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1.0 Introduction

Robotics has been an area of interest for almost as long as computer science has been.
The concept that machines could be given a task and complete it more efficiently than a
human could, has been even more prevalent in the past few decades than ever. This
trend will only continue as technology and automation become more pervasive in our
everyday lives. Because of this, robotics has been a continuously growing sector of
computer science and will remain integral for decades to come. In the past, the main
inhibiting factor to robotics was its power, cost, and complexity. Electronic components
needed for robots have become significantly cheaper while simultaneously becoming
more powerful. Because of the costs, in the past, there has been a severe lack of
learning opportunities for students to use a physical robot until now. Robotics in
classrooms has been too expensive to create and use. However, it has become feasible
to create fully autonomous robots that remain inexpensive.

The client, Dr. Michael Leverington, is a lecturer of computer science at Northern
Arizona University (NAU), and his goal has been to forge the minds of future computer
scientists. His business has involved teaching students how to solve otherwise complex
problems. His motto relies on his ability to forge young minds to wield the powers of
technology, mainly computer programming. Dr. Leverington is interested in robotics and
has seen this decrease in cost and lack of educational opportunity and came up with a
solution to it. His answer is to develop a flexible, cost-effective robotics platform in
college-level programs for educational purposes. The overall goal of the project is to
eventually have a robot that can give tours of NAU’s engineering building to potentially
bring in more students to engineering programs.

To accomplish that robotics platform, Dr. Leverington made the thirty-gallon robot,
initially known as the robot-assisted tours project or RAT. The thirty-gallon refers to the
tank which encases the robot’s components. The thirty-gallon barrel uses a wooden
dolly as the base and has access to components such as two motors and a Raspberry
Pi. The components in total cost approximately $1000. In order to give tours of the
building, it needs to be autonomous and support programmability. A prospecting student
that is touring NAU might be impressed by the autonomous tour they are being given
that was developed by students. This would hopefully convince them to pursue a career
in computer science or engineering at NAU.
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2.0 Process Overview
For the development of this project, our group split up into roles that would allow us to
work concurrently on different parts of the project. Fernando Diaz was the team leader
and Customer Communicator, Ulugbek Abdullayev was the team recorder, Jonathan
Gomez was the main coder for the project, and Brandon Jester was the release
manager.

During the development process, the team had weekly meetings with mentor Han Peng
to ensure the development was on track. Meetings began with a progress report on
what was developed or finished during the time since the last meeting. After that, the
team looked at what was upcoming and needed to be worked on or completed for the
week. Next, the team discussed questions or concerns about the project with the
mentor. Finally, the struggles that the team was encountering were discussed so that a
resolution may be found/ During team meetings all decisions were made with a ⅔
majority vote with the team lead being the final say in the case of a deadlock. During the
meetings all discussions were kept to the topic of the project so that the team could stay
on-track and finish the project in a timely manner.

During the development of the project, the team used AzureDevOps to keep track of
versions and updates made to the code. Whenever a change was to be made, the team
would review a pull request before the code was allowed to be merged into the main
codebase. Issues with the project were also tracked through DevOps so that they could
be monitored and resolved in the same place updates were handled.

For deliverables and papers that were required the team used the Google Drive suit of
products for writing and editing. This was chosen as all NAU students are given a
google account which shares a drive.
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3.0 Requirements
Now with the development process discussed, we had to gather our requirements and
specify what the client wanted from the thirty gallon robot. To gather these
requirements, we met weekly with the client over zoom meeting. We asked questions
about the kind of features and specific attributes he wanted for the robot. From the
discussions with the client,  three domain-level requirements were outlined:

● DR1. Autonomous Movement: The client specified that the robot will require an
autonomous movement module for the first high domain-level requirement. This
means that the robot will be able to move through some program without any
human input. This movement could be a specific path or a dynamically generated
path.

● DR2. Obstacle Avoidance: The second domain-level requirement is for the
robot to have an obstacle avoidance system in place. If the robot encounters a
wall or obstacle, it will reroute itself to move around or away from the obstacle. It
will then continue down its current path. The client required that the robot use a
sensor to detect obstacles and avoid them autonomously.

● DR3. Returning To Start: For the final domain-level requirement, the robot will
be able to recognize the end of its path, turn around and return to its starting
position. While not a specific requirement, the client expressed that in order to
achieve this, the solution should be contained to the robot itself. This means that
an object placed by the team to detect the end of the path would not be used.

To fully understand the functional requirements, each requirement is broken down into
smaller low level requirements Each of the following high-level requirements will be
broken down into these low level requirements to demonstrate a complete
understanding. These requirements also have specific performance requirements to
which these functional requirements’ performance will be measured and quantified.
There are also some environmental requirements regarding what hardware will be used
that the client requires.
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3.1 Functional Requirements
Each Domain Level Requirement (DR#) will be followed by ones of its lower level
functional requirement (FR#) and the number of the functional requirement. The
requirement will be explained, and if it has any sub requirements they will be noted by
bullet point.

DR1-FR1. The computer for the robot must be able to send movement commands to
the motor drivers housed on the robot.

● Program held on the raspberry pi will send commands using python to the motor
drivers through its GPIO pins.

● These commands must also be able to be sent independently of each motor. The
robot must be able to move one motor faster and in opposite directions than the
other in order to achieve turns and rotations.

DR1-FR2. The robot must be able to follow a pre-programmed or pre-planned path.
● Programs could be written and executed on the robot, and the robot will perform

the given path.

DR1-FR3. The robot’s movement must not be controlled by any human input.
● A program could be executed on the robot, and no human can directly impact the

robot’s movement. Does not include indirect impact such as obstacle avoidance.

DR2-FR1. The obstacle avoidance system will be able to detect obstacles
● The robot will use a sensor to gather information and determine if there is an

obstacle in front of it.

DR2-FR2. The robot must be able to reroute around obstacles or away from them.
● Upon detecting an obstacle in the path movement commands will be sent to

move the robot around until obstacle is no longer in view
● Upon detecting a wall, movement commands will be sent to keep the robot in the

center of the path
● Robot must continue on path after rerouting.

DR2-FR3. The robot will wait for wait for obstacles to pass if they are moving
● Upon detecting obstacle and slowing down, the robot will wait briefly to see if the

object has moved, and if so will wait for it to pass
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DR2-FR4. Robot will not hit or bump into obstacles
● Robot will stop before it hits the obstacle once detected

DR3-FR1 Robot can recognize and identify the end of the path
● Sensor on robot will take in information, and will interpret through the robot’s

computer whether the end of the path has been reached

DR3-FR2 Robot will return back to its original starting position
● Robot will perform a 180 degree turn at the end of the path
● Robot will move down its path again going the opposite direction

DR3-FR3 Robot can recognize the original starting position
● Sensor will detect the end of path or original start position
● Robot will stop upon detection.

3.2 Performance Requirements
DR1-PR1. The robot must maintain a speed of ~0.5 meters per second

● Will slow down for obstacle avoidance

DR2-PR1. Obstacles must be detected from a distance between one to three meters

DR2-PR2. Robot must be able to detect obstacles that are ½ meters tall and above

DR2-PR3. Robot will stop around one meter to one foot away from the obstacle it
detects

● Needs enough space in order to clear the obstacle or move around it.

DR2-PR4. Robot will be able to move around obstacles within 20 seconds after initial
detection
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DR3-PR1. Robot will detect the end of the path or its original starting point within five
seconds of reaching the designated end point.

3.3 Environmental Requirements
Along with requirements on how the robot needs to function, the Client provided a list of
intrinsic requirements that must be followed during the development of the project. The
client has set a set of hardware requirements that must be followed. There are three
major requirements identified for hardware:

● Thirty Gallon Robot Housing
● Raspberry Pi
● Budget Limit

Thirty Gallon Robot Housing
The Thirty Gallon Robot was designed and built by previous Electrical Engineering
capstone students and is intended to be the robot used in the final version of the thirty
gallon robot project. The robot that was provided includes the thirty-gallon barrel as the
housing, wooden dolly for the base, and significant hardware components such as the
raspberry pi, two motors, and two motor drivers. Any additions in terms of modules or
hardware components must be contained inside the provided thirty-gallon robot. Any
electrical components will also need to be powered off of the batteries onboard the
robot.

Raspberry Pi
A Raspberry Pi was requested to be used by the client Dr. Leverington, specifically the
Raspberry Pi model 4B, with 8 gigabytes of ram. The Raspberry Pi is affordable and is a
device that will not break the budget. Raspberry Pi’s start at 35 dollars before tax, kits
range at 170 dollars; it is not an extremely expensive machine. In addition, it allows for
multiple devices to be connected to it, from keyboards to monitors. Also, the 40-pin
GPIO header enables the Raspberry Pi to be connected to the robot’s motors and
control them. This Raspberry Pi will serve as the computer of the thirty gallon robot. It is
where the codebase will be held and where most of the computation for movement and
obstacle avoidance will be computed. Functionality can be extended and made modular
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with other microcontrollers and microcomputers, but the Raspberry Pi will remain the
main computer for the robot.

Budget Limit
The total cost of the robot will be cheap enough that other organizations such as
colleges would be able to purchase and build this same robot. Therefore, a budget limit
has been set for the new parts that can be purchased for the movement and obstacle
avoidance modules. The budget limit has been set at $300.
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4.0 Architecture and Implementation.
With requirements established, this section will discuss our architecture and
implementation. It is what we created in order to meet these explicit requirements. The
implementation of the system will require all the discussed hardware and software
components to interact with each other. In this section, the major modules and their
detailed implementation will be discussed.

Figure 3.1: Diagram of major components and relation

Figure 3.1 shows our three main modules and their interaction with the main software
driver loop. Our first module is the computer vision module. This uses the OpenCV
library for python for image processing. It is responsible for processing the depth image
from the kinect, and for detecting each end of the hallway using the Raspberry Pi
Camera. The next module is our obstacle avoidance module. This module is
responsible for getting depth camera images from the kinect sensor, and getting
distance information from the sonar sensors. It uses this information to determine if
there is an obstacle in the way. The last module is the motor control module. This is
responsible for both the hardware and software connection between the Raspberry Pi
and the motor driver boards. Using Python, we can send signals via the hardware
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connection to the motor drivers to control the speed and direction of each motor
independently.
This section details the implementation of each module and the main driver loop of the
program.

4.1 Control Module
The main goal of this project is to create a robot that is fully autonomous. As such the
basis of the system as a whole must be a component that allows the robot to move
without input from an outside source (i.e. a human). This component will be the main
driver of the system and provide a basis for all other systems. More specifically, this
component will allow the robot to move in a straight line without any user interface, input
devices, or other peripherals. In short, when the robot is turned on it should be able to
move on its own in a single direction. To achieve this goal, the software must be able to
control the onboard hardware for turning on and off the motors. As it turns out, the
drivers that the computer has access to are able to control the motors in a finite manner,
meaning that the motors are able to be powered with varying amounts of electricity,
allowing for finite control over the speed and direction of the robot. With these drivers
and a python library called RPi.GPIO which allows the pi to control the pins on the
drivers, a module will be developed that can accomplish the required task. With the
aforementioned pins on the driver boards, the program is able to control how much
power goes to each motor, which will be used to create movement sub-functions. Below
is a diagram of the sub-functions needed by the automated driving system.

Figure 4.1.1 Control System Flow
As basic as this module may be, it is the foundation for the operation of the robot. The
Automated Driving component is made up of four sub-functions that control the direction
the robot is able to move in. By powering one motor more than the other, the program is
able to turn the robot left or right 90 degrees at a time, and by powering both motors
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equally, the program will be able to move the robot forwards and backward. The reason
we do not include any other sub-functions in addition to the four seen here is that they
would either be redundant with other modules, or extraneous for this module.

Figure 4.1.2 Implementation Of Basic Movement Command

Automated Driving will be the basis for all other functions of this system. This module is
intended to give access to the direction functions which will allow other systems to
control what direction the robot will move in. The general implementation of one of the
movement commands is shown in Figure 4.1.2. From this figure, it is very simple to call
the move_forward() function with a power amount between 0-100. Then It sets the
direction pins on the motor drivers to the forward direction, and each motor's power
level to the passed in power amount to control speed. A similar implementation is held
for all other directions as well. A functional example of the system using these
movement control commands would be when an object is detected in front of the robot,
the obstacle avoidance system will decide which side of the obstacle is clear, turn the
robot in the determined direction with either the turn right or turn left function, then use
the move forward function to move a safe distance past the object, and finally repeat
this process to return to the forward position. Another example would be the computer
vision module detecting the end of the robot’s path, which would then call upon this
module to turn the robot around in a similar fashion to the obstacle avoidance module
and begin another straight path. Without this module, all other systems of the robot
would not be able to function.

4.2 Computer Vision
The computer vision module is necessary to complete the end of path detection. In this
project, it is required that the robot is able to navigate down the second floor of the long
hallway of the NAU Engineering building. The robot must be able to start and go from
the south end down to the north end, turn around, come back to the south end, and end
the program. In order to find each end of the path, computer vision will be used.
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Computer vision is a field of artificial intelligence that allows computers to infer the
meaning of certain items, or what they are, such as chairs and windows. In fact,
computer vision attempts to replicate human vision, in the sense that it tries to
recognize objects and patterns in order to categorize them. Computer vision requires a
lot of data to analyze, in order to compare the similarities of certain objects, such as
different types of tires. By comparing a vast amount of references, it can form a more
accurate perspective on the differences and similarities between certain objects. Also,
algorithms must be used in order to allow the machine to learn recognition and discern
different objects from one another.

Figure 4.2.1 North End of Hallway in NAU Engineering building (Lobby Area)

Figure 4.2.2 South End of Hallway in NAU Engineering building
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For the end of path detection, computer vision will be used to find the patterns and
recognize the end of each hallway. From Figure 4.2.1, it shows the north end of the
hallway, which is a lobby area, and Figure 4.2.2 shows the south end of the hallway.
Both need to be recognized in order to turn around or stop. In Figure 4.2.2, it can be
seen that the light-colored tiles line the entire hallway up until the lobby area from Figure
4.2.1. The approach taken is that for the lobby area detection, computer vision will be
utilized to recognize the color difference between the darker carpet area of the lobby
and the lighter tile area of the hallway. Using OpenCV, the differences in color can be
discerned quickly by comparing the pixels and area of the ground that the Kinect sensor
will see. If we reach a confidence level or an area of the ground that has become dark
enough, then the robot will stop and turn around. For the full termination of the path on
the south side in Figure 4.2.2, is even more simple. As will be detailed more in 4.3, the
depth image from the Kinect can be acquired. As the robot approaches the south side,
the depth camera will begin to pick up that the full wall including the door is in range.
The algorithm will determine whether it sees a full wall within the distance that it is too
close, and if so, will stop and end the program.

4.3 Obstacle Avoidance
The most complex component is the obstacle avoidance system. The responsibility of
this component is to ensure that the robot can get to the end of its path safely by
avoiding any obstacles or objects in the way. It does this by using the camera data
received from the Kinect sensor, processing the data through an algorithm to determine
if there are obstacles in the way, and if so, how to move around them. These
determinations by the algorithm will result in the autonomous movement commands
sent to the motor drivers.
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Figure 4.3.1 Simplified State Diagram of Obstacle Avoidance Algorithm

Figure 4.3.1 is a simplified version of the process or flow of the obstacle avoidance
algorithm. It is represented as a state diagram where each circle in the diagram
represents the calculation or computation being performed, and the arrows represent
how the computations flow to each other with a text explanation of that event that
occurs. The robot will start by setting the motor drivers to move forward with a given
speed. After this it will then calculate whether there is an obstacle in front of the robot
using the depth image received from the kinect sensor.
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Figure 4.3.2 Depth Image

Figure 4.3.3 Depth Image With Threshold Applied

From Figure 4.3.2, the depth sensor gives us a grayscale image where the darker the
color, the further away from the sensor it is. From Figure 4.3.3, this image is converted
into a pure black and white image using a depth range threshold value. The black pixels
indicate that there is an obstacle detected within a given depth range, and any white
pixels are obstacles outside this range. From here, the grouping of black pixels
indicates that there is a full object in view. To determine if the object is in the way, the
area of the grouped black pixels is calculated using contours, and if large enough will
trigger that an obstacle was found and stop movement.
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Figure 4.3.4 Code Implementation of Finding Contours From Depth Image

Figure 4.3.5 Code Implementation of Using Area of Contours

Figure 4.3.4 shows the implementation of how the contours and area of the depth image
are acquired. The function find_contours() is called with the color and depth image.
Using the OpenCV function findContours() returns the contours which hold an area
value. This value can be easily accessed as shown in Figure 4.3.5 and compared to see
if the value is large enough to determine if there is an obstacle.

The algorithm then calculates to find an opening by moving the robot and the camera
and using the same black and white pixel technique. Upon finding an opening, the robot
will move through it and go back to detecting obstacles once the path is clear.

After checking for obstacles, if none are found, the robot will then begin to calculate
whether the end of the path has been reached. As mentioned in the computer vision
section, it is required that we determine the end of the path in order to turn around and
stop. This is where the computer vision strategies that were outlined are used. When
the algorithm finds a positive for the first end of the path, its robot will then be given
commands to stop, turn around, move forwards, and begin the process over again.
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Now, the operations determine whether the original starting position has been reached.
If so, the robot will stop and the program will end.

Figure 4.3.6 Code implementation of State Diagram

Figure 4.3.6 outlines the general flow in the code implementation of the state diagram.
The program happens within a while loop in which the frame and depth images are
received from the respective functions. Then, a series of if else statements determine
the action that needs to be taken based on the current state of the program. Some of
the other states are contained within other functions like turning the robot around when
finding the path occurs within the function check_for_end_path(). The program will jump
between these different states by setting the state variable when certain events occur
as outlined in Figure 4.3.1

From our implementation overview in our software design document, our final version
differentiates from that implementation in one way. The obstacle avoidance module was
not sufficient enough using only one kinect sensor. We had to include a sonar sensor
facing the front of the robot because of false positives from the kinect when facing down
either end of the hall. This sonar in the front gives a basic distance value to the object.
We can account for this false positive by using the sonar sensor to confirm that an
obstacle is in the way. We then had to add two more sonar sensors, one on each side of
the robot. This is to account for the walls. The kinect sensor is not always wide enough
to detect objects on the side. These sensors allow the robot to sense when it is too
close to the wall. When it is, it will rotate in the opposite direction and continue.
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5.0 Testing

5.1 Unit Testing
The purpose of unit testing is to ensure that even the smallest functions, parts, or units
of a software project work as intended. The code is tested in small pieces called units.
These units are given tests with certain input, usually decided by the developer, and
then is checked against the expected output after the unit has been run. If the real
output matches the expected output, then the test passes, and otherwise will fail. Often
these units will be tested before and after the code and program changes to make sure
that the changes made did not break any part of the program.

For this project, images are the primary data being used within the program. It relies on
the processing and manipulation of this data. These images are gathered from the
Kinect sensor during program operation. For testing, images are too complex to
determine the expected output manually. To illustrate this, the simplest example of a unit
test would be a sum function that takes two numbers, adds them together, and gives the
result. This function may be tested with numbers, two and three against the expected
result, five. This test would pass, but it was much easier to determine what the end
result should be. For an example of image data, one function we use is to flip the black
and white colors of an image. The images we process are 640 by 480 pixels leading to
a total amount of just over 300,000 pixels. Even with a single image, determining every
expected pixel value would be too time consuming. Therefore, our unit tests will be
concerned with all parts of the program that do not involve returning images as result of
computation.

To test the software, the team used the unittest module for Python. This module gives
the tools necessary to create multiple tests for our code. These tests will be run to find
any errors or bugs that the software does not handle. In the next sections, we outline
the module the units belong under and discuss which units will be tested.

5.1.1 Control Module
The control module is solely concerned with and responsible for sending the output
signals from the Raspberry Pi’s GPIO pins to the motor driver boards. The robot is too
unbalanced to handle large movement speed changes in a quick amount of time. Doing
so could result in the robot jostling and possible tipping over. In order to account for this
the function for sending signals to the motor drivers must ramp up and ramp down the
speed smoothly.
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● Motor Speed - The unit tests for this module are simple in any function such as
move_forward(), can be tested against what the expected signal is from the
GPIO pin. If the value of the signal is HIGH or ON then the test will pass.
LIkewise, testing the stop() function with the signal value of LOW or OFF will
pass.

● Motor Direction - One pin controls the direction that the motor is set to.
Depending on the configuration of the motor, a HIGH or LOW signal will result in
clockwise or counter clockwise movement. These pins can be read identically to
the pins that control speed. For forward movement, we test that the robot’s left
motor direction pin is set to HIGH and the right pin is set to LOW since the
motors are flipped but wired the same. For a left rotation, we test that both
direction pins are set to HIGH to ensure that they are moving in opposite
directions to create rotation.

5.1.2 Computer Vision and Obstacle Avoidance
These two modules are responsible for gathering the images from the Kinect sensor
and raspberry pi camera and manipulating them to create the obstacle avoidance
algorithm and to determine each end of the hall. As mentioned earlier, operations that
return images as a result are too complicated to test accurately, so all other operations
were tested.

Figure 2.2.1 and Figure 2.2.2 Example Depth Images

● Obstacle Edge Detection - An important part of the obstacle avoidance algorithm
is determining the side which an obstacle is primarily on. Knowing which side the
obstacle is on also determines which side it is not. This allows for rotating to the
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opposite side where an opening would be found. For this unit, it takes the depth
image, finds all black pixels which equate to pixels of an object that is too close,
and counts the total amount for each side of the image. Whichever side has more
pixels found, that side is where the obstacle is primarily. Figure 2.2.1 shows an
example depth image. In this example image there would be more black pixels
detected on the right side of the image and detect the right side. And Figure 2.2.2
shows a depth image where more pixels would be detected to the left side. To
test this unit, we use input images and an observation of which side an obstacle
would be on.

● Obstacle Detection - The detection of an obstacle relies on finding the total area
of these black detected pixels. If the total amount of pixels found is greater than a
chosen value, the function returns true. A true result equates to an obstacle
being detected. To test this we assert that with a given input depth image that an
obstacle would be detected or not.

● Opening Detection - The principle used for detecting obstacles is nearly the
same for detecting an opening in the path. The major difference is that the
algorithm is counting the area of white pixels, or pixels belonging to objects out of
range. The camera must also detect the majority of the pixels within the middle of
the screen so that the robot can move forward through it. Testing this involves
giving input depth images and the expected result whether an opening is
detected or not.

● Lobby and Door Detection - Both ends of the hallway are detected using a
machine learning model. Videos are given to the model which help to train it in
deciphering what features belong to which end of the hallway or if they belong to
the hallway itself. During runtime, the Raspberry Pi camera’s images are
captured and given to a function that uses the model to predict where the robot is
in the building. For testing, we give the function images of both ends and the
middle of the hallway. We assert that the given result should be what the image
shows.
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5.2 Integration Testing
The goal of integration testing is to bring together the components of the overall system
in the Thirty Gallon Robot, in order to ensure that the product as a whole operates as
expected. Integration testing will mitigate any possible bugs and errors in the
communication between the modules that have been developed to run the autonomous
module and obstacle avoidance. The tests of the Thirty Gallon Robot were conducted
across the long hallway of the second floor of the engineering building.

5.2.1 Obstacle Avoidance and Autonomous Movement
The obstacle avoidance module works closely with the autonomous movement module,
data given to the obstacle avoidance module takes 200 hundred milliseconds to process
through the Raspberry Pi. As such the Raspberry Pi uses part of its processing power in
order to gain information, such as obstacles and the end of the hallway. Computer
vision uses the images received through the Raspberry Pi camera installed into the
robot, and in order to find the end of the hallway, it attempts to recognize the differences
in color and type of the material in the hallway. Because the lobby uses carpet, the final
strip of the hallway is darker, the module attempts to detect it. However, this system is
not perfect and might give false positives, as such the module must get three
consecutive positives in order to recognize the end of the hallway. The other end of the
hallway has a door instead of open carpet, and computer vision is also used here for
detection accuracy. This approach also uses three consecutive positives in order to
ensure the door is detected as the end of the hallway. The autonomous movement
interacts with the obstacle avoidance module in order to turn around when the end of
the hallway has been found. However, the obstacle avoidance module must also
recognize any possible obstacles, as such a more generalized approach is used in
order to create a better degree of practicality. This approach uses OpenCV in order to
detect obstacles. This solution is desirable, as it allows the Thirty-Gallon robot to save
on computation resources and ensures a good degree of speed in other processes such
as detecting the end of the hallway. The autonomous movement is used in order to
navigate around an obstacle, depending on the manner in which the obstacle is placed,
if the obstacle is on the right hand side then it circumvents the obstacle by moving to the
left hand side and vice versa.
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5.2.2 Hardware and the Raspberry Pi
The hardware of the robot integrates with Raspberry Pi through the GPIO pins that
connect to the motor drivers. The Pi connects to the sensors through USB, with the
Kinect and through a ribbon cable for the Raspberry camera. Integration between all the
components allows for a smooth functioning of the Thirty Gallon Robot, as it must
operate the motor drivers for movement, and use the external sensors to determine
where the robot should move. As such it is crucial that it has a complete connection to
the Raspberry Pi. The Kinect is used in order to give live data about the environment
that is being traversed and any possible obstacles present. The secondary camera is
used in order to detect the end of the hallway, and constantly interacts with the
computer vision function of the obstacle avoidance module. By using the hardware of
the robot in tandem with Raspberry Pi, the obstacle avoidance, and autonomous
movement module, the hardware in the robot is able to be fully used in order to move
across the long hallway of the second floor of the engineering building.

5.3 Usability Testing
Usability testing is one of the most important aspects of a software system. End user
interaction is ultimately what the software design revolves around and testing the agility
of the application is required before the deployment of the software into a platform.
There are many usability testing methods and picking the right one is crucial for the
success of the project.

5.3.1 Qualitative Usability Testing
The thirty-gallon robot is built around automation and machine learning therefore
minimal end-user interaction is needed for the operation of the robot. However, since
minimal user interaction is needed for the front end of the application, there will be a
command line user interface to communicate between the thirty-gallon robot and the
end user. To ensure that appropriate measures are in place to satisfy the user
experience, we conducted qualitative usability testing. As a facilitator, we asked
participants to perform end-user operations using the command prompt connected to
the raspberry pi remotely. As required from our client, we need to ensure that there is
minimal interaction between the end user and the robot. To that essence, the end user
will need to initiate the program by executing the python command “python3
thirty-gallon-robot.py” from one end of the 2nd floor hallway of the engineering building.
Once the command is initiated, the thirty-gallon robot will start moving at a human
speed so the user can follow along with the robot. Since there are multiple cameras
connected to the robot, the end user can see the images in real-time using the “-v”
command implemented into the software. The robot will also constantly feed the
end-user with the location it is proceeding towards and the current location it is at as a
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message, such as “hallway” or “end-of hallway” or etcetera. The end user will also be
able to see how long the robot is taking to analyze obstacles and to which direction it
will proceed next. Throughout qualitative testing, we are assuming that the end user has
intermediate knowledge of python commands so the software can be initiated. Since the
robot is equipped with machine learning, initiation of the software is all that is needed for
the robot to proceed.

While there is no particular graphic user interface implementation on the front end of the
software, qualitative usability testing is data will be collected. We are planning to get a
minimum of five participants to test our software extensively and gather data on how we
can improve user interaction between the software and the robot.

Currently, the robot has a command line based user interface and has constant display
messages to the user on the status of the robot. From the qualitative usability testing,
we analyzed the data and feedback we get from the user and improve our front-end
application accordingly.
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6.0 Project Timeline

Figure 6.1: Gantt chart of Implementation Timeline.

As the architectural design of the software implementation has been established and
different modules have been created for the robot’s functionality, team Poseidon
Wayfinding was able to create a well-structured timeline to ensure that the team is on
track. During the winter break, Jon, the architect, was able to create an initial software
design for the Xbox Kinect sensor for obstacle detection. While in theory, the program
works as needed, the stress test proved that the robot has a right motor relay that is no
longer functional. Two relays (left motor and right motor) were installed by previous
teams and are one of the important electrical components of the robot. Therefore, the
electrical architecture of the robot has been restructured. Brandon, the release manager
is currently working on installing the Kinect sensors on the robot in an angled way so
that optimal image detection can be achieved, in figure 5.1 it was expected to be done
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during the week of January 31, 2022. However, it was delayed until the team was able
to have the robot repaired. While the robot was being repaired, Jon focused mainly on
the next software design for obstacle avoidance while working in conjunction with the
team to implement end of hallway detection, the second version of the software was
released on March 1. Since detection at the end of the hallway is a non-trivial
implementation, the team allocated a few weeks to ensure that the design is flawless
and bug-free. The new obstacle avoidance software was integrated into the end of the
hallway detection, and the implementation was stress tested. Both tests are separated
into two timeline segments and took a few weeks to complete since the functionality of
the software is crucial to proceeding to the next phase. Although Kinect sensor software
has been designed at the start, future updates may be required depending on the
previous stress tests.

The final software will be released at the end of the given timeframe along with the user
manual on how the software works.
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7.0 Future Work
The future of this project is bright. Poseidon Wayfinding’s implementation of
autonomous movement and obstacle avoidance has laid the foundation for a robot that
will one day be capable of giving fully automated tours of NAU’s engineering building.
The next steps that are expected would be to add a localization module to the robot, so
that it is able to know where in the building it is at any given time. In addition to this it is
expected that a team will be able to take this information and direct the robot around the
building using the software. Finally, it is expected that a UI will be implemented so that
users can select a tour to be taken on or a location in the building to be taken to.

On the hardware side, we expect multiple improvements to be made to the wiring and
overall build quality of the robot. Specifically, we expect the wiring to be done in a way
that would allow modularity with sensors and other components such as an arm that
would be able to push buttons in an elevator. The overall build quality of the robot is
also expected to improve as currently the robot jolts around jostling the components
inside. An improvement that could be made would be the addition of a second rear
wheel, providing the robot with increased stability.
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8.0 Conclusion

Robotics is an ever-expanding field with limitless possibilities and the power of fast
computations. Robotics components have gotten cheap and more powerful, yet there
are few classroom uses of robots. Dr. Leverington noticed these two trends and came
up with the thirty-gallon robot as the solution. The thirty-gallon robot is going to be an
inexpensive autonomous robotic platform for use within college-level programs for
educational purposes. This robot needs to be autonomous and programmable so that it
will be able to give tours of the engineering building; this hopefully brings in more
students to the program and inspire them. Dr. Leverington also hopes to make this
solution extendable to other colleges and organizations in the future. Because the robot
will be inexpensive it should be reasonably priced for these groups. Using the
thirty-gallon robot as a recipe, these organizations would be able to create their own
autonomous robotic platform for use in education. The full thirty-gallon robot project
requires full autonomous navigation, and as a proof-of-concept that it supports
programmability, will be given the task of giving tours of the engineering building. For
our solution, we are implementing the first steps to this, autonomous movement and
obstacle avoidance. In order to complete this, the onboard motors and motor drivers
can be used to move the robot. Along with this, a Kinect sensor can be used to detect
obstacles in the way. By implementing these two modules, it brings the thirty-gallon
robot project closer to its end goal of full autonomy.

The giaTeam Poseidon Wayfinding is to ensure that the first steps towards a complete
autonomous tour-giving robot are taken. The team is looking to implement an initial
movement algorithm integrated within ROS to make the robot move autonomously in
the 2nd floor long hallway of the engineering building while avoiding obstacles within the
capabilities of harming the robot's movement. The software and hardware architecture
of the robot is as follows:

● The Raspberry Pi 4B model will be the base computer of the robot. The
team will install ROS on this computer to send movement signals to the
left and right driver boards. The autonomous movement module will
control the power and speed of the motors through this program, in which
the rate of the robot is pre-determined to human walking speed.
Consequently, the python algorithm will send initial directions and power to
the motors through the driver boards.
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● One Kinect sensors are positioned left and right-angled on the robot to
ensure that any significant objects (with potential threat for the robot)
within the range of 1-3 meters are being recognized.

The team’s goal is to ensure that the architecture above is accomplished promptly.
Therefore, the next big step towards achieving this goal is to create a mock-up version
that will showcase the movement and obstacle avoidance features. Overall, team
Poseidon Wayfinding is very optimistic about the prospects of this development. A
well-structured timeline will help the team keep on track.
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9.0 Glossary
Azure DevOps - A product created by Microsoft that allows software teams to keep
track of a wide variety of things such as version control while working on a large
codebase.

GPIO - General Purpose Input Output. Allows modules to interact with each other by
connecting wires to pins.

Raspberry Pi - A small handled computer module. These are typically used to work on
smaller hardware projects that do not require a large amount of computing power.

Xbox 360 Kinect - A sensor that was originally used to play motion-controlled games
on the Xbox 360 gaming system. It was used in this project for its depth sensor which is
capable of tracking objects.

28



10.0 Appendix A: Development Environment and
Toolchain

10.1 Hardware
The Raspberry Pi uses the Ubuntu MATE operating system. For development, we advise using
a linux environment to test python modules and other functions that do not explicitly require the
robot. For computer processing power, even low-end machines are able to write code and
transfer the files to the Raspberry Pi. These files can then be executed on the Pi without the
need for a high-end computer.

10.2 Toolchain
VSCode - This tool is a text editor that we used for writing our Python code. It has many
features that make writing code easier such as code highlighting and autocompletion. There are
many plugins that can be used for Python, but in our experience the base settings for VSCode
are sufficient.

FileZilla - This tool is used for transferring files between the computer used for development and
the Raspberry Pi. It provides a graphical user interface to allow for easy visual transfer of files
between computers. Anytime we had code to test on the robot, we used FileZilla to transfer the
files from our computer to the Pi for execution.

Windows Subsystem for Linux (WSL) - This tool is extremely useful for those programming in a
Windows environment that do not want to use a virtual machine or dual boot system. This
subsystem provides all the tools needed to interact with a Linux filesystem and includes access
to the vast majority of linux commands. For our project, it allows for python modules to be
executed in a Linux environment and allows for remote ssh login into the Pi easily.

10.3 Setup
VSCode can be easily downloaded and installed from https://code.visualstudio.com/download.
Similarly, FileZilla can be downloaded simply from
https://filezilla-project.org/download.php?type=client. WSL takes a bit more work in order to get
it properly installed. First you need to look in the microsoft app store and search for Ubuntu. You
can choose a specific version, but the version that is just tilted “Ubuntu” will be fine. From here it
is advised you restart your computer before proceeding. Now you can launch the application
named Ubuntu. This will launch a terminal window allowing you to work in a linux environment.
It will make you create a username and password first however.
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10.4 Production Cycle
The main development cycle our team had adopted involved having a repository in which all our
code was held. When we wanted to test with the robot we met up and edited the python files.
Once we were ready to test it we transferred over the file to the Raspberry Pi using FileZilla.
From here we used WSL and a bash terminal to ssh into the Pi and execute the python script
remotely. From here, we test to see what works and what doesn't. We repeat the process,
continually editing files, transferring them, and executing them. Once we finished the work for
the day or the session, we pushed our code to the repository for the next time we were
developing.
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