
Requirements Document
Team: Red Alert

Sponsor: State Farm Insurance
Faculty Team Mentor: Han Peng

Team Members:
Sal Galan (Lead)

Calvin Harper
Myles Dailey
Nick Nannen

12/3/21

Version 1.2

Accepted as baseline requirements for the project:

Client:__

Client:__

Team Lead:__

Table of Contents

1.0 Introduction 1

2.0 Problem 2

3.0 Solution Vision 3

4.0 Project Requirements 5

4.1 Functional Requirements: 5

4.2 Performance Requirements: 11

4.3 Environmental Requirements: 15

5.0 Potential Risks 15

6.0 Project Plan 16

7.0 Conclusion 17

1

1.0 Introduction
The insurance industry in the United States is enormous. In 2020, companies providing

life insurance made a combined revenue of over 800 billion dollars in the United States alone.
This is not very surprising given most homeowners, renters, and car owners have a desire to
secure their belongings in case of a major accident. Companies like State Farm, Berkshire
Hathaway, Progressive, and Allstate generate more than 30 billion dollars each in total insurance
premiums paid by customers in 2020 with many other companies closely trailing behind.
Property, home, and auto insurance companies are huge and growing considering that citizens
care about ensuring their property will be replaced or fixed in the event of a disaster.

State Farm is the largest property, casualty, and auto insurance provider in the United
States. Like most insurance companies, State Farm Insurance generates most of their revenue by
selling insurance policies to customers. When a customer buys an insurance policy, that customer
has to pay a monthly premium in order to keep their insurance policy. If a customer incurs some
type of damage such as a car accident, a home catching on fire, or a family member passing
away that customer will receive some benefit from State Farm in accordance with the customers
insurance policy. In order to generate a stable revenue stream, State Farm and most other
insurance companies must intake more premiums from customers than payouts for insurance
policies. In order to sell policies to customers, State Farm employs agents which are independent
contractors who are responsible for acquiring new clients. Agents are solely paid on commission
which is earned by onboarding new customers and selling them insurance policies. This is why
the agent to customer relationship is so important to State Farm as a company and their agents.

Our clients are Glenn Austin who is a Technology Analyst and Hans Yeazel who is a
Technology Manager at State Farm. Glenn Austin is in charge of managing employee
infrastructure. This means Glenn is in charge of projects that aim to improve the educational
development of employees at State Farm. For example, Glenn’s team works on projects that
provide additional educational education to employees such as developers, data analysts, and
even consultants.

Similar to Glenn, Hans Yeazek works with State Farm product and development teams to
ensure that each team is on the path to a quality solution. Hans also works with product planning
teams to provide direction and leadership when discussing a solution.

In total, State Farm employs over 19,000 insurance agents and handles over 84 million
insurance policies. State Farm also employs over 55,000 thousand internal employees that are
not State Farm agents. Among the thousands of non-agent employees, State Farm employs
lawyers, software developers, data analysts, paralegals and many other types of people with a
broad range of skill sets.

2

2.0 Problem
Insurance does not sell itself which is why State Farm agents are integral to ensuring

State Farms success. A State Farm agent is an independent contractor who sells insurance to
people in their local area. Because State Farm agents' sales performance closely correlates with
an agent's yearly salary, it is important that agents are consistently selling insurance policies and
maintaining positive relationships with customers. Agents are the driving force behind State
Farm’s insurance policy sales which is why it is paramount that agents have the proper tools
available to them to accrue and maintain customers.

Important to every business is acquiring new customers on a regular basis. One of the
best ways to do this is to provide groundbreaking customer service to existing customers so that
existing customers recommend the company to their friends and family. This could be
accomplished by providing a simple way for State Farm agents to communicate with their clients
in a way that is similar to communicating with friends and family.

Since State Farm employs over 19,000 insurance agents and handles over 84 million
insurance policies, it is impossible for each agent to build a personal relationship with each
client. The problem that our team will solve is that agents do not have a tool that allows them to
easily and efficiently select clients to send group notifications too. Furthermore agents have
absolutely no simple way to visualize where their clients live! This means agent’s can’t tailor
their client communications based on client location in case of natural disasters or extreme
weather. Agents strive to be the best neighbors they can be but they currently don’t have all the
tools available to be the best neighbor. Currently State Farm agents have tools to search for
specific clients based on attributes such as birthdate or address, but this tool does not enable
swift mass communications as agents still need to manually enter each client’s contact
information into their computer to send them a message. This is time consuming and painstaking,
especially when an agent needs to send the same message to 20 or more clients.

The problem that agents are facing is similar to a contact list app that can not be used
with the phone's texting or email apps! This means people would need to pull up their contact list
and manually enter each recipient’s contact information to send them a text message. That would
be such a monotonous pain! This is what State Farm agents have to do when they want to
message more than one of their clients at a time.

State Farm Agents Current Workflow for Sending Messages to Clients
1. Search for clients using attributes such as age or policy type.
2. Manually enter a client’s contact information into an email or text.
3. Repeat step two until all clients have been entered into the message.
4. Send the text message or email to the client.

Problem with Client’s Current Workflow:
● Manually entering an agent's client information is tedious and time consuming.

3

● Agents can’t search for clients based on location.
● Creating group messages to send to clients takes too long.
● Agents can’t visualize where all of their clients live.

3.0 Solution Vision
To address the lack of simple and efficient communication tools available to agents our

team’s solution is to build a user based web application that allows agents to send texts and
emails to groups of clients based on their clients personal attributes. For this project, the most
important client attribute is their location. The focus of our web application will be a single page
that will contain a digital map that displays each client's home address as a pin on the map. State
Farm agents will be able to search for clients just as one would search for restaurants on google
maps by panning around the city. Agents would also have the ability to select clients based on
zip code or by dragging their mouse over the area of clients they would like to select. In addition
to this digital map we will also implement a search bar that will allow agents to search for
specific clients based on attributes such as age, location, or policy type. When an agent selects a
client, that client will be transferred to a pool of selected clients. When an agent is ready to send
their message to the selected pool of clients they type in their message, choose text or email and
the message is sent in the selected format.

Specifically our solution will provide the following features:
● A State Farm agent’s client information will be provided by State Farm databases.
● Each agent will have their own user account with username and password.
● Agents will easily be able to send notifications to 20 or more clients in under 5 minutes.
● A digital map which will allow agents to use their mouse to draw an area on the map to

select a group of clients to notify.
● A search bar interface that can search through an agent's client list using any attribute

provided by State Farm databases such as age, location, policy type, or birthdate.
● An agent will be able to construct a group notification using the search interface and the

digital map.
● Group clients into a subset that can be selected to easily send notifications to groups of

two or more clients. For example, agents could create a veterans client subset so that on
Veterans Day or related holidays, agents could select the subset to send a notification to.

● Send automated messages to specific clients or subsets.

4

Figure 1. Diagram outlining how agents will use the web app.

Figure 1, outlines how agents will use the web application to view their list of clients or
send notifications to specific clients or subsets of clients.

In order to acquire and search through a specific State Farm agents list of clients, our
solution application will need access to State Farms client databases. With this information, our
application will be able to generate lists of clients with some type of shared attributes. Our
application will also be able to generate an accurate visual representation of each client's home
address. Most of our applications computation will involve searching through existing databases
and plotting client addresses on a map. With these features in hand, agents will be able to send
warning messages to clients who are in the path of a thunderstorm or fire quickly because they
will be able to see where each of their clients live relative to a possible disaster. Agents will also
be able to send automated messages to clients that could say happy birthday, happy holidays, or
happy veterans day.

Undoubtedly with an application like this, State Farm customer satisfaction will
consequently increase so will State Farm’s annual insurance policy gains.

5

4.0 Project Requirements
In order to increase customer satisfaction as well as the satisfaction of our user's, the

agents, we have created several requirements that we will be looking to as guides while we
develop this project. These requirements range from the functional requirements that outline
what functions our software will be performing to how well we will be aiming for our project to
perform. Any specifications that our client has specifically requested in relation to their
environment and compatibility with their existing systems will also be outlined in this section.

4.1 Functional Requirements:
State Farm handles millions of insurance policies, so our system must give State Farm

agents the ability to easily search through their list of clients using State Farms existing client
databases. State Farm records client information such as birthday, home address, age, and many
other characteristics which must be searchable in order to provide agents a quick way to manage
and send notifications to their clients. Because each agent has their own private list of clients
they manage, each agent will need to have their own user account so that each agent has an
individual space to use our application. Because insurance agencies like State Farm record
sensitive client information our application will also need to be secure.

Note: "DR#" - "Domain Requirement Number #", "FR#" - "Functional Requirement Number #"

● DR1 - Agent Accounts
Each State Farm agent will have their own user account with a username, password, and
customizable profile picture.

○ FR1 - Agent Accounts
■ Each agent will need to create a user account to use the application. An

agent's password will be stored securely inside our systems database and
will not be stored in plain text.

● Passwords will be hashed using a hashing function provided by a
Python library available in the Django framework.

■ If an agent forgets their password there will be a system in place which
will allow the agent to reset their password using the email they used to
create their user account.

● A website backend function will send an email to the user using
smtp email server which will direct the user to a webpage where
they can reset their password.

■ Because agents using the application will be doing so individually, agent
accounts will be limited in personalization features. An agent's account

6

will primarily be used to manage the agent's email, password, and some
application settings.

■ Once an agent is logged into the web application, their list of clients will
be automatically loaded into the site as well so the agent can quickly get to
work creating notifications to send their clients.

● Upon logging in, our website will query the database for the
relevant clients to display to the agent.

● DR2 - Every Feature in One Dashboard
From a single page, State Farm agents will be able to search through their list of clients,
select clients from a map, type notifications, automate notifications, and send
notifications without having to navigate to an intermediary page to accomplish these
tasks.

● FR2 - Every Feature in One Dashboard
○ Our application will give agents the ability to view and search through

their list of clients.
■ We will use some type of javascript or Django library that provides

the ability to search through a list of database records.
○ The application will also provide a digital map which will give agents a

visual representation of their list of clients.
■ Using Nominatim and Leaflet, our web app will query the database

for an agent's clients and plot each individual client on the digital
map.

○ The agents list of clients, the search interface, and the digital map will all
be available from a single dashboard web page.

○ The dashboard view will also give agents the ability to add clients to a
notification pool, through the search interface or digital map, so that
agents can send the clients in the notification pool a notification.

○ This web page will also contain tools to allow agents to save a specific
search query.

■ Once an agent has saved a search query, that agent will easily be
able to select the saved search query from their list of saved
searches in order to make the same search again.

■ Agents will also be able to delete saved searches if they do not
need them anymore.

● DR3 - Ability to search and select subsets of clients
Agents will be able to filter what clients they see on the dashboard map or they will be
able to see all of their clients. Agents can also drag their mouse around any group of
clients to select them to send notifications to.

7

● FR3 - Ability to search and select subsets of clients
Searching and identifying their clients based on specific criteria, whether

it be by address or geographical location, plays a critical role in the functionality
of our software. The interactive map in our software can be considered as the
keystone to the whole project; There is a slew of different “low level”
functionality that the interactive map portion is expected to handle in order to
provide the appropriate data that an agent might be looking for. At its core, our
software is a simple and easy to use notification system, and our methods for
searching and retrieving data should reflect that.

○ FR3.1 - Constraints related to individual data elements
Agents will be able to use the search bar to easily identify and

retrieve specific clients based on a variety of criteria that the agents have
control of. We should be able to search the client database based on any
number of attributes that might be attached to their “profiles”; But for
right now, the two basic criteria that a client can be identified by in the
search bar is by their street address specifically, or a larger subset of
clients can be identified by the policies that they are “subscribed” to.
Other criteria can, and likely will be implemented, but these are the
fundamental search aspects that our sponsor has requested. After a search
has been completed, agents will have the ability to save and store the
search query to be re-executed at a later date. The list of clients acquired
from any given search can also be saved into a “named subset”. Agents
will be able to modify(edit), or delete, the named subsets as needed.
Considering that this data might be useful outside of our software, the
stored subsets can be exported for external use.

○ FR3.2 - Geographic constraints using interactive map
Although the search bar can take care of constraints based on

individual data elements, our interactive map will provide agents with the
ability to make search queries based on geographical data. Agents will be
able to use drawing tools to select and outline regions of the interactive
map that they would like to retrieve client data from. When the region is
defined, the program will return the subset of clients, if any, that fall
within the outline. To further refine the results of this query, the subset can
also be pruned and modified based on the same criteria that can be used in
the search bar. For example, if a specific region was expecting to receive
thunderstorms within the next few hours that pose the risk of flood
damage, an agent might consider outlining the surrounding area and
notifying all clients within that area that have a policy that contains flood

8

damage. The interactive map also has the same ability to store “named
subsets” of clients; This could be particularly useful to save and notify a
portion of clients that live in a geographical region that is prone to
disasters such as forest fires, flooding, tornados or any other relevant
phenomenon.

● DR4 - Ability to select a variety of actions to apply to a searched
subset
Agents will be able to select clients on the map and choose to send them notifications,
create automations using the client selection, create client subsets, and save query
searches.

○ FR4 - Ability to select a variety of actions to apply to a
searched subset

■ Our solution will prioritize having a feature that allows the State Farm
Agents to select a variety of actions to apply to a searched subset.

● This means that the agents should be able to select a group of
clients based on information such as age, location, policy type etc.

■ Once the agents have this subset selected they should be able to use all the
functions we have implemented in our system to assist in communicating
with these clients more efficiently.

● This means they should be able to send notifications, update
accounts, or be able to modify the entire subset easily.

● DR5 - Ability for customer to opt out of notifications, or opt out
of some notifications, e.g., all but “emergency”
By default, all of an agent's clients will receive a notification when an agent signs up to
use our web app and clients will immediately be asked if they want to opt in or out of
receiving future notifications. Each notification sent to clients will also provide clients
the ability to opt in or out of receiving future notifications. Clients can also choose to
only receive specific types of notifications such as emergency notifications at any time.

○ FR5 - Ability for customer to opt out of notifications, or opt
out of some notifications, e.g., all but “emergency”

■ Another feature we will be implementing is the ability to opt out of our
service. We do understand that the service we provided could be assisting
millions of people; however with this being said our product must allow
for the user to opt out of the service if they choose they no longer need the
service.

● We will be using a website sms server and an email smtp server to
send notifications to clients. We will also use these tools to

9

determine if a client has opted in our out of receiving notifications
from our app.

● DR6 - Ability to prioritize messages that are sent, e.g.,
emergency, account-related, social.
Any message sent using our web app will be labeled as emergency, account-related,
social, reminder, or other types of categorizations. Clients will be able to respond to
notifications to specify which types of notifications they want to receive.

○ FR6 - Ability to prioritize messages that are sent, e.g.,
emergency, account-related, social.

■ Continuing, another feature we have implemented is the ability to
prioritize the notifications and messages being sent to clients.

● This feature will allow State Farm agents the necessary ability to
keep their clients informed and up to date.

■ Our system will have an automated system for the pre-made notifications,
however we did want the agents to have the ability to send notifications
right away if needed.

● The system will allow for the agents to create their notifications
and prioritize based on how they see fit. For example, State Farm
agents can prioritize emergency requests, account-related
situations, or social events how the agent see’s fit.

● DR7 - Creating Automations for Client Notifications
Agents will have the option to create notifications that are automatically sent to a specific
set of clients at a recurring interval or on a specific date and time.

● FR7 - Creating Automations for Client Notifications
● Agents will be able to use their saved search queries or client subsets to

create automations.
○ Automations are predefined messages that are sent out when a

specific time interval occurs. For example, agents could create a
veterans client subset and then create an automation that
automatically sends the message “Happy veterans day, thank you
for your service!” every Veterans Day.

● An agent could use a saved search query that includes all clients with an
auto insurance policy

○ An agent could create an automation that sends a monthly text
message to each client in the saved search query reminding them to
perform routine maintenance on their vehicles.

10

● DR8 - Integration with client's existing systems
Our web app will use MongoDB as the database because it is the same

database that State Farm uses to store client information.
● FR8 - Integration with client's existing systems

One of our biggest focuses when we started to think about this
project is how closely we could replicate the conditions in which this piece
of software could be implemented by our clients. We kept this requirement
in the back of our minds from the beginning and weighed it against most,
if not all, decisions we made when deciding things such as our tech
feasibility choices. To aid in our understanding of how our client's
company, State Farm, currently handles relevant tasks such as client data
storage and agent-to-client communication, we asked our clients Glenn
Austin and Hans Yeazel questions as to what database frameworks and
languages do they use and what sort of information the keep with each
client. This information will allow us to replicate their databases as closely
as possible in order to effectively test our system in the most accurate
environment as we possibly can.

○ FR8.1 - Database Compatibility Constraints
We chose MongoDB as our database framework primarily

because that is one of the frameworks that State Farm currently
uses to manage client data in their back end. Choosing this
database framework will allow as seamless transition as possible if
our clients decide to implement our project into their existing
system. It also allows us to more effectively test our system in the
context of our clients considering that we do not have access to
their actual database given that it would be a huge security risk. We
plan to go into even more detail in future meetings with our clients
to gain a better understanding of the internal structure of their
database detailing things such as what specific data fields they
record for clients, possible access restrictions, and typical syntax
used in their databases. Details like this will only further help us
mirror the way their system operates.

○ FR8.2 - Front-End Design Constraints
Not only do we want our system to integrate well with our

client's existing database, we also want our product to look and
feel like it belongs at State Farm. This includes things like our
color palette for the front-end as well as an organizational structure
that is best for the client. The colors we are looking to use are

11

primarily red and white as those are the colors of our client's
company. We may also look to give it a bit more diversity in color
by adding some greys into the mix. This will help our product feel
right at home in the State Farm environment and give the front-end
a more exciting look than a more mundane-looking interface.

○ FR8.3 - Interface Constraints
While color is important for a product, a more important

aspect is how our layout is done. We want our layout to be the best
possible fit for the agents that will be using it. So we plan to try out
a few different layouts along our development process and gather
as much feedback as we can on what works and what could be
improved. This information will not only make the final product
more comfortable and user-friendly for our clients, but will also
hopefully improve the speed and efficiency that the agents using
our system will be able to achieve when using the product.

Overall, we want to make the integration of our project as seamless as possible for
our clients so that not only do they have an easier time integrating it into their existing
systems, but also that we have an accurate portrayal of what their systems look like so
that we may develop an effective product on top of it. If we accomplish this requirement
well then our product will run easily alongside our client's database architecture and will
also look and feel like a product worthy of State Farm's use.

4.2 Performance Requirements:
Our project has a specific emphasis on speed and performance as some of its use cases

include some emergency cases. On top of this, it is also very important to our project that agents
using our system are able to communicate with their clients as fast as possible no matter the
situation as the quality of customer service depends directly on this aspect of the project. There
are some performance bottlenecks that we expect this project to have based on some limited
options as far as frameworks go and we will address those in this section as well. Another
important non-technical requirement is the user performance. This includes things such as how
fast a user is able to pick up and use the different parts of the system effectively and additionally
how difficult it is to teach users how to use our system. All of these aspects will determine the
overall performance of our project so mitigating performance issues and bottlenecks anywhere
we can is critical to our success.

12

Speed:
Speed is important in any software system and ours is no exception. The responsiveness

of our software is one of the key things our software revolves around as communication is more
useful the faster it is accomplished.

● Front-End:
One of the most important performance requirements we have is that lag be

minimized as much as possible. Given that our front-end frameworks of AngularJS and
Bootstrap have proven to be fast and reliable, we expect our webpage to take no more
than 5 seconds to load completely on a decent internet connection (about 25 Mbps).
While most web pages have shorter load times than this, we expect that the embedded
GIS (geographic information system) interface will take a relatively considerable time to
load into the web page. In fact, we expect that our main performance bottleneck for this
project, and therefore our biggest challenge to overcome, is going to be the GIS
framework and how to implement it in a way that maximizes both the framework's
performance as well as our project's performance as a whole.

● GIS Interface:
The reason that we believe this aspect of the project to be the most time

consuming performance-wise is because of the version of the GIS framework we are
implementing. As GIS frameworks are relatively expensive and well-used pieces of
software, most GIS frameworks require a monthly payment to be able to utilize them to
their fullest extent. The framework we chose, opting to minimize cost for this project, is
Leaflet + Nominatim. It can do what we need it to do in our project for free but at the cost
of its performance. This GIS framework allows one free call to the GIS servers per
second, which is severely limiting to our performance. However, despite its drawbacks,
Leaflet + Nominatim is very promising for the functionality of our project, theoretically
integrating with our project very well.

● Database System:
Despite the slower speed of the GIS framework, we expect our database

framework to be able to execute a fair number of queries (say 100) in under 1 second.
Database speed is a very crucial part of our project as the number of queries could range
from a handful of client information queries to thousands depending on what the query is
for, how common an attribute is among clients, the number of entries that are viable
candidates for the search, and the overall number of clients that an user agent might be
responsible for just to name a few. This variation in number means that our database
system should be able to easily handle requests and queries that are both small and large
in number. Additionally, it should be able to be scaled easily to account for multiple users
at one time. While our chosen database framework, MongoDB, is already fast; we will be

13

working to further increase its efficiency while implementing and testing to ensure the
maximum performance output.

● Communication System:
Lastly, our communication systems, such as email and text notifications, should

also be fast. We're aiming for the time for sending both emails and text messages to be
under 10 seconds. This part of our project can be argued to go hand in hand with the GIS
system in terms of importance of speed. This is because while the GIS system allows
agents to find clients more easily, the communication system speed determines how fast
they might receive the information being sent. This makes it one of the top priorities in
terms of speed and optimization.

Overall, speed is incredibly important to this project given that one of its primary
functions is that it be able to act as an emergency alert system between agents and clients. Its
other function of simply being an easy-to-use and reliable form of communication between the
two parties also puts an emphasis on speed and performance. We are shooting for total time for
one use of our system to be under 1 minute for a simple search and notification being sent,
provided the agent knows what they will be sending and the parameters for which they are
searching. This also assumes that the agent using the system is well trained in how to use our
project, which we also deem an important non-functional requirement.

Training:
Along with the speed and technical performance of our system, we also aim to make our

system easy to learn and to use. Having these qualities in mind when implementing our project
would not only reduce the overhead of a company's training time for the system but also increase
efficiency in how fast a user could use the system as well as how effectively. By making our
system user-friendly, we increase the performance of our system even more by combining
efficient use with efficient performance.

One of the biggest examples of overhead in a company is the training required to onboard
agents that are new to a system so that they may use it effectively. While one may not
immediately think of the ease of training as a performance requirement, it is a very important
aspect of our software as the time that it takes to learn our system is something that we would
like to minimize. One of our goals that we've had with this project is that we make it easy to use
on our client's side. This extends to the training aspect of our system where if we succeed in our
goal then not only will the system be easy to use, but also easy to learn as well. This will help
with the time that it takes to become familiar and eventually master the use of our system. We
expect that the most difficult part of our system to learn will be understanding the feature set of
the customer search functions. We expect its wide range of attributes to search for clients will be
the most complex to learn from a training standpoint.

14

Given this information, we are aiming to create a very simple system interface and would
like it's average learning time to be under 3 hours. This goal is based on the expectation that
while the person learning the system may not have complete mastery over said application at the
end of the training, they should have a firm grasp on all features and be able to perform the base
functions of the system with little to no help.

Documentation:
Another important non-technical requirement for our project is our documentation. Not

only is this important for our development as a team, but it is also important for readability from
outside developers if they are to quickly integrate our system into their existing infrastructure.
Our documentation includes things like the readability of our code and an organized project
repository.

● Code Readability:
Readability of code is important in any project, especially if the project is one that

many people are working on. The ability for the entire team to understand what a
particular part of code does within a few minutes of reading it is imperative for the speed
of development. It is also important to our team that we are all on the same page in our
development and are all able to to explain most or all parts of our project. While it is true
that readability greatly benefits our team with the development of our project, it also ties
into one of our functional requirements. By making our code readable, we further achieve
our goal of having our application interface well with our clients existing system. When
integrating our system with theirs, it is important for code to be readable so that their
technicians are able to easily translate our code into something that works better with
their system if the need arises. Furthermore, they can modify and update our system if
they want to apply an update or modification after implementation. The readability
contributes to much of this project and we strive to develop code that can be read by most
developers with ease.

● Repository Organization:
Another part of documentation is the state of the project's repository. For a clear

and understandable repository, we plan to craft well-commented push requests, pull
requests, and such so that the history of development is clear and to make the job of the
quality assurance individual easier. It is also imperative that files are saved in places that
you would expect them. For example, you wouldn't expect to find a CSS file for our web
application's front-end in a folder labeled "Database". This further strengthens
organization and intuitive design of our repository so that a member of our team can
easily find and edit a file they are looking for with little to no direction, an important
quality that helps speed up development. This, again, also benefits our client's as they
integrate for the same reasons.

15

While our functional requirements are of great importance, our performance requirements
are also very valuable. We strive to have our project run as efficiently and as quickly as possible
as that is a key requirement for our system overall. We will also hold user-friendliness as a high
priority to mitigate the inevitable overhead of training agents to use our system in a way that
maximizes their effectiveness and to further improve the performance of our system from the
user's side. Lastly, we will maintain a clean and readable codebase that is further supported by an
organized and well-documented repository for the improvement of development and
documentation of our project as a whole.

4.3 Environmental Requirements:
Our sponsor has not specified or imposed any “Environmental Requirements” and has

been clear that they are mostly expecting us as a team to create our environment as necessary.
Although, through the nature of our software expected to be developed using free tools and
resources, our choice of GIS framework is limited to cost-free options.

Many GIS frameworks typically involve API calls that are more often than not very
expensive, depending on the usage and amount of calls you intend to make. We’ve researched
our best free alternatives and have come to a feasible solution that will integrate with our project
while maintaining no pricey overhead costs.

5.0 Potential Risks
When developing software there are many risks that can occur. One of the best practices

to help combat the amount of risks you will face is to actively think of these potential risks while
you are developing. This procedure helps outline key factors that need to be accounted for when
developing. Some of the potential risks we have preemptively thought of are described below
along with a table (figure 2) that outlines the risk, severity, likelihood, and migration step.

16

Risk Severity Likelihood Mitigation

Customers Not
Receiving

Notifications.

Moderate:
We understand the need for

a company to deliver the
services they have promised
to their clients. If the clients

don’t receive the
notifications our service
could lose its credibility.

Low Required OPT-IN: This allows our
solution to track which users should

be receiving notifications. Our
solution will allow users to OPT-OUT

in the future if they would like to.

Sensitive
Information to the

wrong user.

High:
Users safety and privacy

must be held accountable
within our software. This

entails making sure
personal information does
not go to the wrong user.

Moderate To assist in preventing the leak of
sensitive information our solution

will have restrictions to the
automated messages and

notifications. State Farm agents will
also be allowed to modify certain

notifications and messages.

False Alarms and
Incorrect

Notifications.

Moderate:
False alarms and incorrect
notifications can lead to

panic and costly mistakes. If
this happens our solution

will lose credibility and
interest from users.

Low To help combat this risk, our
automated messaging and
notification system will be

categorized by geographical
location. This makes sure that all

current OPT-IN users of our service
within the given location can receive

the same emergency notification
and/or message.

Data Leaks. High:
Data leaks are becoming
more common across the
web, therefore data that is
protected and private must

remain intactly that way.

Moderate To assist in protecting our software
we will be utilizing security

protocols such as using HTTPS,
password hashing, and sanitizing
database inputs to prevent SQL

injection. We understand the
reputation of the clients, therefore

we have agreed to implement these
securities with the intent that State

Farm will add, modify, or remove the
security features as seen fit.

Figure 2 - This table outlines the key potential risks for our solution. With the table the risk, severity,
likelihood, and mitigation plan are also stated.

17

● Customers Not Receiving Notifications:
One of the key risks our team has discussed is making sure that customers who

are eligible for the service actually receive the notification. We understand the need for a
company to deliver the products they have promised to their clients. Therefore, if a user
has signed up for the service they should be able to receive our emergency notifications
and also separate notifications, such as birthday alerts or changes in policies that are
happening. Our solution, will require users to OPT-IN. This will allow us to track and
make sure verified users are receiving the notifications.

● Sensitive Information to the wrong person:
Continuing, we understand the risks that come with developing a software that

uses sensitive data. This means that we must account for the data and make sure that
sensitive information does not go to the wrong person. To avoid conflict with sensitive
data our notification and messages will be generic. This helps keep information safe as
the only people who will have access to this information will be your State Farm agents.

● False Alarms and Incorrect Notifications:
Next, another potential risk we have discussed is if our system starts sending out

false alarm notifications, or the incorrect notifications to the clients. For example, it could
be detrimental if a client receives a notification to evacuate the location, yet there is no
emergency in that area. This could create panic and result in a costly mistake. Similarly, it
is just as negative for clients to receive incorrect notification, such as the wrong
emergency message. The action measures taken for fire safety are different from a
hurricane alert, therefore the notification must be accurately represented.

● Data Leaks:
Continuing, because our system will be using sensitive data, it is prevalent our

entire system is secure. Data leaks are becoming more common due to simple bugs and
the increasing amount of malware on the web. Having a secure system and rigorous
testing will assist in combating these issues.

6.0 Project Plan
Our risks, along with other unforeseen issues, is something that we would like to mitigate

as much as possible. One of the best ways to do this is by having a solid, detailed, and efficient
project plan. This will help us stay on track, think about what problems we have to tackle and
when, and be able to more easily work around any issues that pop up suddenly.

Moving forward, our number one priority is to begin working on a prototype and further
individually test our technologies to ensure that our current plan is feasible, and will cause no

18

issues in the foreseeable future. We will begin by implementing a basic GIS web application that
will serve as the foundation for the rest of our project. From there, we will make sure that we can
modify and extract the specific data that will be required later on, such as outlining client subsets
on the map. Our client has requested that our program is compatible with their current database;
Testing of our chosen database, with mock data provided by our client, will take place to ensure
that we can begin implementing relevant features without worrying about compatibility issues.
Our web application should be sleek and easy to navigate, while also providing fast response
times. The front end will need to be optimized for performance and ease of use in mind, but we
don’t expect to have many issues in this regard considering that we are using lightweight and
efficient packages / libraries in our project. As seen in the provided gantt chart (Figure 3),
looking further down the line, once most basic functions are well integrated, we will be
implementing our communication systems for notification purposes.

Figure 3 - This is our current schedule. We have outlined the most important parts of our implementation
and plan to develop them in this logical order.

19

7.0 Conclusion
Connecting with one's customers is a very important part of any business to make the

customer feel valued. While this is true for most if not all businesses, it is especially true in our
client's, State Farm insurance, business model. State Farm emphasizes heavily their business to
client relationship as their line of business is very much dependent on making their customers
feel safe and protected. This is further supported by their tagline: "Like a good neighbor, State
Farm is there." which shows how they wish their customers to view their company. As such, a
good relationship with a customer hinges on an exceptional communication system. For someone
to be perceived as a good and helpful neighbor, they need to communicate as one. This means
communication should be quick, easy, and helpful.

Currently State Farm's communication system is less efficient and functional than it could
be, lacking some features and tools that would make agent-client communication much more
effective. This has led to our project; an alert system for agents that allows them to quickly
search clients by a number of attributes and offering an interactive map tool that allows agents to
quickly and easily select clients by location. This tool will help agents become more effective
communicators with clients. Not only does it allow for day to day communications to clients
about important notices and policy changes via email and text, but it also allows agents to
quickly and easily warn clients of rapidly developing emergencies and other dangers they may
not be aware of due to a lack of an early warning system. This takes communication to the next
level and would really further elevate State Farm to being the "good neighbor" that it strives to
be.

To achieve the functionality that we want out of this project, we have outlined a few
requirements that will help us reach the project goals and help keep track of our progress. Some
of the most notable of these requirements are the ability to search for clients based on a
geographic interface and the integration with our client's existing infrastructure. We also
recognize that with this project comes some risks that we'll have to manage such as data leaks
and incorrect notifications being sent out. We will actively seek to mitigate these risks along the
way and have tried to identify as many as we can now in order to prevent them causing issues in
the future.

Overall, we see our project as one that has the potential to make the lives of both
customers as well as State Farm's agents much easier by providing an incredibly useful interface
for communication. Whether it's an emergency that erupts without warning or just a friendly
reminder about when a customer's monthly payment is due, our goal is to give the agents of State
Farm Insurance the tools they need to be the good neighbor that they are.

