
Software Design Document
Team: Red Alert

Sponsor: State Farm Insurance
Faculty Team Mentor: Han Peng

Team Members:
Sal Galan (Lead)
Calvin Harper
Myles Dailey
Nick Nannen

2/7/22



1.0 Introduction 1

2.0 Implementation Overview 3

3.0 Architectural Overview 5

4.0 Module and Interface Descriptions 7

4.1 The User Module 8

4.2 The SMS and Email Module 11

4.3 Map Module 14

4.4 Dashboard Module 16

5.0 Implementation Plan 19

6.0 Conclusion 20



1.0 Introduction

The insurance industry in the United States is enormous. In 2020, companies providing
life insurance made a combined revenue of over 800 billion dollars in the United States alone.
This is not very surprising given most homeowners, renters, and car owners have a desire to
secure their belongings in case of a major accident. Companies like State Farm, Berkshire
Hathaway, Progressive, and Allstate generated more than 30 billion dollars each in total
insurance premiums paid by customers in 2020 with many other companies closely trailing
behind. Property, home, and auto insurance companies are huge and growing due to the fact that
citizens care about guaranteeing that their property will be replaced or fixed in the event of a
disaster.

State Farm is the largest property, casualty, and auto insurance provider in the United
States. Like most insurance companies, State Farm Insurance generates most of their revenue by
selling insurance policies to customers. When a customer buys an insurance policy, that customer
has to pay a monthly premium in order to keep their insurance policy. If a customer incurs some
type of damage such as a car accident, a home catching on fire, or a family member passing
away that customer will receive some benefit from State Farm in accordance with the customers
insurance policy. In order to generate a stable revenue stream, State Farm and most other
insurance companies must intake more premiums from customers than payouts for insurance
policies. In order to sell policies to customers, State Farm employs agents which are independent
contractors who are responsible for acquiring new clients and selling them insurance policies.
Agents are solely paid on commission which is earned by onboarding new customers and selling
them insurance policies. This is why the State Farm agent to customer relationship is so
important to State Farm as a company and their agents.

Our clients are Glenn Austin who is a Technology Analyst and Hans Yeazel who is a
Technology Manager at State Farm. Glenn Austin is in charge of managing employee
infrastructure. This means Glenn is in charge of projects that aim to improve the educational
development of employees at State Farm. For example, Glenn’s team works on projects that
provide additional educational education to employees such as developers, data analysts, and
even consultants.

Similar to Glenn, Hans Yeazel works with State Farm product and development teams to
ensure that each team is on the path to a quality solution. Hans also works with product planning
teams to provide direction and leadership when discussing a solution.



In total, State Farm employs over 19,000 insurance agents and handles over 84 million
insurance policies. State Farm also employs over 55,000 thousand internal employees that are
not State Farm agents. Among the thousands of non-agent employees, State Farm employs
lawyers, software developers, data analysts, paralegals and many other types of people with a
broad range of skill sets.

As mentioned above, the agent-customer relationship is paramount to State Farms
financial success and reputation as being a customer centric company. As a result our team has
been tasked with creating an agent-client notification web app that will allow agents to send
notifications to their clients easily using a visual map interface. Our envisioned product will
enable agents to tailor communications with their clients based on their clients physical location.
Currently, agents have no easy way to visualize where their clients are located. Our solution will
allow agents to send warning and reminder notifications to their clients in case of natural disaster
or problematic weather. Furthermore, agents can also use our product to send clients notifications
to remind their clients to renew their policies or to simply wish their clients happy holidays.

The specific features of our web application are implementation of agent user accounts, a
dashboard view, and usage of a MongoDB database in our website's backend.

Agents will have their own account that maintains a record of the agent’s personal
information such as their name, address, State Farm firm, and agent code. Agents will also be
able to save subsets of their client list to send group notifications. Similarly, agents can save
search queries they make for clients to easily find a group of clients they have searched for
previously. Most importantly, agents will be able to visually select one or more clients on a map
to select clients to send notifications too. Lastly, agents will be able to create recurring
notifications that get sent to a selected group of clients at a recurring interval or at a specific date
and time.

The functional requirements for agent user accounts are as follows:

● Agents will have a personal profile page that allows agents to edit their personal
information.

● An agent's profile page will also contain a list of saved search queries, client subsets, and
notification automations.

Our site will also contain a single page that will enable agents to use almost every feature
available by our web app without needing to navigate to separate pages. This dashboard view
will contain a search bar, map, a list of saved search queries, automated notifications, and client
subsets. Everything an agent needs to be productive will be located on one simple and efficient
web page.

The functional requirements for the dashboard view are as follows:

● The map on the dashboard page will allow agents to draw an outline with their mouse
around clients they would like to select to send notifications too.



● Creating notification automations, client subsets, and saved search queries will also be
available from the dashboard view.

Environmental constraints required for this project include the use of a MongoDB
database as this is the database that State Farm uses to store information for their own services.

2.0 Implementation Overview
Our clients have emphasized the importance of our web application implementing

Web2.0 standards for our product solution. To achieve a modern, responsive, and secure website
we are utilizing the Django backend framework, a MongoDB database, a javascript frontend, and
a NGINX and Gunicorn web server to build our web application.

Figure 1.0 - System Implementation Overview

Our solution will be a Web2.0 Django application hosted on a cloud server which allows
for our application to scale to fit possible user growth needs. The Django backend framework is
modern and has a strong developer support community. Django utilizes a Model View Controller
design pattern as well as a highly modularized code base which enables our product to be easily
maintained. The Model View Controller design pattern allows us to separate business logic
(making database queries or preparing data for user display) from our site presentation which
prevents complications incurred by mixing presentation and logical operations in the same file.

The front end of our server consists of javascript files that run in the user's browser. Our
front end will be responsible for displaying a map to the user with their clients addresses
displayed on the map. Figure 1.0 shows that the front-end of our site communicates with our



backend to send and receive data in order to display client data properly. Our Django backend
will provide the data for our front end application.

While the MVC design pattern supports code organization, Django takes this a step
further by utilizing app based code organization. For example, all the code and files responsible
for handling user logins and account creation is stored in a completely separate folder than the
code and files responsible for showing the user dashboard page. To summarize, Django is the
backbone of our website and is responsible for determining html, css, javascript, and python files
to run or serve to the user. The Django backend is also responsible for sending text messages and
emails as well as allowing users to search through our database for clients. Django also provides
core functionality such as user authentication and password hashing. Django is the sole
communicator with the database, as it is the only program with access to the database per Figure
1.0.

Our MongoDB database stores every piece of information required for our site to work
properly. This means user account and client information is stored in our servers database. User
passwords are also stored in our database. When users change their profile information the
Django application communicates with our database to make the users change in the actual
database. MongoDB is a NoSQL database which allows for flexible data storage that does not
enforce complex schema requirements compared to a traditional relational database. This makes
it easy for us to change data format on the fly if necessary without having to deal with
conforming to complex shema requirements. NoSQL is comparable to a stack of paper that
contains a list of terms with definitions where there are no requirements for how a definition is
defined.

Furthermore, our web server software consists of two programs, a NGINX server and a
WSGI application. The NGINX server is used to serve static files quickly, allowing for
responsive web pages and complete control over how our website handles client traffic. The
WSGI application is like a translator placed between the NGINX server and our Django web
application. The WSGI application is similar to a translator as it enables NGINX to communicate
with our Django application since NGINX does not natively support the Python programming
language used in our Django application.

3.0 Architectural Overview
Continuing, our project will consist of our Front-end, our Web server, and also our

Django backend. The database is located within our backend but we have shown it separately for
easier visualization. This can be seen in Figure 2.0. A majority of our project will be constructed
in our backend as this is where many of the modules need to be created. In our backend, the
modules consist of UserModule, SMS and Email Module, and the Dashboard module Within our
frontend, we will have our GIS Map Display. This allows the user to view and interact with the
map module. Lastly, we also have our web server component. This will contain the WSGI
software along with our web server. These sections will be the core components for our project.



Figure 2.0 - Architectural Overview Diagram

Our system architecture is composed of 4 main components. These include, the backend
application, the user facing front end, the database, and the web server.

The web app backend is responsible for handling the business logic of our application.
This means our Django backend handles database queries, executing user requests to change
application information, and preparing data to be shown to users. In other words the backend
application utilizes custom algorithms and functions defined by the development team to assist in
data exchange between end users and the web application.

The user facing front end is the portion of our application responsible for preparing and
presenting web pages to the user and executing some site functionality. Most notably, the front
end of our web app is responsible for displaying an interactive map to the user and allowing that
user to utilize the map to select clients to communicate with. The backend provides information
from our database that is required for the map to function properly. General map functionality
such as showing user and client location is executed in the users browser rather than on the
backend.



The database is responsible for keeping track of user profile data, client information data,
and other pieces of data required for the site to run properly. The database is responsible for
keeping track of data that is not static and is subject to change.

Our web server is the interface responsible for receiving user requests for specific web
pages which are then delegated to the backend application to respond to. In Figure 2.0, its
important to note that our web server is composed of two applications, a NGINX server and a
Gunicorn WSGI application. The NGINX server is responsible for executing user requests for
web pages and sending those web pages to the users browser. The Gunicorn WSGI application is
a translator for the NGINX server and the Django backend as NGINX does not support the
python programming language. When a request is received by NGINX, NGINX passes the
request to the WSGI application which then translates the request into a form that the Django
application can understand and respond to. Responses from the backend are then passed to the
WSGI which are passed to the NGINX server and finally passed to the user.

The server and database portion of our architecture require relatively little configuration
compared to our systems backend and frontend which are the most important parts of our web
app. The backend application is broken down into a UserModule, SMS and Email module, and a
Dashboard module. The UserModule is responsible for updating and creating user accounts. This
module is also responsible for fetching and preparing user data to be displayed. The Dashboard
module is responsible for all logic related to our website's dashboard view. This means the
Dashboard module handles all logic related to gathering information that enables site features
such as a client search interface, saved search queries, saved client subsets, and saved
notification automations to be displayed to the user. This module only handles logic responsible
for executing search queries, and displaying data related to user accounts, but does not handle
logic for executing client notifications although this functionality is visible in the Dashboard
module. Because Django allows for a web application to be divided into sub applications, our
program will import functionality from the SMS and Email notification module rather than
trying to mix SMS and Email and Dashboard responsibilities into a single module. The SMS and
Email module will allow users to create notifications and will handle the execution and
scheduling of notifications. This module will also handle database operations required to save
user made notifications.

4.0 Module and Interface Descriptions
As described by our architectural overview, our core design consists of different

components referred to as modules . Drawing from Figure 2.0, the most important parts of our
web application are the backend modules and the frontend module. Our Django backend
application is divided into the User module, the SMS and email module, and the Dashboard
module. These modules support the core functionality of our entire web application. The
frontend of our application consists of a single module called the GIS Map Display Module. This
module provides the map that State Farm agents will be using to interact with their client list.



4.1 The User Module
The user module is responsible for user account creation, user login, and the user profile

page. Any type of interaction that involves the display of user account data or changing user data
is handled by this module alone.

Figure 3.0 - User Module UML Diagram

4.1.1 The User Class
The user class is the primary representation of a user account and its related information.

A user is defined as being a State Farm agent. This class is responsible for handling user account
operations including creating new user accounts, displaying user information in the form of a
profile page, and handles authenticating users to allow them to log in. This class also stores user



information such as name, address, and birthdate. If a user needs a password reset link, this
module handles sending users a link to update their password.

Fields of the User class:
● First and last name: The user's first and last name used to identify the user.
● Phone number: The user's phone number. This field is optional as a phone number is not

required for any of the web applications functionality.
● Email Address: The user's email address. This is the field used to identify a user account

and is used to allow users to log into their accounts.
● Birthdate: A date object representing the user's birthday. This field is optional.
● Agent Code: A number that represents an agent's identity in the agent's firm's databases.

This is used to identify an agent in systems other than our own but is necessary to enable
users to access correct information from client databases located in State Farm firms
systems.

● Agent Firm: The name of the firm that the agent works for.
● Address: The user's location. This address is obtained explicitly from the user to ensure

that the user's location is properly displayed on the map.
● Password: The user password which is used in conjunction with the users email address

to log into the web application.

Functions of the User class:
● createNewUser(): this function is run when the user requests to create a new account. The

accompanying new account webpage is then displayed to the user.
● login(): This function handles displaying the login page to the user and authentication of

user credentials.
● sendPassResetLink(): If the user forgets their password, the user requests a password

reset link which displays a web page allowing the user to reset their password.

4.1.2 The Profile Page
The profile page class is another component of the user module. This class is responsible

for fetching and displaying user account information. This class also allows users to edit their
account information if changes are required. This module allows users to reset their password
from their account page rather than needing to request a password reset link from the account
login page. This is also the class responsible for allowing agents to manage their list of clients.
Agents can create new clients to add to their list of clients. Ideally, in a production environment,
an agent's lists of clients would be fetched by a remote server and agents would not be able to
manually edit and manage their clients without going through a secondary service such as one
provided by State Farm. Because this project is a proof of concept, we are using locally stored



client information created by the development team to emulate real agent clients so we must
allow agents to edit and manage their own list of clients for testing and demonstration purposes.

Profile Page Fields:
● User Object: An object representing a user's information which is stored in our database.

The profile page class fetches the user object and then extracts information about the
users to display it.

Profile Page Functions:
● editUserInfo(): This function makes most user fields editable on the user profile page

besides the users password and agent code. In a production environment the agent code
would be verified by a third party system before the agent would be able to finish
creating their account and therefore can not be changed.

● logOut(): Logs the user out of their account and returns the user to the user login page.
● deleteAccount(): Allows the user to delete their account entirely, wiping the users data

from the database.
● editClients(): Enables the user to add, edit, or delete clients from their list of clients in the

database.
● changePassword(): Allows the user to request a password reset link from their account

page rather than needing to navigate to the user login page.

4.1.3 The Client
The client class is used to store the attributes of clients stored in our database. The client

class contains no functions of its own since interactions with the user class are handled by other
classes such as User and Profile Page classes.

Client Fields:
● Name: The name of the client
● Address: The address of the client which enables us to pin the clients location on the

map.
● Policy Type: The type of policy the client owns from State Farm. Could be policies such

as fire, auto, or home.
● Age: The clients age.
● Birthday: The clients birthday:

4.1.4 Search Queries
Search queries are strings saved by the user to execute at a later time. If an agent uses the

search bar to search for clients and finds the results particularly useful, the agent can save the
search query to make the same search again without needing to retype the query. Search queries
are associated with the user class.



Search Query Fields:
● Search Query: A string representing the search terms to re-execute.

Search Query Functions:
● Delete(): This function deletes a search query from the users list of saved queries.
● Duplicate(): Creates a new query identical to the query being duplicated.
● executeSearch(): Executes the search query in the search bar.
● editQuery(): Allows the user to edit the string representing the search query.

4.1.5 Client Subsets
Client subsets are groups of clients created by users to allow users to easily perform

actions on these groups. Users could create a group of clients who all share the same birthday
which would enable the user to select the subset of clients instead of each client individually to
send them a notification.

Client Subset Fields:
● subsetName: Name of the client subset.
● clientList: An array of client ids that the user has selected to be a part of the subset.

Client Subset Functions:
● delete(): Deletes the client subset from the database.
● duplicate(): Creates a duplicate client subset.
● edit(): Allows the user to change which clients are included in the subset.
● selectSubset(): Selects every single client in the subset and adds the subset of clients to

the select client pool which allows the agents to send notifications to the subset.

Notifications automations are also represented in the UML diagram but are not directly
part of the User Module. Rather, this class is presented to demonstrate the relationship to the
User Module. The notification automation class is further described in section 4.2

4.2 The SMS and Email Module
The SMS and Email module takes care of all of the external functionality of our web

application. This means that it handles most of the actual messaging functionality that will
actually be sending messages to an agent's customer(s). The responsibilities of this module
include sending alerts by both SMS and email, creating, editing, and deleting automated
recurring messages, and sending mass alerts to several SMS or email recipients at once. This
module is mainly used after the necessary information is gathered using our searching methods,



whether it be from our map tool or the search bar itself. When the data is gathered, the user will
then specify the service they want to use to send the alert and this module will take care of the
actual sending of said alert based on the agent's preferences and input.

Below is the UML class diagram for the Services module consisting of the associated
classes, their data fields, and the methods associated with each class that shows how each class
interacts with one another to achieve the functionality that this module provides to our larger
system.

Figure 4.0 - SMS and Email UML Diagram

The communication module consists of four main classes; Automation, GroupMessage,
SMSMessage, and Email. The most important of these classes is the last two, SMSMessage and
Email.



4.2.1 SMS and Email
These are the two classes that are actually responsible for performing the action of

sending messages out to the customers which is the main goal with our web application. These
classes are very similar in that they both contain functions for sending messages be it email or
SMS messages. They also have other functions for if the customer sends a response and to opt a
customer out of a notification type in the future (if they reply with a certain phrase). The main
difference between these two classes is the type of data they contain and use to perform their said
functions. An example of this is how the Email class must be given a subject line value while the
SMSMessage class doesn't need such an attribute as text messages do not have a subject line.

4.2.2 Group Message
Another important part of our project is the implementation of group messages. The class

that achieves this functionality is the GroupMessage class as the name implies. This class takes
in a list of receiver info and utilizes the SMSMessage and Email classes in order to actually send
the messages. It has its own send_message function that loops through the list of receiver
information and sends the given message to each member in that list.

4.2.3 Message Automation
The last class in this module is the Automation class which is responsible for message

automation. This class uses the other three classes inside of itself in order to send messages on a
particular date with a recurrence of a given length. The methods that it contains include methods
for creating and deleting automations. There are also methods for renaming an instance of this
class as well as editing the recurrence settings such as changing a message to be sent once a
month instead of once a year. The class has three variables that can be edited after creation with
the aforementioned methods; recurrence_name, recurrence_amt, and recurrence_scope. The
recurrence_name variable contains the name that is given to a particular Automation instance.
The recurrence_amt and recurrence_scope refer to the frequency of an Automation instance with
recurrence_amt being the integer value between messages being sent and recurrence_scope
referring to the integer flag for the incrementation amount of the recurrence_amt (i.e 1=days,
2=weeks, 3=years, etc). For instance, if recurrence_amt = 3 and recurrence_scope = 1, then the
message would be sent every 3 days.

As you can see, this module forms a sort of hierarchy in which each class above the
messaging classes uses the classes below them to help perform more and more complex tasks.
We designed the module this way so that each class is modular and can use others in order to
accomplish all of our project goals that we have put in place.



4.3 Map Module
Our web application provides an effective and efficient way for State Farm agents to

interact and communicate with their respective clients. The map module serves as the primary
interface for agents to find and select the clients that they would like to communicate with.

Figure 5.0 - Map module diagram

4.3.1 Map
The GIS mapping component lives in the front-end of our architectural overview. The

map displays client locations and information based on a given agent's subset of clients. Most of
the mapping display and logic is taken care of in what we’ll call the “main” map class, there are
other helper classes that support the map class, but the map class itself is what is predominantly
responsible for what the end user sees on the screen in relation to the interactive map. Inside of
the map class, Leaflet.js is what is used for rendering the visual map as well as all of the
interactive functions available to the user. Users can search for clients by selecting specific
regions on the interactive map using tools provided by the map class such as selection by
drawing a specific area.

Map class fields:
● Map: This is the initialization of the Leaflet map. All operations in regards to the

interactiveness and visual aspects of the map are handled by modifying this map field.
● userLocation: The location of the agent/user. This is used as an optional reference in

order to more easily orient map operations in accordance with where the specific user is
located.

● clientList: A list of clients



Map class functions:
● getResults(): Returns results in the form of a client list based on a selection on the map,

such as a region defined by the user/agent.
● displayResults(): Takes in results in the form of a list of clients and displays their

respective locations onto the map. This function can take in results from functions inside
of the class such as the getResults(), or as a subset of data that comes directly from a user
search outside of the class.

● drawSelection(): Handles operations involving the user defining regions on the map that
they would like to define for further interactions. This returns a selection region in the
form of boundary coordinates that can be later used to calculate clients that fall into that
subsection.

● clearSelection(): Clears specified user selections on the map.

4.3.2 Geocode
When a specific region is selected by the user, this data will be sent to the geocoding

class in order to translate latitude and longitude coordinates into addresses. This is an important
feature to have since clients inside of the database are obviously stored with their addresses
rather than coordinates and data retrieved from the interactive map is often in the form of geo
coordinates. The geocoding class can also do the reverse of the process described above and turn
addresses into geo coordinates as needed.

Geocode class fields:
● Input: This is the input provided from the map class that needs to be processed. This

input comes in the form of either geo coordinates for geocoding, or in a normal address
for reverse-geocoding.

Geocode class functions:
● geocode(): This is what takes in the input from the map class and performs specified

geocoding operations. It has two parameters: boolean reverse and var input. Reverse is
used to specify whether the function should perform regular geocoding(coordinates into
address) or reverse geocoding(address into coordinates). The input is the data passed in
by the map class that should be converted.



4.4 Dashboard Module
Our dashboard module helps bridge the gap between backend and frontend. Based off of

this module we create web pages for our web application that really bring it to life. The
dashboard module is responsible for all the elements that are viewed and used on our dashboard.
This entails searching clients, reviewing saved search queries, viewing client subsets, and
notifications settings. However, the actual notifications themselves are in their own module
labeled Notifications, yet they are implemented onto the dashboard itself. This is similar to how
the Mapping module works and interacts with the dashboard module. Overall, the dashboard will
be where we implement the majority of the modules to create our project. We plan that the user
will spend the majority of their time working within this dashboard module.

Figure 6.0 - Dashboard Module Diagram

The dashboard module consists of five main classes; Search, Notifications, GIS Mapping,
Saved Searches, Saved Client Subsets.



4.4.1 Search
On the dashboard, user’s will be able to easily search for clients. Within search queries

they can filter certain elements to narrow results. These elements can range from Names, Age, or
even policy. From there the user can create or add the client to a subset. The user can also just
save the client search, for easier reference if adding to or creating a subset is not ideal yet.

Search Fields:
● Search Query: A string representing the search terms to re-execute.

Search Functions:
● Duplicate(): Creates a new query identical to the query being duplicated.
● executeSearch(): Executes the search query in the search bar.
● editQuery(): Allows the user to edit the string representing the search query.
● saveSearch(): Allows the user to save the search to the Saved Searched class.
● filer(): Allows the user to filter in or out certain key attributes when searching.

4.4.2 Saved Searches
Saved Searches are searches that the user finds important, however might not be ready to

be placed into a subset. For example, if a user is inspecting an issue regarding two people with
the same name, he may have one as his client and the other in the saved searches for easier
reference.

Saved Searches Fields:
● User: Name of the saved search.

Client Subset Functions:
● filter(): Allows the user to filter in or out certain key attributes.
● addToSubset(): Will add the given search to a subset that the user inputs.
● removeSave(): Will remove the saved search from the saved search box.

4.4.3 Client Subset
Client subset are groups of clients created by the users to organize and easily interact with

these groups if necessary. For example, a user could create a subset based on the same city, age
ranges, policy, etc. The client subset class originates from the User Module (4.1). It is displayed
in this UML diagram to help better show the relationship between the class and Dashboard
module.

Client Subset Fields:
● subsetName: Name of the client subset.



● clientList: An array of client ids that the user has selected to be a part of the subset.

Client Subset Functions:
● delete(): Deletes the client subset from the database.
● duplicate(): Creates a duplicate client subset.
● edit(): Allows the user to change which clients are included in the subset.
● selectSubset(): Selects every single client in the subset and adds the subset of clients to

the select client pool which allows the agents to send notifications to the subset.

4.4.4 GIS Mapping
The GIS mapping class is represented within the UML diagram, however is not directly a

part of the Dashboard module. The class is demonstrated to show the relationship between the
dashboard and the mapping system. The GIS mapping class is fully described in section 4.3.

Map class fields:
● Map: This is the initialization of the Leaflet map. All operations in regards to the

interactiveness and visual aspects of the map are handled by modifying this map field.
● userLocation: The location of the agent/user. This is used as an optional reference in

order to more easily orient map operations in accordance with where the specific user is
located.

● clientList: A list of clients

Map class functions:
● getResults(): Returns results in the form of a client list based on a selection on the map,

such as a region defined by the user/agent.
● displayResults(): Takes in results in the form of a list of clients and displays their

respective locations onto the map. This function can take in results from functions inside
of the class such as the getResults(), or as a subset of data that comes directly from a user
search outside of the class.

● drawSelection(): Handles operations involving the user defining regions on the map that
they would like to define for further interactions. This returns a selection region in the
form of boundary coordinates that can be later used to calculate clients that fall into that
subsection.

● clearSelection(): Clears specified user selections on the map.

4.4.5 Dashboard
The dashboard module is responsible for all the elements that are viewed and used on

our dashboard. This entails searching clients, reviewing saved search queries, viewing client
subsets, notifications settings, and interacting with the GIS map.



Dashboard Fields:
● Map: Display and interact with GIS map.
● clientList: An array of client ids that the user has selected to be a part of the subset.
● clientName: String names of clients that the user can select to interact with.

Dashboard Functions:
● displayClients(): Display list of clients from subset.
● openNotificationCreationMenu(): Opens notification menu for interaction with

notification model.
● saveSearchQuery(): Saves search query.
● saveClientSubset(): Save the selected entire client subset.
● sendNotification(): Sends notification.
● search(): Allows users to search for clients or information from the dashboard.

4.4.6 Notifications
The Notifications class is another class that is represented within the UML diagram,

however is not directly a part of the Dashboard Module. This class is demonstrated to show the
relationship that the Dashboard will have with the notifications class. The notification class is
fully described in section 4.2



5.0 Implementation Plan

Figure 5.0 - Gantt Chart for Red Alert Production

As seen in Figure 5.0, we have separated and planned out the time to construct our web
application, Red Alert. Our main sections that we need to complete are our GIS mapping tool,
Database integration and functionality, User Module, and our Dashboard Module. The tasks on
our gantt chart will stem from these sections. Our clients have emphasized that they would like
us to take a creative approach in our design and see what we are able to produce as a team. With
that in mind, we truly feel as we have scheduled out all the elements required for the construction
of our product. We have also allowed extra time near the deadline of our project for any issues
not previously thought of.

Continuing, one of the more prevalent sections in our project is the GIS mapping tool.
The tasks associated with this section involve learning the different metrics for geographical
locating and how we can implement them into our system. Currently, we are able to highlight
and select key locations onto our interactive map. We will build on this by making sure the
mapping system is integrated into our backend so that we can save certain data such as
highlighted locations, cities, or zip codes.

Another, important section within our project is the integration and functionality with our
databases. Some of the tasks associated with this section involve setting up mock user data, as
well as making sure users are able to search through the database. On the users end, they should
be able to complete functions such as, searching for clients and have the given data return.
Overall, this backend part of the project is key as it allows for simplicity on the user’s end when
it comes to having to interact with data pertaining to the web application.



Lastly, our Dashboard and User modules are key elements in our product. They will help
be the glue when connecting the project together. Within the User module, tasks related to
maintaining or creating users will be stored. This includes creating new accounts, logging in, and
updating account information. Our Dashboard will utilize this module as well as the other to
produce an environment where the State Farm agents can easily work. Our project has a mixture
of loose and tight coupled webpages. For the loose coupled webpages such as log-in, we will
agree on a design as a group and then we will separate the work for the construction of the web
pages. One member will produce our log-in page, while another will produce our FAQ page, and
etc. For the tightly coupled web pages such as Dashboard, our group will agree on a design, then
appoint a single member to take lead on the construction of the web page while the other
members assist where needed. This method for the tight coupled webpage is expected to help
reduce errors that could arise from constructing web pages with multiple inputs simultaneously.

6.0 Conclusion
Our project is a web application that will be used by agents at State Farm to send

notifications to their clients. As of right now, State Farm agents have no easy way to visualize
where their clients are located. Our project aims to rectify this issue by providing an easy and
quick to use alert system that allows agents to search for clients both by attribute as well as
visually on a map. As stated in this document, our system will consist of the web server,
MongoDB database, and Django application. We then specify further in this document the finer
aspects of each component and how they work together to create our web application. An
organized and consistent design plan helps any project's development run smoothly and quickly.
It also helps future developers maintain the project better. As a team, we hope to have achieved
an organized and consistent design plan in order to make development easy on both our team, as
well as any future teams at State Farm.


