Operation Dark Sky
Technological Feasibility Study

March 4th, 2022

Team: Luke Thompson, Jordan Tatum, and Justin Ceccarelli
Sponsored by: Jim Clark, Peter Kurtz, and Henrique Schmitt

Mentored by: Anirban Chetia and Tomos Prys-Jones

1 Introduction
2 Technological Challenges

2.1 - Programming Language
2.2 - Graphical User Interface

2.3 - Data processing and Graphing
3 Technology Analysis

3.1 - Programming Language

3.1.1 - Desired Characteristics:

3.1.2 - Java

3.13-C

3.1.4 - Python

3.1.5 - Final Decision:

3.1.6 - Proving Feasibility:
3.2 - Graphical User Interface

3.2.1 - Desired Characteristics:

3.2.2 - PyQT

3.2.3 - Tkinter

3.2.4 - Kivy

3.2.5 - wxPython

3.2.6 - Final Decision

3.2.7 - Proving feasibility
3.3 - Graphing Tools

3.3.1 - Desired Characteristics:

3.3.2 - Matplotlib
3.3.3 - Plotly

3.3.4 - Seaborn

3.3.5 - Final Decision:

3.3.6 - Proving Feasibility

3.4 - Communicating with the Backend
3.4.1 - Desired Characteristics:

3.4.2 - Analysis:
3.4.3 - Final Decision:

3.4.4 - Proving Feasibility:

4 Technology Integration:

4 1 - GUI code Architecture

5 Conclusion

0 00 N NO ook BB PO LODN

N N DN NDNMNDN A A m m m o e
N O O O O O ©W © © © 0N N O o oo W N O ©

1 Introduction

The Navy Precision Optical Interferometer (NPOI) is an astronomical observatory
operated by the U.S. Naval Research Laboratory (NRL). While the NPOI does conduct research
on unique astronomical phenomena like binary stars, it also carries out a range of practical
functions that support the U.S. Navy’s navigational and communication capabilities. Even in the
modern world of satellites and GPS, the Navy still relies on the stars as a form of navigation that
is entirely independent of technology or political influence. The NPOlI is the largest baseline
interferometer in the world, and can conduct research that would be impossible at any other
observatory. The following paragraphs will cover the general functioning of the NPOI, the
operational challenge that it is currently facing, and Team Dark Sky’s proposed solution to the
problem.

The NPOI is primarily dedicated to astronomical research with the aim of improving our
understanding of the stars and planets in our galaxy. Its status as the world’s largest baseline
interferometer makes it especially well suited to studying binary stars, or pairs of stars that orbit
each other. Like most observatories the NPOI can only operate at night, during fair weather, and
beneath a cloudless sky. Since these circumstances are out of the observatory’s control, they
have to make the most of every opportunity to collect data. This means planning each night of
observation well in advance to make sure that the equipment is positioned and then repeatedly
re-positioned to capture the appropriate stars at precise times over the course of an evening.
Properly planning an event of this scale poses a significant challenge, especially considering the
constant movement of the stars in the sky relative to the earth. The astronomy team at the NPOI
would need to perform an exhausting amount of technical work to determine the optimal timing
and ordering of their observations, and then would need to carefully coordinate the
observatory’s equipment during the night to match those plans. This takes an experienced
professional an exceptional amount of time to do just once, but must be carried out every night
the NPOI observes the stars.

In order to handle this organizational challenge, the NPOI created a software application
they called “obsprep”, which is short for observation preparation. This software allows an
astronomer to create a list of the stars they wish to observe before calculating the optimal time
and order to observe those stars to maximize the observatory’s uptime. In addition, obsprep can
communicate with the interferometer’s hardware, allowing it to quickly transition from observing
one star to the next by shifting its mirrors.

When obsprep was originally written in the late 90s, it met the NPOI's needs for planning
and organizing the observatory’s nightly work. Unfortunately, in the decades since then the
software’s front-end has become outdated to the point where it requires frequent maintenance
simply to avoid crashes and unplanned downtime. The GUI is also an outmoded relic that
requires a great deal of experience and training both to operate and to even install the software
on a new machine. The NPOI has decided to scrap the original implementation, and has hired
team Dark Sky to create a new front-end application for the obsprep software. The NPOI
envisions a solution that can be easily installed on a user’s work machine regardless of
operating system, that allows the user to select multiple desired stars for a specific night, and

allows the user to generate and save graphs of the stars’ progress through the sky. There are
also several stretch goals that the design team will consider, including a formatted text output
and an installer script that can perform the installation automatically. The software’s backend will
remain intact, which includes the functionality that calculates star positions and communicates
with the hardware that aims the telescope. The user-interface will be completely rebuilt with a
modern design to be fast, functional, and intuitive.

Now that we have established a broad outline of what we hope to accomplish, we are
ready to consider the specific features and technical requirements that this project will need to
include. In the remainder of this document we will first outline the Technological Challenges that
must be overcome before assessing possible technology-based solutions in the Technology
Analysis. Finally we will outline our proposed architecture for implementing these technologies
into our product.

2 Technological Challenges

This section will investigate the technological challenges facing this project, and the
design decisions that need to be made in order to create a functional end product. These
decisions are listed below, and the different options will be described and compared in the
Technology Analysis sections.

2.1 - Programming Language

The project will be written in the programming language that offers the most appropriate
tools and libraries for our particular needs. We will not be choosing a specific operating system
to run the product, as the client has specified that our solution should be cross-platform. Given
the requirements of our client and the experience of our team, we are only considering three
languages: Python, Java, and C. We will consider these options based on their cross-platform
support, ease of maintenance, and available libraries and frameworks.

2.2 - Graphical User Interface

The product will need a graphical user interface that can collect user input and display
appropriate outputs. This interface should be capable of handling a wide variety of complex user
inputs, yet still be simple and intuitive enough to be used without extensive experience or
training. We will investigate publicly available software packages, and choose the most
appropriate one based on functionality, documentation, and sustainability.

2.3 - Data processing and Graphing

The product will need to generate and display data in several different styles. We will
need to implement software into the product that can transform tabular data into charts and
graphs with specific formats. We will choose and implement a graphing tool based on
standardization, longevity, and variety of features.

Now that we know what specific features the project must include, we can consider what
options are available. The following section will address the challenges mentioned above, and
evaluate a variety of technologies that can potentially be implemented to overcome these
challenges.

3 Technology Analysis

In this section we will go over the details of the technological challenges listed above,
and consider what specific technologies we can use to solve the problem. We will address each
challenge one at a time, starting with the programming language, followed by the graphical user
interface and then the graphing utility. After introducing the decision that needs to be made, we
will state our desired characteristics for the technology before describing the different options.
Once all options have been covered, we will summarize our findings in a table and choose the
technology that best meets our needs.

3.1 - Programming Language

The programming language plays a major role in determining the scope of our project
and what resources are available. Each language offers a unique range of built-in tools that are
key to their operation and define what is simple or difficult to implement. We also have to
consider the existing infrastructure at the NPOI, as our application will need to communicate
with their systems and will be maintained by NPOI personnel. The personal preferences of our
team is also a factor, although all of us are willing to work outside of our comfort zones to
ensure an optimal product.

3.1.1 - Desired Characteristics:

For this project, the most crucial elements we need from the programming language are
cross platform support, access to frameworks and libraries, and ease of maintenance.
Cross-platform functionality is a core requirement for our product, and as such any language
that is limited to just one operating system is automatically disqualified. A language that is
simple to implement across multiple platforms will make our work much easier. Another
essential characteristic of any language is what prebuilt tools and libraries are available. We are
looking for a language with reliable and easy-to-use graphical interface and 2D graphing tools.
Finally, ease of maintenance will be paramount to make sure that our solution will continue to
benefit our client for years to come. There are several popular general purpose programming
languages that perform well in these metrics.

Alternatives:

With these factors in mind we have chosen to consider the Java, Python and C
programming languages. In the following subsections we will break down the advantages and
disadvantages of each language in terms of the characteristics described above

3.1.2 - Java
Cross platform support:

Java is an innately cross platform language. Java can be seen both as a compiled
language and an interpreted language, meaning that Java programs are compiled and then run
on the Java virtual machine(JVM), not directly on the host machine. This means that a machine
of any platform can run a java program provided it has a JVM. All major platforms can create a
java virtual machine, but not every personal computer will have a JVM installed on it. Requiring
access to the JVM would make installation slightly more complicated for users that do not
already have a JVM on their computer.

Frameworks and libraries:

The most prominent GUI creation tool in Java is Swing. Swing is a longstanding tool for
GUI development in Java that may be approaching the end of its lifespan. Oracle intends to
phase out Swing in favor of the more modern JavaFX. This decision has not been well received,
as JavaFX is widely regarded as buggy and less reliable than Swing. Oracle began dropping
support for Swing in favor of JavaFX, but ultimately reversed the decision in 2018 after
widespread backlash. While Java does have the capacity for GUI creation, and even has
access to a number of IDEs that rapidly accelerate GUI design, Java does not have a prominent
GUI creation library that has been consistently supported for more than a few years.

Ease of maintenance:

Java is an object oriented language, and liberally applies the principles of object oriented
programming across all of its functions. Peter Kurtz, our technical point of contact with our client,
specifically mentioned that he dislikes object oriented programming and requested we avoid it
within this project.

313-C
Cross Platform Support:

C has the least cross platform support of our three candidates. C itself is a cross
platform language in that C code can be converted into a usable program for any platform.
Unlike Java and Python, which are at least on some level interpreted languages, C is almost
exclusively a compiled language. The C code can be distributed to any platform, but to be
executed it must be compiled into bytecode and then assembly. As such, cross platform
development in C would require either the end user to compile the code for our GUI, or an
additional script capable of performing this function on any platform.

Framework/Library Access:

C is a relatively low level language compared to Java and Python. This requires
programmers to assert more direct control over their designs. C is a powerful language that has
been used to create a remarkable variety of applications, including many with graphical user

interfaces. Popular graphical libraries include SDL and GTK. C is usually chosen for its precise
resource control and efficiency, with the caveat that C provides very little convenience or
support to the programmer compared to an interpreted language. An interpreted language and
its associated development environments can alert the programmer to problems before they
occur, dynamically adjust structures like arrays, and automatically free unused memory to
prevent memory leak errors, and more. Higher level languages offer a fantastic amount of
streamlining compared to a language like C, which while efficient is much more demanding to
the programmer on how its tools can be used. For example, simply importing libraries can be a
time-consuming process in C. If we design multiple C files that make use of the same graphical
library, which we are likely to do, we must also now determine the correct order of declaration
not only for our imported libraries but also our own files. This action is much simpler in Python,
which only requires an import command in the file that needs the library, no header file required.

Ease of Maintenance:

Maintaining a C program would require greater documentation from our team and
greater effort from our clients compared to Python. C uses simplistic syntax and functions that
typically require more experience and understanding to implement. The code is less
self-explanatory than other languages and as such requires more consideration and more effort
to produce a program that can be easily understood when read. This will require a greater time
investment from our team while writing the code, as well as more effort spent documenting and
commenting within the software to ensure proper maintenance.

3.1.4 - Python
Cross Platform support:

Python is an innately cross platform language. Python is compiled into bytecode that
once distributed can be run on any computer that has an up-to-date python interpreter. This is
superior to C which would require compilation on the end user’s computer and roughly on par
with Java’s cross platform support, with only a slight edge going to Java as the JRE is estimated
to be more widely distributed to end users than the Python run time environment.

Framework/Library Access:

Python has a broad assortment of libraries and frameworks available. PyQt and TKinter
are prominent examples that are adapted and modernized from the C tools QT and GTK. These
libraries have a long standing history of development on all three major PC platforms and are
relatively easy to pick up and learn. The options covered here will be further explored in section
3.2, Graphical User Interface.

Ease of Maintenance:

Python will be inherently easier for our client to maintain going forward since their current
GUI already operates in Python. Additionally Python's syntax is very modernized, and is closer
to human language than most programming languages. This makes analyzing the code faster
and easier for programmers of all skill levels. The convenience of features like garbage

6

collection will reduce the number of functions that need to be implemented, cutting down on the
overall amount of code that there is to read.

Metrics:

Each language has been ranked in each desired characteristic. The average of these
rankings is then taken and the language with the lowest average is the preferred language for
our program.

Table 3.1 - Rating for Programming Language Options

Cross platform Frameworks / Ease of Average
support libraries maintenance
Java 1 2 3 2
C 3 3 2 2.6
Python 2 1 1 1.3

3.1.5 - Final Decision:

Python performs well in all of our desired characteristics. It has strong cross platform
support and a variety of robust GUI creation tools. Python is easier to read and understand than
the alternatives, and will pose less of a challenge to maintain. It also does not force
object-oriented programming the way Java does. The GUI must be able to send and receive
information from the Obsprep backend written in C, a task which Python, as a glue language,
was specifically designed for. Moving forward we will be limiting our analysis to tools available in
python.

3.1.6 - Proving Feasibility:

Moving forward we will begin development of our prototype in Python. We are confident
this is feasible as the current edition of the Obsprep GUI is in Python. We plan to develop a
demo of our product this semester that will allow us and our client to begin refining our
expectations and preferred design for the GUI. The prototype will allow a user to click through
the GUI and explore what it would be like to work in our GUI with a premade data set.

3.2 - Graphical User Interface

The quality of a Graphical User Interface (GUI) is absolutely critical to the satisfaction of
the user, as it serves as the face of the program. For our project it is important that our GUI be
user friendly, intuitive, efficient and professional. The user will rely on our program to share and
record their scientific findings. Our GUI will be expected to allow users to input data and select
options in a simple, intuitive manner, and then display output data accurately and legibly.

3.2.1 - Desired Characteristics:

We have decided on four characteristics that we will use to evaluate the different GUI
library options. These characteristics are functionality, documentation, design quality and
sustainability. Functionality is an important characteristic because we will need the GUI to
perform very specific functions. If those functions are not built into the library, then we will need
to spend time developing them ourselves. Proper documentation is essential to make full use of
all the functions of a library, and will make it easier to implement specific functions into our GUI.
Design quality refers to the degree of polish within the library, such as the lack of bugs,
consistent language, and reliable outputs. Finally, sustainability reflects the degree of support
the library can expect to receive in the future. If a library does not receive support, it will
gradually deteriorate, affecting any product built using that library. Each option will receive a
score out of ten in each category, where a one represents a complete lack of the characteristic,
a five represents a reasonable degree of competence, and a ten represents an optimal
implementation of the characteristic. The total scores for each framework will be out of forty, and
the highest scored framework will be used for the final product.

Alternatives:

With Python there are a great deal of possible frameworks to choose from. Our team
used programming websites like stack overflow, geeks for geeks, and w3 schools to identify the
most popular and well-regarded GUI frameworks. These were PyQT, Tkinter, Kivy and
wxPython. We will be doing a brief overview of each framework and why it is being considered.

PyQt is a GUI framework for Python that provides a library of tools to help develop and
design a user interface. Some of these tools include location and positioning services,
multimedia, NFC and Bluetooth connectivity, a Chromium based web browser, and traditional Ul
development. Many modern interfaces are built with PyQt, and it is a strong contender for our
framework choice. PyQt supports cross platform functionality and has an easy to develop
installer script. The framework is very simple to install, requiring only a one line terminal
command.

Tkinter is the next most popular option. Tkinter is an open-source framework that is well
known for its simplicity. This makes it easy for new developers to learn and use. This particular
framework is a strong candidate because it comes built into all versions of Python. Being built in
will decrease installation time and make it so new users for the program no longer have to install
additional packages. Tkinter allows for cross platform functionality, and makes creating an
installer script a simple affair. Tkinter also offers flexibility and stability which will help us when
implementing specific tasks into our project.

Kivy is an open source multi-platform GUI that can run on all operating systems. It allows
developers to create innovative interfaces with a multi touch user interface. The main purpose
with Kivy is for developers to create an application once and use it on all devices. This
framework allows developers to quickly create interactive designs and rapid prototypes. Kivy is
mostly aimed towards web application interfaces but can be used for building any interface.

wxPython is the smallest and least popular framework we are considering. Despite its
smaller community wxPython comes packed with quality tools for development. One benefit of
wxPython is that it features a design environment that lets you easily preview an interface while
you design it. It also has a large library of widgets that add a lot of design options for an
interface. wxPython offers a lot of flexibility with objects and connections within the interface.
The framework can deploy its applications for all operating systems. It unfortunately does not
have an easy way of creating an installer script for the application.

In the next section we will be going into more detail about the frameworks discussed
above. We will be considering the pros and cons of each framework in terms of the four desired
characteristics: functionality, documentation, design quality, and sustainability.

3.2.2 - PyQT
Functionality:

One of the benefits PyQt offers is its coding versatility. PyQt's structure is designed
around signals and connections that create contact between objects. It also offers more than
just a framework. Qt uses a broad variety of platform API’s for Networking, database
development and more. It offers primary access to those tools through a special API. PyQt has
a very steep learning curve which means more time learning and less time developing. This
framework is a commercial product, and as such we will need to acquire a license to use it.

Rating:

Given the advantages and disadvantages of PyQt we have decided to give it a rating of
8. This is because it offers very strong Functionality through its coding versatility and local API
access to useful tools. It does not get rated higher though because it's a challenging framework
to learn and we would have to pay for a commercial license to use it in our application.

Documentation:

PyQt’'s documentation offers a lot of information about how to set up and utilize their
framework. Their documentation is broken up into easy to comprehend sections based on each
part of the framework. Although their documentation lacks Python specific documentation. The
documents leave a lot of the functionality of the framework in question. There is also a lack of
examples of the functions being used, it just describes the function itself.

Rating:

The final rating we have given the documentation on PyQt is a 6. The documentation
describes a lot of the tools and functions available in the framework, but it also leaves a lot
unanswered.

Design Quality:

PyQt offers a variety of user interface components. Some of these components include
buttons or menus, all designed with a basic interface for all. It also includes advanced widgets

9

that reactively scale. Qt offers a design interface to visually design your interface before coding.
The only downside is the framework lacks a widget variety.

Rating:

The design quality of PyQt receives a 9. This is because it offers a variety of user
interface components, has advanced widgets and a design interface that can help us visually
structure our GUI. PyQt offers a nearly perfect design quality but lacks a variety of widgets.

Sustainability:

PyQt is one of the most used frameworks for developing graphical user interfaces. It has
a large and active community that helps maintain and upkeep the framework. Currently it is
unavailable on Python 3.5 and newer. Its last update to PyQt was in 2016

Rating:

The current sustainability is currently looking bright but is not guaranteed. As of right now
it is working and functional. Qt's community is big and help keeps to maintain the framework and
add to it but the developing team has not updated it since 2016. The sustainability is not
guaranteed leaving the future of it in question. For these reasons we are giving it a 6.

3.2.3 - Tkinter
Functionality:

Tkinter offers more flexibility and stability compared to other frameworks. Meaning that it
will respond better to different user and system requirements. It is easier and faster to
implement than the other frameworks because it is built into Python. Being built into Python
means it works very well with other external libraries. The learning curve is low and the
framework is considered easy to master. Tkinter also offers simple syntax for developers to read
and understand the code. On the other hand, debugging can be difficult with Tkinter. It is also
not purely Pythonic, which can make it difficult to grasp.

Rating:

Looking through all of the advantages and disadvantages of the functionality of Tkinter
we give it a rating of 8. This is because iit offers great flexibility, an easy learning curve,
compatibility to external libraries and its fast implementation. We are still missing out on some
key points though. The challenge of debugging may prove to be a problem during development
and it not being purely Pythonic makes it more difficult to integrate.

Documentation:

Tkinter has deep documentation about every function included in the framework. The
documentation is hosted on Python’s own website making it very reliable and frequently
updated. They also have their own documents on their website with a bit more information
available. Tkinter is one of the most widely used GUI frameworks with a massive community

10

helping and contributing to problem solving. It also offers video tutorials on how to implement
and use the framework. There are some older, outdated items in the documentation that refer to
previous versions, but they are usually easy to identify.

Rating:

With all the research looking into Tkinter’'s documentation we have decided to give it a
perfect 10. There is so much documentation between Python’s website and Tkinter’'s own
website. As well as hundreds of tutorials online on how to implement and build a GUI with it.
There is very little to complain about when it comes to the framework.

Design Quality:

Tkinter offers three geometry managers to help design the layout of the application:
place, pack and grid. It offers a layered approach which makes it easy to take advantage of the
many features offered by the framework. Unfortunately Tkinter does not offer access to
advanced widgets. It also lacks a design interface on par with the other options. It doesn’t offer a
native look or feel to the application

Rating:

With its lack of advanced widgets and non-native design interface will make it difficult to
develop a complex layout. Our design will be simpler and more straightforward than it would be
with the alternatives. For this reason we are giving Tkinter a rating of 5 for design quality. Its
geometry manager design and layered approach does help balance out the negatives. Overall
the design with Tkinter will not be as sharp or advanced as the other frameworks.

Sustainability:

With Tkinter being built into Python it will be around as long as Python is around. The
last update to Tkinter was in November 2021, so it is still being actively updated and
maintained. There are examples of many applications that were built with Tkinter and still use
their interface. Some examples are restaurant management systems and traffic signal violation
detection systems. With newer frameworks being developed and offering better design Tkinter
could be left in the past and not be worked on anymore

Rating:

We can expect Tkinter to be carefully maintained for the foreseeable future. With it being
built into Python it receives frequent updates, so we have decided to give it a 10 for
sustainability.

3.2.4 - Kivy
Functionality:

Kivy offers smooth compatibility with various platforms including Windows, Android,
Linux, iOS, MacOS, and Raspberry Pi. Its purpose is to write code once that can be used on all

11

platforms.Kivy performs better than HTMLS5 cross platform alternatives. This is an open source
code framework that is free to use for development. Kivy is typically for web and mobile
applications. It lacks flexibility when it comes to code structure and use. It also uses a kV
language which is not suitable for it to compile the code alone. The package size for Kivy is
unusually large. Kivy is known for having a steep learning curve and long development cycles.

Rating:

Looking at all the factors we have discussed for Kivy’s functionality we have decided to
give it a 6. Although it offers great cross-platform functionality it falls off in other areas. This is
mostly because the tool is designed for web and mobile applications, and the steep learning
curve. Realistically its functionality is not practical for our project.

Documentation:

Kivy has deep documentation of all its functions. The documentation breaks down into
different parts, basic functions, programming guide and widgets. The documentation also shows
a gallery of examples of how to implement different interface designs There is also a tutorial
page on how to set up an environment and get started. Kivy lacks a dedicated community so
there is not a lot of support for questions. It also only briefly touches on Kivy’s specific language.

Rating:

Through all of the research done we have come to a conclusion that we give Kivy’s
documentation a 7. This is because it has thorough documentation on the functions and how to
implement specific widgets and designs. We cannot give it a higher rating because there is a
lack of community that has answered specific questions and there is not enough about Kivy’s
specific coding language.

Design Quality:

It has access to a plethora of advanced widgets and offers multi touch support for mobile
applications. With Kivy you can include media such as videos, audio and gifs. It also creates a
native interface for users on all systems. The framework does have some impractical use
widgets such as sounds buttons.

Rating:

Kivy is a well designed framework that offers a broad range of useful interface tools. It is
very robust and we are giving it a 9. Many of the functions are mobile-specific and not relevant
to our project, which prevents this framework from receiving a 10.

Sustainability:

Kivy is a newer framework that is offered in newer versions of Python, unlike some of its
competitors. It was last updated in 2021; we are unsure exactly which month. There are not a lot
of major applications built with this framework, which is largely due to its youth. Since Kivy lacks
a sizable community there is a real risk of it losing support.

12

Rating:

As it stands it is unclear whether or not it will be around in the future. There are not a lot
of applications built using it, it does not have a large community, and it is designed for web and
mobile applications. For these reasons we are giving it a 3 for sustainability. Overall the
longevity of Kivy is unknown and it is not a safe choice when developing a long lasting
application.

3.2.5 - wxPython
Functionality:

wxPython is very flexible when it comes to user interaction and system requirements. It
offers a lot of functions within the framework making performing tasks easier. It does not handle
large amounts of data easily and starts to lose performance when doing so. Due to wxPython'’s
external library and rich widget selection it sacrifices runtime and is a slower framework
compared to the ones previously discussed. It is currently under development, and contains
more bugs than many of its competitors. It needs to be installed making it harder for the clients
to use. Finally it has a steep learning curve which can slow down development time.

Rating:

wxPython is clearly still in development. It struggles to handle large amounts of data,
runs slowly, and contains bugs due. On the other it has a rich selection of widgets and quality
features. With this in mind, we give wxPython a 5 for functionality.

Documentation:

The documentation has different sections for different functions in the framework. It also
offers an overview document to help walk you through documentation. The documentation is a
single page and only tells you about the function and not how to implement it. There are no
examples of setting up an environment with the framework. The community is small and there is
not a lot of support online. There is also a lack of other websites such as, geeksforgeek and
stackoverflow describing the framework or offering tutorials.

Rating:

The documentation for wxPython is very limited. For this reason we are giving it a 4. If
there was not a documentation page describing functions it would be very hard to figure out how
to use and implement it.

Design Quality:

wxPython offers a large variety of widgets with a lot of features built into them. Its applications
also don’t lose any quality across platforms. User interfaces are native looking and easy to use.
It comes built-in with support for menu icons and key-board functions. Finally it offers a design

13

interface to help design and plan the interface before development. The only disadvantage is
that it is tough to learn how to implement a widget.

Rating:

With wxPython their main focus is being able to create a native looking and user friendly
interface. Due to it being a very design heavy framework we are going to give it a 10. With its
large variety of widgets, no quality loss between platforms, built-in support for menu icons and
design interface this framework offers the best design quality possible.

Sustainability:

wxPython was most recently updated in November 2021, demonstrating active support.
It lacks a particularly large or vocal community. It is currently under active development.

Rating:

wxPython’s short lifespan and absence of community calls the sustainability of the library
into question. With no real security behind its longevity we have decided to give it a 4. It is
currently under development which makes it a risky investment.

Table 3.2 - Rating for GUI Framework Options

Functionality | Documentation | Design Sustainability | Total
Quality
PyQt 8 6 9 6 29
Tkinter 8 10 5 10 33
Kivy 6 7 9 3 25
wxPython 5 4 10 4 23

3.2.6 - Final Decision

Through our research we have come to the decision to use Tkinter as our GUI
framework. With Tkinter deep documentation we will be able to develop a more in depth GUI for
our sponsors. Tkinter offers cross platform functionality which is a necessity for our clients. It will
allow us to have design freedom when developing our GUI. Our application will be able to be
user friendly while keeping high functionality. With all these points Tkinter is the clear answer
when choosing a framework for our GUI. The other options are strong as well but for our specific
case and needs there’s a lot of unnecessary functionality involved with them. We will be able to
achieve cross platform functionality, an intuitive interface, an organized file directory, and even
create an installer script for our application.

14

3.2.7 - Proving feasibility

Through these next few weeks we will be starting to develop with Tkinter and learn how
to successfully develop an interface. Our plan is simple: we will start with a very basic interface.
This will include adding some widget structure as well as accepting input from the user. The
next step will be to develop a more in depth application that will take in input and give out some
kind of output. After that we will create a basic back end where we have our basic interface
communicate with our basic backend. Then we will include a more advanced interface within
our project that can accept multiple inputs and more difficult tasks. Once we have the more
detailed front end working with our basic backend we will then connect it to the actual backend.
Finally for our prototype we will have a user interface that will retrieve data from the backend
and display it to the user. Below we have a few pictures displaying a more in depth interface
(Image 3.2.2) with Tkinter and our basic one we have developed (Image 3.2.1)

Image 3.2.1 - Basic User Interface

¢

Hello Operation Dark Sky

Image 3.2.2 - Advanced User Interface

¢ Router Manager - a X
Search by hostname Search
Search by Query Select * from routers Search Query

hostname

RAM

Add Router

Remove Router

Brand |

Flash

Update Router

Clear Input

Brand
Cisco
Cisco
Cisco
Juniper
Huawei
Huawei

Cisco

512

1024
2048
2048
2048
1024
2048

Flash
256
256
256
256
256
1024
2043

15

In this next section we will be discussing potential libraries for displaying graphs for the
stars data. This is an important task for the observers to be able to track when the stars are
observable. Operational downtime will be reduced and their research will be able to continue
with ease. There are a handful of graphing libraries that Python offers. We will be going over all
potential options.

3.3 - Graphing Tools

OBSPREP currently provides graphing functionality to the team at the NPOI. Our clients
require this functionality to be maintained in our new frontend for them, and also expect us to
make the creation, recording, and distribution of these graphs more intuitive than it currently is.
The client expects simple 2D graphs with an X and Y axis that charts when stars are potential
targets for observation. The Y axis is the desired stars, and the X axis is the time of night. The
graph appears as a horizontal bar at the height of a particular star's ID when that star is visible.
So if a star is a valid target from 2am to 6am, at that star's height on the graph there will be a
line drawn from 2am to 6am. There are a number of alternative tools to use for this task. Some
of the options we examined are matplotlib, seaborn, and plotly. These alternatives will be
compared below.

3.3.1 - Desired Characteristics:

We require a graph creation tool that can generate 2D graphs based on user input, and
that can have their information easily converted to text. We are looking for a data visualization
tool that is simple to learn to use (not complex), easy to transcribe to text, and will likely be given
continued support in the long term.

Alternatives
3.3.2 - Matplotlib
Complexity:

Matplotlib is the easiest to pick up and use of our alternatives. It has the fewest features,
but also the least complexity. We do not have high demands for the kinds of graphs we need to
create so the tool that can make simple graphs with the least expectation on behalf or the part
of the programmer responsible for maintaining our program later the better. Matplotlib does not
make complex graphical representations easy, but it does make simple graphical
representations trivial to implement.

Transcription:

Matplotlib is also the easiest to transcribe to text. The simplicity of it's implementation
carries over to this criteria. The simpler it is to construct the graph the easier it will be to write a
function that reads in a text input and constructs the commands to draw the graph.

Longevity:

16

Matplotlib has been the preeminent data visualization tool in python for almost 20 years.
Matplotlib’s longevity is reinforced by the fact that many of its competitors, such as seaborn, are
based on matplotlib. Meaning that support for matplotlib cannot be dropped without also
compromising many of the alternatives to matplotlib.

3.3.3 - Plotly
Complexity:

Plotly is the most complex of the examined alternatives. Plotly provides highly interactive
graphs through the use of javascript and HTML. This allows for feature rich graphs to be made,
but the ability to accurately understand what is happening when the code is executed requires
the programmer to have an understanding of javascript and HTML as well as python. This also
means that the graphs are regularly opened by the user’s web browser, and while plotly does
not need to access the internet, our client has specifically asked us to avoid entangling the
internet with this program and the use of a web browser may be considered a compromise of
that wish. Plotly is a product that aims to provide an incredibly expansive features list, as such it
is also highly complex.

Transcription:

Plotly would be difficult to transcribe to and from a text format. We would likely make a
large number of assumptions about the graphs structure in the method we use to reconstruct
the graph from text which while remaining technically accurate may result in a graph that does
not visually match what the original creator of the graph designed. It is possible to create a text
file and interpret a text file completely according to the original graphs creator’s design, but this
would involve the creation of a much larger package to perform this function than with our other
two candidates.

Longevity:

Plotly likely has the least longevity of our three options as well. Plotly is a highly modern
and customer focussed product. Plotly aims to provide the most visually stunning and interactive
graphs that they can, this is valuable for presentations and artistic purposes but less valuable
for efficient data collection and storage. This also means that as trends in various industries
outside of computer science change, plotly is subject to being replaced by a similar tool with
something even as simple as a different aesthetic or brand.

3.3.4 - Seaborn
Complexity:

Seaborn is based on matplotlib and aims to improve on the formula. Seaborn was
designed to make the inclusion of multiple variables on a graph easier. This does mean the
complexity is higher but not much higher, and it is possible that the ability to streamline the
addition of more variables may be of use to us. We know we will be tracking multiple variables,
but it is unclear if the added complexity is worth the added features.

17

Transcription:

Transcription into seaborn will only be slightly more difficult than into matplotlib. The
concern is that to resolve errors that occur in seaborn we may need to fall back onto matplotlib
anyways. If we simply use matplotlib the entire time this situation is avoided.

Longevity:

Seaborn ranks highly on longevity, it has a successful history as a data visualization tool.
However it is based on matplotlib which means that any support for seaborn inherits support for
matplotlib.

Metrics:

The alternatives are ranked relative to each other. For example Matplotlib is the simplest
alternative and therefore ranks best on complexity so it receives a 1. The average of these
scores is then taken and the alternative with the highest ranking average (lowest numerical
average) is the preferred choice.

Figure 3.3 - Rating the Graphing Tools

Valuable Trait: | Complexity Transcription Longevity Average

Matplotlib 1 1 1 1
Seaborn 2 2 2 2
Plotly 3 3 3 3

3.3.5 - Final Decision:

Matplotlib is the utility we should use to create the graphs for our product. The
unique challenges associated with our graphical implementations are mostly a matter of
collecting and disseminating information in multiple formats that are not actual graphs. Turning
them into text, into graphs, and back again. Matplotlib is the easiest to translate from a
visualization, to text, and back again. Matplotlib is also the easiest to learn to use. Our client has
not expressed interest in many of the more highlevel graphing utilities such as interactive
graphs, although this is something we will be listening for in their coming feature requests.
Sometimes, the simplest and easiest to use option will serve better than a feature heavy
service.

3.3.6 - Proving Feasibility

The prototype of our GUI will include a selection of the kinds of graphs it can
create. These graphs will be pre-generated from data of our choice and will allow our client to
review how well these graphs suit their needs. Matplotlib is the current tool used by the Obsprep
GUI and it seems to be sufficient for their needs.

18

3.4 - Communicating with the Backend

With the current Obsprep software’s backend being developed in C we face the
challenge of how to communicate with it. We need to be able to convert our Python requests to
C types as well we need to be able to convert the C data types to Python types. This proves to
be a challenge because Python uses type hinting syntax meaning you do not need to declare a
data type before variables. Through this section we go over the details and planning of how we
are choosing how to communicate with the backend.

3.4.1 - Desired Characteristics:

While doing our research of connecting the frontend of an application with the backend
we have come up with characteristics we will need. Some of the characteristics we will need are
efficient communication. This is important because we do not want to lose any runtime speed
when retrieving data. Another important trait we need is it to work both ways going from Python
to C and from C to Python. Our final trait we are looking for is to be able to utilize our
programming languages memory management.

Alternatives:

Despite our research we have found very few options for communicating with a backend
in C. This includes looking at websites such as stackoverflow, geeksforgeeks and w3 schools.
The only available option for us is a glue language called Cython. Cython allows us to easily
change our Python frontend code to Cython and then from Cython to C. This also works in the
reverse as well. It is the best solution as well as the only solution we have.

3.4.2 - Analysis:

Cython is a glue language that will make it so we can work with external C libraries. We
will also be able to utilize the memory management of Python and C. With Cython we will be
able to use Python’s type-hinting syntax. Through the use of Cython we will be able to have the
option for speed when needed. We will also have the option for safety when necessary.
Unfortunately this will be a learning process for the whole team because none of us are familiar
with Cython. It will add extra work because on top of creating Python files we will also need to
create a Cython file to be able to communicate with the backend. We will also have to create
extra code in our Python files to be able to convert it to Cython. Finally the future developers
that will maintain the code will have to learn the syntax as well.

3.4.3 - Final Decision:

With the problem at hand of having to communicate with the current backend we have
decided to use Cython. It will make communicating our Python frontend with the C backend
efficient. We will be able to keep Python’s type-hinting syntax keeping our code simple and
readable. As well with our choice of Cython we have the memory management from Python and
C. The choice to go with a glue language is the best choice when considering all of the benefits

19

and negatives. This will make our code efficient, secure and able to easily communicate with the
current obsprep backend.

3.4.4 - Proving Feasibility:

Our plan to implement Cython and prove its functionality will be simply hooking it up with
our demo frontend. The first step we will take is to create a simple program that uses it to
convert Python to C. Then we will make it a more complex program changin Python inputs to C
data. Finally with the demo frontend it will be simple but we will have it utilize Cython to
communicate with the backend. Our prototype will be able to grab some data from the backend
with our Cython glue language. With these steps in place we will be able to prove how useful
Cython is to our project.

4 Technology Integration:

4.1 - GUI code Architecture

In this section we will describe the structure of the code. Figure 4.1 below provides a
visual map of the different elements of the software, and how they interact. The process starts
with the Astronomer deploying and interacting with the user interface. The GUI then sends a
request to our glue language Cython where it converts it to C. Then Cython communicates with
our backend requesting data from it. The backend accesses the binary file where the data is
stored. After the binary file gets the request it returns the information back to the backend code.
Then the backend code returns a response to Cython where it is converted back to Python.
Cython sends the Python response to the frontend code. Then if a graph is needed to display
our frontend will call the MatPlotLib library with the retrieved data to create a graph. Finally the
GUI will display the response to the Astronomer.

20

Figure 4.1 - Code Architecture

GUI Framework (3.2) Python to C Converter (3.4)
i > Request—®
Interaction User Interaction = Converts Fyihon fo
Astronomer Cython then to C
Display Converts C to Cython
——pesponse then to Python
Tkinter
Cython
| Response
[Request
Graphing Library (3.3)
Request
Creates and displays graph Response
based on star information
MatPlotLib
Backend Data
Holds all the programs logic
C
Binary File 1
Holds all the star data % Reguest
Response

5 Conclusion

The goal of this project is to create a modern version of the NPOI’s existing obsprep
software with an intuitive user interface and well-written, easily maintainable code. The current
form of obsprep has an unnecessarily complex interface, numerous bugs, and outdated
references to features that no longer exist. Managing it costs our client valuable time that could
be spent on more important tasks, but is currently unavoidable due to the essential functions the
software performs.

21

In this Feasibility document team Dark Sky has attempted to break down the problem
into specific challenges that can be overcome through the implementation of features and
technology. Based on the analysis performed here, the team plans to:

e Write the software in in the Python programming language
e Create a Graphical user interface using the tkinter package
e Process and display data using the Matplotlib library

e Interact with the backend using the Cython library

22

