Poseidon Way-Finding Design Review November 19, 2021

Presented by: Fernando Diaz, UlugBek Abdullayev, Jonathan Gomez, Brandon Jester

> Team Mentor: Han Peng

Big Picture

- Affordable robot that can give tours and easy to build
- Stepping stone for learning about robotics
- An autonomous navigation robot

The Thirty Gallon Robot

What is the robot, the overall goal:

- Phase 1 Robot platform, hardware, movement and programmability
- Phase 2 Navigation, localization, and pathfinding
- Phase 3 Proof of concept, tours of engineering building

Can the team make the robot move?

- The Hardware doesn't move on its own.
- Currently no software architecture that employs the use of the components.

Solution Statement

We are focused on implementation of phase one. Our plan is to implement two major modules:

- Autonomous Movement
- Obstacle Avoidance

Robot uses a raspberry pi as the central computer and controller.

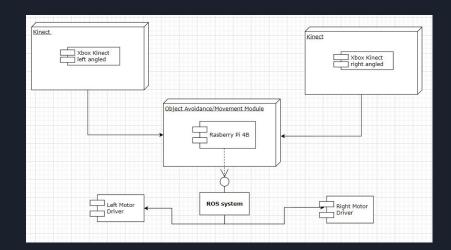
We will use Robot Operating System (ROS) for our software framework. Using this and python, we can interact with the raspberry pi and its various components like motor drivers and sensors.

Requirements

- Autonomously move down the long hallway of the second floor engineering building
 - Move at the average human walking speed
- Avoid any obstacles in the way
 - These obstacles may be random
 - 1 to 3 meters away
 - At least ½ meter tall
- Detect when the robot has reached the end of the hallway
- Be able to turn around and come back
- Detect when it has returned the starting point and stop moving

Obstacle Avoidance

- How are obstacles to be detected?
 - Xbox 360 Kinect sensors



- \circ One on each side of the robot at a horizontal 30 degree angle
- Sensors send signals to the Raspberry Pi
 - The system needs to quickly determine obstacles to avoid running into them
- The software plots a course around the object
- The pi then sends the signals to the motor drivers
- The motor drivers then activate the motors and move the robot around the obstacle
- Finally the robot continues its route down the hallway

Software architecture

- 2 Xbox Kinects
 - One angled left
 - One angled right
- Raspberry Pi
 - Runs the Robot Operating System (ROS)
 - Kinect library "libfreenect"
- Motor Drivers
 - \circ Sends signals to the motors

Challenges

Risk	Likelihood	Severity	Mitigation					
Hardware Malfunction	Low	Low-Moderate	Hardware checks, correct connections, verified functionality					
Robot Being Moved By Objects	Very Low	Low	Warning signs					
Obstacle Avoidance Miscalculation	Moderate	Moderate	Automated and Manual testing. Simulation tests. Bug checking					

Project Plan/Schedule

- Completed
 - On-Board hardware test
 - New Raspberry Pi 4B Installation
 - Basic Movement Test
- Currently working on
 - ROS Integration
 - Python Movement Library structure
- Plan for the rest of the semester
 - Prototype Designing
 - Obstacle Avoidance Demonstration

Project Timeline

Task Nam	е	Start Date	End Date		4 ov Dec	Q1 Jan Feb	Mar	Apr	Q2 May	Jun	Jul	Q3 Aug	Sep	Oct	Q4 Nov	Dec	Jan	Q1 Feb	Mar
On-Boa Test	rd Hardware	10/06/21	10/11/21	On-Bo	ard Harc	lware Test													
New Re Installa	dberry Pi 4B tion	10/13/21	10/16/21	New	Redberry	y Pi 4B Insta	illation												
Pi Netw Connec		10/17/21	10/21/21	Pi N	etwork C	onnectivity													
Right/L Test	eft Movement	11/04/21	11/10/21		Right/Let	ft Movemen	t Test												
ROS In	tegration	11/12/21	11/20/21	ROS Integration															
Prototy	pe Designing	11/22/21	11/30/21	Prototype Designing															
Obstac Demo	le Avoidance	11/25/21	12/03/21		Obstacle Avoidance Demo														
Winter	Break	12/12/21	01/14/22			Winter	Break												
Autono Movem	mous ent Design	01/17/22	02/10/22			Au	utonom	ious M	oveme	ent De	sign								
Xbox K Integra		01/24/22	02/12/22			X	box Kir	nect Inf	tegrati	ion									
	le Avoidance entation	02/07/22	03/04/22				Obst	tacle A	voidar	nce Im	pleme	ntatio	n						
Version	V.1 Demo	03/08/22	03/15/22				Ve	ersion \	V.1 Der	no									
Softwa	e Stress Test	03/21/22	03/26/22					Softwa	are Str	ess Te	est								
2nd flo Hallway		04/01/22	04/08/22					2nd	floor	EGR H	lallway	Test							
Final V Release	ersion V2. e	04/15/22	05/01/22						Final	Versio	on V2. I	Releas	se						

Conclusion

- Proposed architecture and approach towards solving the movement and object avoidance problems is optimal and future proof
- Dr. Leverington looks forwards to fully automate the robot for indoor touring purposes in the future