
Technical Feasibility

November 12, 2021

Team Poseidon Way-Finding

Sponsor: Michael Leverington

Faculty Mentor: Han Peng

Team:

Fernando Diaz

Ulugbek Abdullayev

Brandon Jester

Jonathan Gomez



1.0 Introduction 1

2.0 Technological Challenges 3

3.0 Technology Analysis: 4
3.1 Software Framework: 4

3.1.1 Alternatives: 4
3.1.2 Analysis: 5
3.1.3 Chosen Approach: 5
3.1.4 Proving Feasibility: 6

3.2 Obstacle Avoidance 6
3.2.1 Alternatives: 7

4.0 Technology Integration

4.1 Introduction. 9

5.0 Conclusion: 11



1.0 Introduction

Robots can do fast calculations and accomplish billions of commands per second.
Although there are many autonomous movement and obstacle avoidance modules,
many of the solutions are not concrete. Movement and object avoidance is essential to
robotics, as it may open the door to many possibilities. Such as autonomous navigation
vehicles, capable of transporting passengers without human assistance. But basic
movement and object avoidance must be mastered before progressing to more complex
structures.

Dr. Leverington, the client, is a professor of computer science at Northern Arizona
University (NAU), and his goal has been to forge the minds of future computer
scientists. His business has involved teaching students to problem solve and teaching
them to solve otherwise complex problems. His motto relies on his ability to forge young
minds to wield the powers of technology, mainly computer programming.

The client has focused on developing a flexible, cost-effective robotics platform to be
used within college-level programs for educational purposes. Dr. Leverington made the
Thirty Gallon Robot to accomplish that robotics platform, initially known as the
robot-assisted tours or RAT. The Thirty-Gallon refers to the tank which encases the
robot’s components.

The problem is that the client’s robot does not currently move without user input.
Previous Capstone Projects made it move with a joystick controller only. Therefore, the
problem is making a robot with a simple movement and obstacle avoidance module.
The project requires that the robot autonomously goes from one end to the other end of
the long hallway of the second floor of the engineering building and to come back to the
original starting point. Furthermore, the robot must be able to do this, all while avoiding
obstacles.

Movement is challenging to implement because computers are only able to acquire and
execute data. Robots are essentially dumb, as they are not able to rationalize the data
presented to them. Instead, they must rely on instructions provided by the programmers
who built their software. Furthermore, a robot must manage relevant information to help
it avoid obstacles in its path.

● Movement is not as straightforward, given that the robot must determine the
route to traverse. In this case, the long hallway of the second floor of the
engineering building at NAU.

1



● Obstacle avoidance is also challenging to implement because not only are there
moving obstacles. But unforeseen occurrences can arise, such as doors being
opened or detecting stairs.

It is necessary to build a robot modular enough to be used by the next generation of
students studying at NAU. A fully working movement and obstacle avoidance module is
the team’s aim, a robot that can move through the long hallway of the second floor of
the engineering building. The robot should be able to: move through the long hallway of
the second floor of the engineering building and have an obstacle avoidance module to
evade obstacles.

2



2.0 Technological Challenges

The problem requires a robot to move straight down a long hallway while avoiding any
obstacles it might encounter. While it may seem straightforward, the reality is that there
are many moving parts in achieving this. One is having the robot move, and the central
part is using sensors and programming to help it avoid obstacles. Furthermore,
autonomy is not always easy to program, and as such, the group must acquire a deep
understanding of the topic to complete this project.

The technological challenges faced are as follows:

● The robot will require a main framework or architecture on which the capstone
team will build a codebase that will make up a movement module.

● The robot will need an obstacle avoidance system.
● The robot must stop when it has reached the end of the long hallway and come

back.

Overcoming these challenges would produce the basis of an operational robot capable
of giving tours and bring this project one step closer to being fully realized.

3



3.0 Technology Analysis:

This section will discuss the two significant challenges identified: a software framework
and an obstacle avoidance module. The capstone team will present possible solutions
and possible alternatives, along with the chosen approaches.

3.1 Software Framework:
The robot will require a framework or software architecture for interacting with the
raspberry pi, the sensors, and the motors. This framework will organize the scripts and
modules and allow the Raspberry Pi to receive data from sensors, compute it, and
execute commands to control the robot’s movement. For the framework, there are two
significant characteristics required:

● Ease of Use - The programming framework should also be easy to use and
understand to make software development quicker. It must allow for the creation
of demos and prototypes without using too much time.

● Packages Available/Ease of Expansion - In the future, this project will require
more advanced modules such as localization and navigation. Some
programming frameworks come packaged with more tools and libraries that
provide better starting points for these modules. It is a requirement that the
framework has more access to these tools to speed up implementation time.

3.1.1 Alternatives:
ROS for Robotics: ROS or robot operating system is a framework that contains tools
and libraries meant to make it easier to build robotics applications. ROS can be used as
the central framework to make the robot run. It is a proven technology used for both
high complexity and low complexity projects alike. Many of the libraries allow for quicker
development and faster prototyping. In addition, given that it is an open-source platform,
more solutions are available, allowing collaboration with other robotics experts. ROS
supports the development of robotic applications using python and C++. Also, the
framework is present in the industry through its brach ROS-Industrial, which brings ROS
to an industry standard that requires a more robust framework (Description). Because of
its many tools and libraries, ROS will allow future generations of students to add new
modules to the framework more easily.

Plain Python/C++ (No Framework): It is possible to achieve the same goals without
using a framework made for robotics. This approach involves using Raspberry Pi with

4



native Python tools and libraries. This approach would possibly involve using the
raspberry pi’s GPIO pins for connecting to sensors and various other components like
motor drivers. It could also use the USB ports to hand these tasks off to an Arduino
board. Using serial connections with the Raspberry Pi and Python will establish
communication between the two boards. Data collected from a graphical user
interface(GUI) or keyboard input using the Raspberry Pi will send data to an Arduino to
control the motor drivers and make the motors move using C++.

3.1.2 Analysis:
For analysis, the performance of Python and C++ were compared, along with ROS. In
addition, how complementary the three tools are with each other was investigated.
Although Python is slower than C++, as observed by Naser Tamini, who saw that “C++
is much faster than Python in running the same algorithm and instructions. It is not a
surprise to most programmers and data scientists, but the example shows that the
difference is significant” (Tamini). Mixing both languages with ROS will ensure the
project will not be constrained by only one programming language. Furthermore,
combining C++ with Python can complement each other’s weaknesses that the
languages have. Such as the pros and cons found in Ricardo Tellez’s article where a
disadvantage of Python is that it can be slow vs. C++’s advantage, which is fast when
working ROS (Tellez).

3.1.3 Chosen Approach:

Technology Ease of Use Package
Availability

Total

ROS 6 8 14

Python/C++ 7 5 12

Table 3.1: Software framework Comparison, On a scale of 1-10, 10 being the best for a
given characteristic

The chosen solution for the framework of this project is ROS, based on the total for the
characteristics in Table 3.1. The table found that the ease of use of ROS to be just
slightly more complex to use than plain Python and C++ programs. ROS is relatively
more difficult to execute because it changes how scripts are written and performed at
runtime. Still, it also is made much more modular as it splits sensors and receivers into

5



separate components called nodes and utilizes a publisher and subscriber model
(Holland). Nodes can be implemented into any other ROS package, making them
valuable. For package availability, Python has many libraries for robotics, but ROS has
many more libraries tailored explicitly to creating robotics applications. ROS has access
to thousands of packages that involve “specific functionality for hardware abstraction,
machine-to-machine communications, device drivers, package management, testing
and visualization” (Holland). Because there are more packages intended for robotics, it
is rated higher than native Python and C++ libraries.

3.1.4 Proving Feasibility:
The capstone team will prove the feasibility of this framework by utilizing the ROS
directories and package for the project. The capstone team will create a simple
dual-node keyboard publisher and motor driver subscriber to take in keyboard input and
translate it to movement.

3.2 Obstacle Avoidance
With the programming framework now chosen, the robot will need an obstacle
avoidance system. Along the robot’s path, to prove functionality, the capstone team will
introduce obstacles in the way of its end goal. The robot will require an obstacle
avoidance system that will detect obstacles in front of itself, efficiently move around
them, and keep moving forward. Lack of obstacle avoidance can damage people,
damage to the robot, or property damage. First, the robot needs a hardware sensor that
will gather data to be used to detect obstacles. Then, an algorithm will compute this
data into commands to move the robot around the barrier. Alternative hardware options
for detection are listed below, and for these hardware sensors, the essential
characteristics identified are:

● Cost: One of the project’s primary motivations is a cost-effective solution to
building an autonomous robot. Thus, cheaper sensors are a more desirable
solution.

● Data: A relatively efficient and comprehensive obstacle avoidance system can be
completed with only small amounts of data. However, having access to a lot of
information can make the system much more robust and could be combined with
artificial intelligence algorithms to improve decision making (“LiDAR vs.
Cameras”).

● Complexity: The system’s complexity is associated with the time it will take to
implement. A more straightforward approach would be quicker to understand and
create.

6



3.2.1 Alternatives:
Xbox Kinect: Having a central camera positioned, the Kinect can give the robot more
data. Additionally, Kinect has the technology to allow the robot to detect depth and
distances to objects in front of it. Cameras can give access to much more information
than other sensors, allowing for better-informed decision-making. Of course, visual data
is much harder to process and understand. However, it could be a better solution for
future-proofing the robot.

LiDAR: LiDAR or Light Detection and Ranging is a technology where a sensor will
output invisible light rays that hit a surface and bounce back to the sensor. The sensor
then uses the speed of light, and the time it took for the light to be reflected to calculate
the distance of the object it hit. Using LiDAR, the robot can find and analyze the length
of obstacles and prevent the robot from colliding with them. LiDAR is a possible solution
for obstacle avoidance and can also have applications for a future navigation module.

SONAR: SONAR or Sound Navigation and Ranging is the same concept as LiDAR.
Sound waves are projected from a sensor, hit an object, and bounce back to the sensor.
The sensor will find the distance between it and the object using the speed of sound.
The concept is nearly identical to LiDAR; thus, their characteristics are almost the same.
Because of their similarities, the same principles as LiDAR can be used and allow the
robot to avoid obstacles by analyzing the proximity of nearby obstructions.

3.2.2 Analysis:
For this project’s purposes, Xbox 360 Kinect sensors, one-directional lidar sensors, and
one-directional sonar sensors specifically were compared for each category. There are
different types of sensors; some provide more functionality for increased prices. The
Kinect sensor can give much more data than LiDAR, such as words on a sign or colors
of objects, while LiDAR can only identify the location of an object and its distance
(“LiDAR vs. Cameras”). A Kinect sensor can receive this information along with the
space to objects. And similarly, for the complexity of the data, Kinect is also more
complex because LiDAR, as mentioned, provides location and distance. At the same
time, the Kinect offers this and more in the form of RGB values for each frame.

3.2.3 Chosen Approach:

Technology Cost Data Complexity Total

Kinect 7 10 4 21

LiDAR 5 3 8 16

7



SONAR 9 3 8 20

Table 3.2: Obstacle Avoidance Comparison. On a scale of 1-10, 10 being the best for a
given characteristic.

The Kinect is the chosen solution based upon the characteristics identified in Table 3.2.
For cost comparison, the team calculated the average cost of each sensor, along with
the necessary amount required. For LiDAR and SONAR, the price individually is much
lower, but more than one sensor is needed to be feasible. For data comparison, as
mentioned previously from the research done, the Kinect has access to distance data
along with image data, giving it the highest score based upon the relevant data required
for an obstacle avoidance module. This is also similar to the complexity rating; Kinects
access more data, therefore it is more difficult to process and understand. The Kinect,
while being a little more complex, has the most information while at a reasonable price
point.

3.2.4 Proving Feasibility:
In order to demonstrate that the Kinect system is feasible, the capstone will give a
simple command to move the robot forward down a straight hallway. Objects will be
placed in front of its path and it will be tested whether it can correctly detect them and
avoid them while still making it to the correct end position.

8



4.0 Technology Integration

With the necessary tools established, their integration will be discussed. The robot will
move and avoid obstacles with the ROS (Robot Operating System) architecture
integrated with the raspberry pi and additional sensors. The Xbox Kinect will enhance
the robot’s sensory capabilities by providing distance and image data that will aid in
recognizing further barriers in its path.

Per client requirements, Raspberry Pi 4B will be the robot’s central controller and serve
as a processing unit for movement and obstacle avoidance. The goal is to integrate the
ROS framework, Raspberry Pi, and Kinect sensors to provide movement and obstacle
avoidance. To ensure the robot reaches the destination safely, the team will implement
the coordinates of the 2nd-floor’s long hallway of the Engineering building into the ROS
program.

Figure 4.2 Systems Diagram

Figure 4.2 illustrates how different modules of the system will communicate with each
other. By using the Kinect sensors, ROS will compute object avoidance mechanisms
through the Raspberry Pi 4B module. According to Core Electronics, the Raspberry Pi

9



can use GPIO pins to connect the robot’s motors via the breadboard circuit connection
(Clinton). Python movement commands have been given to the robot to ensure the
motor driver boards’ functionality. Observed results will confirm that both motor drivers
are fully functional, proving the current movement implementation practical. Due to the
robot's altitude from the ground, some minor objects can be hard to detect with one
Kinect sensor positioned in front. Therefore, two Xbox Kinect sensors will be installed:
one placed at a 30-degree angle to the right and the other placed at a 30-degree angle
to the left. Both Kinect sensors will be connected to the Raspberry Pi 4B using the
USB3.0 connection to feed live image data to the ROS system. At a given moment, the
robot will need to avoid obstacles using the Kinect system installed. The sensors must
feed visual data to the program as the robot is initialized to proceed to a specific
location and detect obstacles along the way. If no challenges are present, the robot will
move to the coordinates given and check whether it reached the end of the hallway
using visual image detection through Kinect. The Kinect installed on the robot will
constantly publish data to the ROS system. The obstacle avoidance node will subscribe
to this data, process it, and decide whether the robot will need to reroute or keep going
in the same path. The ROS program and Kinect will work in parallel to each other as the
robot is in motion.

The integration described above is the current solution to avoiding obstacles the
thirty-gallon robot might encounter while moving to and from its target location.

10



5.0 Conclusion:

The capstone team will develop a movement and obstacle avoidance module for the
Thirty Gallon Robot for this project. The module will focus on having the robot move
from one end of the long hallway of the second floor of the engineering building to the
other and back again. Furthermore, the module will avoid any obstacles it may find in its
path. Unfortunately, this is much easier said than done, and even a simple movement
system comes with a series of challenges to overcome during development. The robot
must be capable of not only moving straight down a long hallway but also maneuvering
around any obstacles it detects. Finally, when the robot reaches the end of the hallway,
it needs to stop and turn around. From this, two main problems were identified:
Software framework and obstacle avoidance. The technical feasibility compared ROS
(Robot Operating System) with native Python and C++ libraries for a software
framework. ROS was the chosen solution because of its modularity and its access to
robotics-specific packages and libraries. Three alternative sensors were compared for
the obstacle avoidance system. LiDAR was one option that provided simplistic data but
at a high cost. SONAR provided comparable data with a lower price. The Kinect sensor
was the chosen solution because it collects similar distance data to LiDAR and SONAR
with image data. This extra data can allow for more advanced and informed
decision-making at a price point between LiDAR and SONAR.

11



Works Cited

Clinton. “How to Control a Motor with the Raspberry Pi - Tutorial.” Core Electronics, 23 Nov.

2018,

https://core-electronics.com.au/tutorials/how-to-control-a-motor-with-the-raspberry-pi.ht

ml.

“Description - Ros-Industrial.” ROS, https://rosindustrial.org/about/description.

Holland, Sam. “Robot Operating Systems: What They Are and How to Use Them.” Electronics

Point,

https://www.electronicspoint.com/research/robot-operating-systems-what-they-are-and-h

ow-to-use-them/.

“Lidar vs. Cameras for Self Driving Cars - What's Best?” AutoPilot Review, 3 July 2021,

https://www.autopilotreview.com/lidar-vs-cameras-self-driving-cars/.

Oliver, Ayrton, et al. “Using the Kinect as a Navigation Sensor for ... - Auckland.” Using the

Kinect as a Navigation Sensor for Mobile Robotics,

https://www.cs.auckland.ac.nz/~burkhard/Publications/IVCNZ2012_OliverEtAl.pdf.

Mishra, Ruchik, and Arshad Javed. “ROS Based Service Robot Platform.” IEEE Xplore

Temporarily Unavailable, https://ieeexplore.ieee.org/document/8384644.

Tamimi, Naser. “How Fast Is C++ Compared to Python?” Medium, Towards Data Science, 13

Jan. 2021,

https://towardsdatascience.com/how-fast-is-c-compared-to-python-978f18f474c7.

12



Tellez, Ricardo. “Learn Ros with Python or with C++? Pros & Cons.” The Construct, 28 Jan.

2021, https://www.theconstructsim.com/learn-ros-python-or-cpp/.

13


