Poseidon Way-Finding Design Review III April 8, 2022

Presented by: Fernando Diaz, UlugBek Abdullayev, Jonathan Gomez, Brandon Jester

> Team Mentor: Han Peng

Robotics

Robotics is a great field, continually expanding. Many manufacturers currently use a form of robotics to facilitate manufacturing of products given the high demand.

Autonomous driving is also a field of robotics being currently tested, and many big companies such as Tesla, Ford, and others currently search for a solution.

The Client: Dr. Leverington

- Lecturer of Computer Science at NAU \bullet
- Wants a "wow" factor to bring in new engineering students \bullet
 - Do this by making a robot that can give tours
 - Provide a platform for students to learn robotics

Problem Overview

- Robots are expensive to build
 - Need an affordable robot that can give tours and easy to build
- Autonomous navigation module can be difficult to implement, given the vast amount of variables that may be present, such as obstacles.
- Obstacle avoidance must also be recognized and handled appropriately.

The Thirty Gallon Robot

What is the robot, the overall goal:

- Full touring implementation requires multiple modules operating together
- Obstacle avoidance and autonomous movement are crucial implementations for further development
- Stepping stone for learning about robotics

Project challenges:

- The hardware doesn't move on its own.
- Currently no software architecture that employs the use of the components.

Solution Statement

We are focused on implementation of phase one. Our plan is to implement two major modules:

- Autonomous Movement
- Obstacle Avoidance

Implemented with:

- Robot uses a raspberry pi as the central computer and controller.
 - Controls motors
- Kinect sensor for detecting obstacles
 - Tells the pi when it should avoid an object
- Small camera module for end of hallway detection
 - Image classification/recognition

Requirements

- Autonomously move down the long hallway of the second floor engineering building
 - \circ \quad Move at the average human walking speed
- Avoid any obstacles in the way
 - These obstacles may be random
 - 1 to 3 meters away
 - At least ½ meter tall
- Detect when the robot has reached the end of the hallway
- Be able to turn around and come back
- Detect when it has returned the starting point and stop moving

Architecture Overview

- Computer Vision:
 - OpenCV
 - Allow camera access
 - Machine learning
- Obstacle Detection:
 - Libfreenect
 - Allow Kinect Sensor access
 - Object detection
- Motor Control
 - GPIO
 - Allows access to motors
 - Robot movement

Implementation Overview

- One main loop
 - Does constant checking for obstacles and end of hallway conditions
- Checks for two end of hallway conditions
- Checks for obstacles in path

Prototype Review -Autonomous Movement

- Hardware connection between the Raspberry Pi's GPIO pins and the motor driver pins
- Provides interface that may be called upon in the program:
 - o move_forward()
 - move_backward()
 - turn_left()
 - turn_right()
 - o stop()

Prototype Review - Obstacle Detection

- The kinect sensor is opened and the depth images are taken and processed
- The side in which an obstacle lies on will be determined and rotate the robot in the opposite way

Opening Found, Continuing -----Moving Forward Checking for Obstacle

Prototype Review - Opening Detection

- The robot moves in the direction away from the obstacle. During this it is using a similar method to detect an opening.
- Finding an opening resulting in the robot continuing forward down its path

Opening Found, Continuing -----Moving Forward Checking for Obstacle

Prototype Review -Hallway Detection

- The end of the hall detection is done on a separate thread. It constantly gathers the image from the Raspberry Pi Camera and predicts the outcome from the machine learning model
- In order to account for false positives we check that the camera detects the same end of the hall multiple times consecutively.
- The first end detection results in the robot turning around, and the second ends the program.

rpi@rpi:~/ThirtyGallon\$ python3 main.py											
======================================											
Trying To Open Kinect											
Kinect Opened											
Moving Forward											
Checking for Obstacle											
Obstacle Found, Waiting 3 seconds											
Obstacle On Left Side XXXXXXXXXXXXXXXXXXXXX											
>>>>> Turning Right >>>>>											
Opening Found, Continuing											
Moving Forward											
Checking for Obstacle											
Result = LOBBY Lobby +++: 1 Door +++: 0											
Result = LOBBY Lobby +++: 2 Door +++: 0											
Result = LOBBY Lobby +++: 3 Door +++: 0											
TURNING AROUND											
Obstacle Found, Waiting 3 seconds											
XXXXXXXXXXXXXXXXXIObstacle On Right Side											
<<<<< Turning Left <<<<<											
Opening Found, Continuing											
Moving Forward											
Checking for Obstacle											
Result = DOOR Lobby +++: 0 Door +++: 1											
Result = DOOR Lobby +++: 0 Door +++: 2											
Result = DOOR Lobby +++: 0 Door +++: 3											

Challenges and Resolutions

- Detecting the end of the robot's path
 - Implementing a small camera
 - Using AI to model and recognize the end of the path
 - Kinect infrared sensor impacted by sunlight
- Electrical issues with robot
 - Getting the robot re-built with more sound architecture
 - Reengineer power module and drivetrain for the robot

Testing Plan

- Unit and Integration testing is used to ensure full functionality of the thirty-gallon robot.
- Computer Vision is integrated with Obstacle Avoidance.
- Several components working together will power the robot.
 - Such as the motor drivers and the raspberry pi
 - Also the autonomous movement and the obstacle avoidance, must work in sync with each other.
 - Computer Vision is a subset of Obstacle Avoidance, and will scan for appropriate obstacles and possible end of the hallway.
- Qualitative testing will be conducted to ensure end-user satisfaction

Implementation Timeline

Thirty-Gallon Robot

Task	Jan 2 - 20	Jan 22 - 29	Feb 1 -10	Feb 13-20	Feb 26 - Mar 1	Mar 3 - 14	Mar 20 - 30	Apr 1 - 7	Apr 10- 18	Apr 18 - 25	Apr 26 - May 5
1 Xbox Kinect: Inital Software Design											
2 Hardware Stress Test								-			
3 Relay Replacement								-			
4 Code Modularization								:			
4.1 Azure DevOps								1			
5 Kinect Sensor Installation								:			
6 Obstacle Avoidance Software v. 2											
7 End of the Hallway Implementation											
7.1 Machine Learning Implementation											
8 Obstacle Avoidance Stress Test 1											
9 End of the Hallway Teset 1								\implies			
10 Kinect software update											
10.1 Sunlight adjustment for kinect											
10.2 Platofrm Installation for Kinect											
11 Full Hallway Rundown											
12 Final Software Release								:			
	Light										
	ſ			Legend: Jon Ulugbek Brandon Fernando Team						Adjustr on Kin	nent lect 15

15

Lens

Currently

Conclusion

- Cheaper implementation of robotics can open learning opportunities
- Dr. Leverington is looking for an initial software architecture as proof of concept
- Team Poseidon Wayfinding is currently implementing obstacle avoidance and autonomous movement
- Raspberry Pi module and integration of machine learning can enhance performance
 - Future teams and stakeholders can further develop the software architecture

THANK YOU

