test harness includes the
stored sites within the database site datatable. By verifying these entries utilized throughout the

22

website are accurately accessed and pulled to the website pages, our team can confirm the
website retrieves correct data from the database in both the case of the site datatable as well as
the entry datatable. This is integral for our system, because the primary purpose of the website is
to provide methods for viewing information from the database.

Our project's Orchestra Subsystem will be used to test the system as a whole. This
subsystem enhances the simulator and reader subsystems' capabilities by allowing multiple
instances of each to be generated. Put another way, the Simulator Subsystem and Reader
Subsystem pair represents a single SWAPR device. A simulator and reader pair will connect to
the database using the reader software and send the SWAPR device data generated by the
simulator to AWS. We can scale this up to hundreds of SWAPR devices using the Orchestra. For
a full system test we will use the Orchestra to create 250 RFF Sites using the Simulator
Subsystem and Reader Subsystem pair to populate the data for each SWAPR device. The pair
will be continually running as the rest of the process runs; over time, we will be testing the data
generation and storage part of our system to ensure that it can handle the heavy load of putting
data in the database while also being able to give data to the website. Next we will discuss how
we will implement usability testing with our system.

Now that we have explained our integration testing, we will explain usability testing and
our plans for carrying out our tests. Usability testing is the testing of the experience of an
end-user with the software from an outside perspective. The hypothetical end-user has no inside
knowledge of how code works other than functionality built into the user interface. The goals of
usability testing are to ensure that the integrated systems are functioning correctly from the end
users standpoint and to iron out any bugs that occurred during the integration of our system.
Usability testing is done by having a hypothetical user carry out a number of operations to ensure
that the functionality that our system should provide is being carried out in the correct and
appropriate way.

For our usability testing, we envision two different usability tests from two different
users. One user will be a standard user, and the other user will act as an administrator. This will
be done because our system has two main roles which are the user and administrator which have
very slight differences in the permissions they are given. This will in turn slightly affect the way
that functionality is provided to the two roles. The main difference is that the administrator has
access to the user and notification management page where they can manage the users and
notifications in the system. Besides this difference, the administrator and user roles are
practically the same and can do all other functionality on the system. We will split the testing
into two parts, one with the user role and the other with the administrator role. The testing will be
done on a visual confirmation basis where we do an action and confirm that the result is correct
through manual checks. For example, we will open the list view and confirm that the data being
shown is done in the correct manner with only the latest entry being used from each site. We will
manually confirm this by having manually entered data for each test that way we can be sure that
the results are correct. This will allow us to have more control over the results making it easier to

23

confirm proper functionality. Once we have confirmed that the testing is done correctly with
static data then we will simulate the network and confirm that nothing weird occurred. If nothing
weird occurs then we know that the system functions correctly.

To test the system, a member of our team first registers an account and login as that new
user. They will then access each page of our website. This includes the list view, map view,
historical view, and notifications. When the user accesses the historical view, they will also test
the csv exporting functionality by downloading the data used to create the historical view. The
user will then attempt to access the two restricted pages of the website being the admin account
management and admin notification management pages. Both pages should fail to load for the
user with a message saying that they need to be administrators to view the page.

A second team member acts as an administrator. We have preconfigured a username and
password in our code and they will login with the admin username and password. Then they will
access the list view, map view, historical view, and notification pages. They will test to make
sure they can see each of the graphs properly and that data exporting works properly on the
historical view. To test the administrative abilities, our team member posing as an administrator
will access the admin account management page and will be able to view all existing accounts
and modify them. They will test deletion by deleting an existing non-administrator account. They
will also access the admin notification management page where they will be able to view all
notifications and disable notifications and ensure they are correctly disabled by viewing the
change in the database and admin notification management page.

We plan on doing the usability testing over a one week period that will happen during the
week of UGRADS which starts April 18th. By doing the testing at this time, we will know what
we can show to the general public while displaying our project as well as making our final list of
tasks to complete by the end of the semester.

24

6. Project Timeline

Figure 6.A: Gantt chart showing final semester project timeline

Our project has met the functional and performance requirements set by our client in the
timeline shown by the gantt chart below. This chart shows that the initial completion of our
Simulator and Reader occurred by the end of January. These two subsystems would be modified
later with further updates to fit into our system in March. The database subsystem was updated
during the majority of our development process. By march our database was a majority
completed with some minor changes in early April. Our team had an issue with permissions
which prevented our system from being fully implemented with a database hosted on remote
Amazon Web Services. The website subsystem is the main component of our system because it
involves all user interaction and displaying of SWAPR data and for this reason it has been
updated all throughout our timeline. The full prototype was completed at the very start of March.
This version of our system met all of the minimum viable product features and represents an
important benchmark in the development of our system. The orchestra subsystem is a feature that
was not priority, but set as optional by our client if we completed our full prototype. Because we
completed our prototype, we implemented the orchestra to allow for multiple instances of our
simulated SWAPR device and reader software. Following this prototype and orchestra
implementation our team put all of our focus on refactoring and refining our system. This
includes cleaning up the code base structure for readability, adding comments, fixing any bugs,
and any other steps to produce clean and stable code. The end of our timeline completes with

25

finalizing our project for the updated, tested, and refined prototype by the end of April or start of
May.

26

7. Future Work
If we were to improve on our final product in Version 2.0, we would love it if General

Dynamics Mission System installed SWAPRs at each RFF station in the Rescue21 system. This
would allow us to test our reader subsystem, sending the real-world data to the database once it
can be sent and analyzed with few problems on the website. Next, we would integrate our project
into GDMS’ architecture by replacing our Identity Framework process with GDMS’ Active
Directory service. Active Directory was too expensive for our budget therefore we did not use it.
We would use GDMS’ mapping software to improve our map view, which would allow our
client to save time training employees on new software. The last thing we would do is migrate
our AWS hosting to GDMS’ internal hosting services. Doing this will allow for maximum
privacy and control on their closed network.

27

8. Conclusion
In conclusion, GDMS wants some additional features to help them maintain the

Rescue21 system. There are two main features that they need: the ability to record the power
levels of the antennas at an RFF and the ability to record the weather information at the RFF
sites. Knowing this information will help GDMS with determining the cause of RF interference.
Knowing the cause of RF interference will help GDMS determine if they need to send a
technician to an RFF site or not. The other reason that the weather information is helpful is when
predicting damage. Knowing if there is a severe storm at an RFF site will help GDMS predict
equipment damage before it occurs so they can schedule an engineer to visit the site before the
outage starts. This will help reduce outage times, ensuring that the USCG can always help those
in need. Knowing the weather also helps with scheduling maintenance on an RFF site. It is risky
for GDMS to send someone to climb the antenna towers in the middle of high winds or storms.
Knowing the weather will help GDMS reduce the number of times they send a technician to a
site when they cannot perform maintenance. All of this will help GDMS save money, reduce
outage times, and potentially save lives.

To create the additional features that GDMS has requested, we are building a secure web
application for registering, configuring, and managing the SWAPR network, and displaying
output in a clear graphical interface.

We are working on refactoring the code and converting it to connect with the other
subsystems. We are slightly behind on our alpha product but we believe that we will be able to
catch back up by spring break. As of right now, we are on track to provide a beta version product
to General Dynamics by the end of April.

28

9. Glossary
Active Directory - It runs on Windows Server and enables administrators to manage permissions
and access to network resources. Active Directory stores data as objects. An object is a single
element, such as a user, group, application or device such as a printer.

AOR - Area of Responsibility

AWS - Amazon Web Services

Blazor - Blazor lets you build interactive web UIs using C# instead of JavaScript. Blazor apps
are composed of reusable web UI components implemented using C#, HTML, and CSS. Both
client and server code is written in C#, allowing you to share code and libraries.

C# - is an object-oriented, component-oriented programming language. C# provides language
constructs to directly support these concepts, making C# a natural language in which to create
and use software components.

Com0Com - is a kernel-mode virtual serial port driver for Windows. You can create an unlimited
number of virtual COM port pairs and use any pair to connect one COM port based application
to another. The HUB for communications (hub4com) allows to receive data and signals from one
COM or TCP port, modify and send it to a number of other COM or TCP ports and vice versa.

CONUS - Continental US

GDMS - General Dynamics Mission Systems

GUI - Graphical User Interface

IDE - Integrated Development Environment

OS - Windows Operating System

Rescue21 - control and direction-finding communications system, was created to better locate
mariners in distress and save lives and property at sea and on navigable rivers. By harnessing
state-of-the-market technology, Rescue 21 enables the Coast Guard to execute its search and
rescue missions with greater agility and efficiency.

RF - Radio Frequency

RFF - Remote Fixed Facilities

RTT - Round-Trip Time

SQS - Simple Queue Service

29

SWAPR - Site Weather and Power Recorder

URL - Uniform Resource Locator

USCG - United States Coast Guard

30

10. Appendix A: Development Environment and
Toolchain

10.1 Hardware
Our team developed in a Windows environment by request of our client. The components

of our team's machines varied between low-end and high-end. Any mid-level CPU with at least
32 Gb of RAM is necessary to develop our project because of the demand from Visual Studio.

10.2 Toolchain
Our team developed our project in Visual Studio, a product by Microsoft, and used

multiple platforms to aid in development. Visual studio is a requirement by our client and
necessary for building this web application. Visual Studio also allows integration with many of
the other essential tools. In Visual Studio, our solution was created with a Blazor project to set up
the basis for our web application development. The critical platform used in our project is .NET
5. This package includes many class libraries, application programming interfaces, and tools.
These packages are necessary for creating objects for the front end of our application and data
management in the backend. Using the NuGet package manager, our project integrated all of the
packages necessary for our application. The Blazor Framework, ASP.NET Core, Identity
Framework, and Chart.js are four special packages used with the .NET 5 platform used for our
website's needed functionality. Blazor gives us the framework for creating the website, and
ASP.NET Core is necessary for creating Razor pages for our website. In addition to these
packages, we enabled the use of the Identity framework in our Blazor project for including roles
and authentication in our prototype. Our client requested an example case of a user login window
and user account authentication. The JavaScript package, Chart.js, is used in our application for
creating graphics using retrieved data from our database. Chart.js is used for creating charts to
visualize the data produced by the SWAPR devices in our system. The MySQL database system
is used to make our database hosted on an Amazon Web Services server for remote storage.
Database access through a cloud service was requested by our client to provide a remotely
accessible database system and storage location.

10.3 Setup
What follows is a step-by-step guide to setting up a working environment for

development of this project. First gain access to a Windows environment, Windows 10 or later.
Install the Visual Studio integrated development environment. In Visual Studio, create a Blazor
project and connect your GitHub account to allow for cloning the project repository. Once you

31

clone the remote repository for the project, you will need to verify all of the correct dependencies
have been installed and with a compatible version. By checking the NuGet package manager,
there should be: Aspose.Imaging, version 22.3.0; Aspose.SVG, version 22.2.0;
Blazor.Extensions.Canvas, version 1.1.1; ChartJs.Blazor.Fork, version 2.0.2; EPPlus, version
5.8.5; Microsoft.AspNet.Mvc, version 5.2.8;
Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore, version 5.0.12;
Microsoft.AspNetCore.Identity.EntityFrameworkCore, version 5.0.12;
Microsoft.AspNetCore.Identity.UI, version 5.0.12; Microsoft.AspNetCore.Mvc.Core, version
2.2.5; Microsoft.AspNetCore.Mvc.RazorPages, version 2.2.5;
Microsoft.EntityFrameworkCore.Tools, version 5.0.15;
Microsoft.Extensions.Configuration.Binder, version 5.0.0;
Microsoft.Extensions.Configuration.Json, version 5.0.0;
Microsoft.VisualStudio.Web.CodeGeneration.Design, version 5.0.2;
MySql.EntityFrameworkCore, version 5.0.10; Once you have verified these packages are
installed, verify the AWS hosted database is active. Once the correct packages are installed and
the database is accessible, select the solution object in the explorer in Visual Studio and unload
then reload the solution with dependencies. Once the solution is reloaded, the application is
ready to execute and launch the website.

10.4 Production Cycle
With a ready environment to run and maintain the project, the production cycle can now

be explained to walk through the steps to developing the project further. The general overview of
the steps to this is to first create a working branch off of the develop branch, make the desired
edits to the code base, then push the changes to the working branch. You can push these changes
to the development branch with an updated working branch. Now that the development branch
has the newly committed changes, it can be tested to verify the web application works as
expected. When ready, the development branch can be merged with the main branch. This
completes the overview of steps to making edits. As a specific example, let's propose the
developer needs to add another Razor page to the project. They can start by creating a new
branch of the developed branch with an appropriate and related name. The developer will then
create a new Razor page by right-clicking the page's directory in the project and selecting to add
a new Razor page. The necessary HTML and C# code can be added to a new page. It will be
likely that the newly added code will require new classes or functions to be created. This will
likely need to be stored in the DataManager.cs. Once these changes have been made and tested
on the working branch, the developer can push the changes to the remote working branch, merge
the working branch with developing, and merge the develop branch with main. Note that it is
crucial to test the develop branch if other changes have been made in the process of this new
Razor page being added. This is to avoid conflicts and bugs that may arise from multiple
developers updating the codebase at once. Another note is to be mindful of the automatically

32

generated dynamic link library files created when running the project. The dynamic link library
files are specific to the developed system and should constantly be recreated with a reload and
run in Visual Studio.

