
MapONE
User Manual

May 5, 2022

Sponsors:
Planetary Geologic Mapping Program, USGS Astrogeology Science Center

Dr. Sarah Black, Research Physical Scientist
Marc Hunter, IT Specialist

Faculty Mentor:
Melissa D. Rose

Team Members:
Samantha Milligan

Michael Nelson
Ricardo McCrary

Jacob Stuck

Overview: The purpose of the User Manual document is to provide a guide to the product’s main
features including the system’s installation, configuration, and maintenance.

1

Table of Contents
1. Introduction 3

2. Access, Installation, & Configuration 3

2.1 GitHub Repository 3

2.2 Heroku Account 3

2.3 DockerHub Account 4

2.4 Frontend 4

2.5 Backend 6

3. Daily Operation 7

3.1 GUI 8

3.2 Backend APIs 15

3.3 Web Scraper 23

4. Testing & Maintenance 26

4.1 GUI 26

4.2 Backend APIs 27

4.3 Web Scraper 28

5. Conclusion 29

2

1. Introduction
MapONE is a web application designed to collect planetary map publications for the planetary

science community. This manual serves as a user-friendly guide to quickstart the application.

This document details how to install and administer MapONE during the configuration,

deployment, and maintenance phases. Features include an interactive user interface, multiple

extensive Application Programming Interfaces (APIs), and an automated web scraper designed

to extract publication source data. All modules have been configured and will be discussed in

length throughout this manual.

2. Access, Installation, & Configuration
MapONE consists of three modules: a Graphical User Interface (GUI), backend APIs, and a web

scraper. These modules are divided into two domains, the application’s frontend (GUI) and

backend (APIs and web scraper). The domains run on two separate remote servers where the

frontend completes user requests through API calls to the backend. For the purposes of this

manual, each domain can be accessed and should be installed separately.

2.1 GitHub Repository
All files and systems discussed in this document can be accessed at https://github.com/

samantha-milligan/MapONE. This is a GitHub repository that stores MapONE’s code material.

At the time of the product delivery, this repository should be private and ownership should be

transferred to the client. The repository contains a “mapone_frontend” directory and a

“mapone_backend_docker.zip” compressed file. The “mapone_interface” contains all frontend

material discussed in this manual. The compressed file is a container of MapONE’s backend

system.

2.2 Heroku Account
MapONE’s remote servers run on Heroku, a hosting platform. At the time of product delivery,

the Heroku account’s ownership should be transferred to the client. To access Heroku’s web

application, visit https://www.heroku.com/. There, the client can log in to their account and view

3

https://github.com/samantha-milligan/MapONE
https://github.com/samantha-milligan/MapONE
https://www.heroku.com/

deployment information on both servers. Under applications, the frontend (“mapone-interface”)

and backend (“mapone-api”) servers are listed. Under each server, the client can view additional

resources, server activity, and settings. At the time of product delivery, the frontend server should

run at https://mapone-interface.herokuapp.com/ and the backend server at https://mapone-api.

herokuapp.com/.

2.3 DockerHub Account
Given the complexity of both the APIs and web scraper, the backend has been containerized

using Docker. Docker is a platform designed to package code material to easily install

dependencies and deploy applications. As previously mentioned, the GitHub repository contains

a compressed file “mapone_backend_docker.zip,” (see section 2.1). This file contains the

backend’s Docker container. To access all Docker images and containers used in MapONE’s

development, visit https://hub.docker.com/ to sign in to an account. At the time of product

delivery, the DockerHub account’s ownership should be transferred to the client.

2.4 Frontend
MapONE’s frontend GUI was created using Flutter, a user interface framework software written

in Dart. Although the interface has been deployed on Heroku (see section 2.2), the initial

deployment required previous software installation. The following steps are necessary to run and

deploy MapONE’s interface:

1. Install Flutter at https://docs.flutter.dev/get-started/install depending on the operating

system. Here, users can download all system requirements to run a Flutter application.

Follow all installation instructions including downloading the latest release of Flutter

SDK and updating the package source path. Additionally, macOS and Linux users can

use Homebrew, a software package management system, to install Flutter at

https://formulae.brew.sh/cask/flutter.

2. Download the frontend directory from GitHub, “mapone_frontend,” onto the client’s

local machine.

3. Change into the frontend directory, “mapone_frontend,” using a command-line tool.

4

https://mapone-interface.herokuapp.com/
https://mapone-api.herokuapp.com/
https://mapone-api.herokuapp.com/
https://hub.docker.com/
https://docs.flutter.dev/get-started/install
https://formulae.brew.sh/cask/flutter

Figure 1. Frontend directory view.

4. Run Flutter run to run MapONE’s interface on localhost. MapONE’s interface should

now be displayed on localhost on a pop-up browser (this will be automatically opened by

the command).

5. Make changes to the source material as needed and repeat step 4 to see results.

6. Install Heroku at https://devcenter.heroku.com/articles/heroku-cli#install-the-heroku-cli

depending on the operating system.

7. Log in to the existing Heroku account by running heroku login using a command-line

tool.

8. Run heroku git:clone -a mapone-interface to clone the frontend server’s source code to

the local machine.

9. Change into the “mapone-interface” directory where it was cloned in step 8.

10. Replace the files in “mapone-interface” with the new changes in “mapone_frontend.”

11. Run git add . and git commit -m “write-message” to update changes.

12. Run git push heroku master to push changes to https://mapone-interface.herokuapp.com/.

The frontend should now be updated and deployed remotely.

5

https://devcenter.heroku.com/articles/heroku-cli#install-the-heroku-cli
https://mapone-interface.herokuapp.com/

2.5 Backend
The process to install and deploy the backend server is similar to the frontend but requires

additional steps given the Docker container. MapONE’s backend system is created using Django,

a web framework software written in Python. However, the backend has been containerized

using Docker to allow for easier configuration and set-up. The following steps are necessary to

run and deploy MapONE’s backend server:

1. Install Docker at https://docs.docker.com/get-docker/ depending on the operating system.

Here, users can download all system requirements to run a Docker container.

2. Install Heroku (see step 6 in section 2.4).

3. Download the backend compressed file from GitHub, “mapone_backend_docker.zip,”

onto the client’s local machine.

4. Unzip the file.

5. Change into the backend directory, “mapone_backend_docker/mapone-api/” using a

command-line tool.

Figure 2. Backend directory view.

6

https://docs.docker.com/get-docker/

6. Add the password for EMAIL_HOST_PASSWORD in “mapone_backend_docker/

mapone/settings.py”. This will allow users to receive emails from gs-g-wr_astro_

map_search@usgs.gov.

7. Make changes to the source material as needed.

8. Run pip install -r requirements.txt to install all necessary packages. For this step, it is

recommended the client use a virtual environment. For more information, visit

https://virtualenv.pypa.io/en/stable/.

9. Run python3 manage.py runserver to run the backend server locally at

http://localhost:8000/.

10. Log in to the existing DockerHub account by running docker login using a command-line

tool.

11. Run docker container stop $(docker container ls -aq) to stop all Docker containers as

this is an existing container.

12. Run docker container rm $(docker container ls -aq) to delete all containers.

13. Run docker rmi $(docker images -q) to remove all Docker images.

14. Run docker images -a and docker ps -a to ensure container and image lists are empty.

15. Run docker build -t mapone-api . to create a new Docker image.

16. Log in to the existing Heroku account by running heroku login using a command-line

tool.

17. Run heroku container:login to log in to the container.

18. Run heroku container:push web to update changes.

19. Run heroku container:release web to push changes to https://mapone-api.

herokuapp.com/. The backend should now be updated and deployed remotely.

20. Enter https://mapone-api.herokuapp.com/timer/ into any browser to start the system’s

internal timer (see section 3.2 for more information).

3. Daily Operation
Once MapONE is fully installed, configured, and the client has access to all code material and

accounts, the system is fully operational. The following sections discuss the product’s daily

operations on the GUI, backend APIs, and web scraper levels.

7

mailto:gs-g-wr_astro_map_search@usgs.gov
mailto:gs-g-wr_astro_map_search@usgs.gov
https://virtualenv.pypa.io/en/stable/
http://localhost:8000/
https://mapone-api.herokuapp.com/
https://mapone-api.herokuapp.com/
https://mapone-api.herokuapp.com/timer/

3.1 GUI
MapONE’s interface can be accessed at https://mapone-interface.herokuapp.com/. Here, users

will be able to create or log into a user account, view and filter publication source data, and

create automated searches. For an additional tutorial, please view MapONE’s demonstration at

https://youtu.be/O9Ndj1D5o_o.

MapONE’s Taskbar

The interface’s taskbar is located at the top right corner of each MapONE page. In Figure 3, from

left to right, the icons are listed in the following order: User Profile, Filter, Main Page, Login

Page, and Search.

Figure 3. MapONE’s taskbar.

Login Page

MapONE’s website directs users first to the login page. Here, users can log in to an existing

account, create a new account, continue as a guest, or reset their password if forgotten. Guest

users will have access to all publications and can search, view, and filter source data by keyword,

map body, or publication year. Additionally, existing and new users will have the same privileges

as guest users in addition to creating automated saved searches and receiving notifications on

new map additions (see section 3.2 for more information).

8

https://mapone-interface.herokuapp.com/
https://youtu.be/O9Ndj1D5o_o

Figure 4. MapONE’s login page.

Figure 5. Log in as an existing user.

9

Figure 6. Create a new user account.

Figure 7. Change password.

10

Main Page

Once logged in or continued as a guest, the user will be directed to MapONE’s main page. This

page displays publication source data including source name, source link, map body, article title,

author(s), and publication date for all entries. At the time of product delivery, users can scroll

through over four hundred publications pulled from various science journals with the following

map bodies: Bennu, Ceres, Enceladus, Jupiter (including moons), Mars, Mercury, Earth’s Moon,

Pluto, Titan, Venus, and Vesta.

Figure 8. MapONE’s main page.

Users can also search publications by a specific keyword or map body or filter by publication

date. The application will pull up publications that only meet the search and filter criteria.

11

Figure 9. Search by keyword or map body.

Figure 10. Filter by publication year.

Lastly, users can submit feedback on the main page. Because MapONE is intended for the

planetary science community, integrating community validation and input is a crucial step in the

product’s development. As a direct measure of the product’s performance, users can submit

12

feedback on each publication. Users can validate if a publication contains/discusses a planetary

map. Users can also confirm if the source data displayed is correct. Lastly, users can offer

feedback in a submission form to provide further clarification.

To access this feature, at the end of each publication entry is a “Submit Feedback” button. Upon

clicking this button, users will be redirected to the submission page where they can verify if the

publication “Contains a Planetary Map” and confirm if the “Correct Source Data” is displayed.

As shown in Figure 11, these two fields (dropdown menus) are required. Users can also provide

further feedback in the “Comment” section as an optional field.

Use Case:

1. The user lands on MapONE’s starting login page.

2. The user selects to continue as a guest (without an account).

3. The user is then directed to the main page. The user can view planetary map source data

for a variety of publications.

4. The user selects “Submit Feedback” for a specific publication.

5. The user selects values for “Contains a Planetary Map” and “Correct Source Data.”

6. The user selects “Submit” and is directed to the confirmation page with an option to

return to the main page.

13

Figure 11. MapONE’s feedback submission page.

User Profile

As previously mentioned, new and existing users can access the user profile (see “Taskbar” for

more details). Here, users can enter a keyword and frequency to create a new automated save

search. For future work, users should be able to view all searches and results under the user

profile.

14

Figure 12. Create an automated search under the user profile.

3.2 Backend APIs
MapONE’s frontend server uses API calls to request information stored in and operated by the

backend. However, the backend server can be operated separately. The backend is divided into

three main APIs - user, entry, and archive - which are accessed by the interface. The system also

uses two additional APIs - web scraper and timer - to operate the automated web scraper (stored

in the backend).

User API

The user API is responsible for accessing all user account information. This allows the system to

directly communicate with the interface at the login and user profile levels. The following

actions can be requested of the backend at https://mapone-api.herokuapp.com/user/:

1. CREATE_USER: Creates a new user account. The necessary parameters are action,

email_address, and password. Action must be set to 0. The email_address must be a valid

address. The password must be eight characters long and contains at least one number

and one special character.

15

https://mapone-api.herokuapp.com/user/

2. LOGIN: Logins and verifies existing users. The necessary parameters are action,

email_address, and password. Action must be set to 1. The email_address and password

must match the credentials of an existing user.

3. CHANGE_PASSWORD: Updates the password of an existing user account. The

necessary parameters are action, email_address, password, and new_password. Action

must be set to 2. The email_address and password must match the credentials of an

existing user. The new_password must be eight characters long and contains at least one

number and one special character.

4. DELETE_USER: Deletes an existing user account. The necessary parameters are action,

email_address, and password. Action must be set to 3. The email_address and password

must match the credentials of an existing user.

Entry API

The entry API is responsible for accessing all publication and source data information. This

allows the system to directly communicate with the interface at the search engine level. The

following actions can be requested of the backend at https://mapone-api.herokuapp.com/entry/:

1. MAIN_PAGE: Displays all publications and source data in the database. The necessary

parameter is action. Action must be set to 0.

16

https://mapone-api.herokuapp.com/entry/

Figure 13. The entry API output after running the action MAIN_PAGE at

https://mapone-api.herokuapp.com/entry/?action=0.

2. SEARCH_KEYWORD: Searches all publications and source data for a specific

keyword (case insensitive). The necessary parameters are action and keyword. Action

must be set to 1.

3. FILTER_YEAR: Finds all publications published within a certain year range. The

necessary parameters are action, first_year, and second_year. Action must be set to 2. As

a note, if the filter is for a one-year range, enter the same year for both first_year and

second_year.

17

https://mapone-api.herokuapp.com/entry/?action=0
https://mapone-api.herokuapp.com/entry/?action=0

4. LEAVE_FEEDBACK: Stores user feedback into the backend database. The necessary

parameters are action, entry_id, validate_map, and validate_data. Action must be set to

3. The entry_id is a publication’s ID in the entry database (see “Admin View” for more

details). The parameters validate_map and validate_data must be set to either “Yes” or

“No” when submitted.

Archive API

The archive API is responsible for accessing all automated search information. This allows the

system to directly communicate with the interface at the archive and user profile levels. The

following actions can be requested of the backend at https://mapone-api.herokuapp.com/archive/:

1. CREATE_ARCHIVE: Creates a new automated search for an existing user. The

necessary parameters are action, email_address, password, keyword, and frequency.

Action must be set to 0. The email_address and password must match the credentials of

an existing user. The frequency parameter must be one of the following: “Day,” “Week,”

“Biweek,” or “Month.” The keyword must be unique to the user’s saved searches.

2. DISPLAY_USER_ARCHIVES: Displays all saved automated searches under an

existing user account. The necessary parameters are action, email_address, and

password. Action must be set to 1. The email_address and password must match the

credentials of an existing user.

3. DELETE_ARCHIVE: Deletes a user’s automated search. The necessary parameters are

action, email_address, password, and keyword. Action must be set to 2. The

email_address and password must match the credentials of an existing user.

4. UPDATE_FREQUENCY: Updates the frequency of an existing automated search. The

necessary parameters are action, email_address, password, keyword, and new_frequency.

Action must be set to 3. The email_address and password must match the credentials of

an existing user. The new_frequency parameter must be one of the following: “Day,”

“Week,” “Biweek,” or “Month.”

Web Scraper API

The web scraper API can be accessed at https://mapone-api.herokuapp.com/web_scraper/. The

web scraper (“mapone_backend_docker/mapone-api/mapone_api/web_scraper/scraperV2.py”)

18

https://mapone-api.herokuapp.com/archive/
https://mapone-api.herokuapp.com/web_scraper/

calls this API in realtime to add new scraped publications to the database. The API uses one

action to verify and store publications. The necessary parameters are api_key, source_name,

source_link, article_title, publication_date, author_list, map_body, and map_scale. The api_key

parameter must be a valid key in the database to add a publication (see “Admin View” for more

information). The publication_date must be in this format: YYYY-MM-DD. As a note, all

publications listed in CSV files (see Figure 2) were previously loaded into the database during

the initial configuration.

Timer API

MapONE’s timer API starts the system’s automated search and web scraper internal timers. The

API calls the “run_timer” command listed in the “mapone_backend_docker/mapone-api/

mapone_api/management/commands/run_timer.py” file (see section 2.5 step 20 for initial

configuration). Entering https://mapone-api.herokuapp.com/timer/ into any browser starts the

daily automated search scheduler that will check all users’ automated searches and notify users

(via email) if new publications (matching their saved keywords and based on set frequency) are

added. Additionally, this action starts the web scraper’s schedule to collect and store new

planetary map publications in the database each week (see section 3.3 for more information).

Figure 14. Users receive email notifications when new map additions are added.

19

https://mapone-api.herokuapp.com/timer/

Error Messages

When making API requests to the backend, the system will generate HyperText Transfer

Protocol (HTTP) responses for each action. The following are all of the system’s main response

messages for HTTP 200-299 status codes:

1. SUCCESS: The operation was successful. Displays “operation success” as the message.

Figure 15. Shows success message for creating a new user

(https://mapone-api.herokuapp.com/user/?action=0&email_address=sam@gmail.com&password

=password1?).

2. INVALID_EMAIL: The operation was unsuccessful due to an invalid email address

(either not listed in the email server or incorrect format).

3. INVALID_PASSWORD: The operation was unsuccessful due to an invalid password

(either an incorrect password for a given user or the incorrect format).

4. EMAIL_IN_USE: The operation was unsuccessful since the email address is already in

use for an existing user.

5. KEYWORD_USED: The operation was unsuccessful since the keyword is used for an

existing automated search under a user account.

6. INCORRECT_FREQUENCY: The operation was unsuccessful since the keyword was

not set to one of the following: “Day,” “Week,” “Biweek,” or “Month.”

20

https://mapone-api.herokuapp.com/user/?action=0&email_address=sam@gmail.com&password=password1
https://mapone-api.herokuapp.com/user/?action=0&email_address=sam@gmail.com&password=password1

For all other responses (missing parameters or generally incorrect requests), the server will

display an HTTP 400 Bad Request.

Figure 16. Shows HTTP 400 error for missing parameters when creating a new user

(https://mapone-api.herokuapp.com/user/?action=0).

All error messages and declared actions are listed at “mapone_backend_docker/mapone-api/

mapone_api/constants.py.”

Database Admin View

The client can view MapONE’s database at https://mapone-api.herokuapp.com/admin/. At the

time of product delivery, the admin user’s username and password are set to “123” on the

system. Once logged in, the client can change or create new admin users at

https://mapone-api.herokuapp.com/admin/auth/user/. The admin can access all saved data for the

Archive, Entry, Feedback, Key, and User database tables. These tables store all data related to the

backend APIs.

21

https://mapone-api.herokuapp.com/user/?action=0
https://mapone-api.herokuapp.com/admin/
https://mapone-api.herokuapp.com/admin/auth/user/

Figure 17. Admin view of all database tables.

Specifically, Feedback stores write-in submissions, and Entry stores publication source data

(entry_id, source_name, source_link, map_body, map_scale, article_title, author, and

publication_date) and the following additional fields:

● valid_map_number: Entry field for how many users have confirmed publication

contains a valid planetary map.

● invalid_map_number: Entry field for how many users have confirmed publication does

not contain a valid planetary map

● correct_data_number: Entry field for how many users have confirmed publication

source data is correct.

● incorrect_data_number: Entry field for how many users have confirmed publication

source data is incorrect

Admin users can use these metrics to see what users think of each publication and to check if the

web scraper is extracting valid and useful information for the planetary science community. As

shown in Figure 18, users can import and export this data and filter the database table based on

source name, map body, and feedback metrics. Users can use this for further external analysis.

22

Figure 18. Entry database table. Shows ability to view, filter, and export source data.

3.3 Web Scraper
As noted in section 3.1, the web scraper runs automatically based on an internal timer. This

means there is no necessary daily operation of the tool. All new publications are scraped and

added to the database on a weekly basis. However, for future use or modifications, all functions

related to the web scraper can be found in scraperV2.py and util_functions.py in the

“mapone_backend_docker/mapone-api/mapone_api/web_scraper/” directory. The main script,

scraperV2.py, hosts multiple functions for locating and extracting metadata from each planetary

map publication. The util_functions.py serves as a helper file for the main script.

Main Script

At the end of the scraperV2.py, there is a main() function that is used to run and configure the

entire web scraper. Here, the user can modify the list of keywords they wish to search for.

Currently, the following map bodies are used as keywords: Ceres, Vesta, Earth’s Moon, Mars,

Jupiter, Pluto, Mercury, Venus, Titan, Enceladus, Bennu, and Charon. As a note, more specific

searches require that each keyword is concatenated with a “+”. Each keyword in the list is

23

concatenated with a standard search tag which acts as another layer of specification when

searching for articles related to planetology.

Figure 19. Main function within scraperV2.py where keyword_list and keywords_to_search are

modified.

If new keywords are added to the list in main(), they must also be added to the keyword list in

 abstract_database_writer(). This list acts as a dictionary for the database to determine what

planetary body is currently being searched for so it can be written into the database.

24

Figure 20. Function to write and format all scraped metadata to a database CSV file. This

function also calls on the web scraper API to verify and store new publications (see section 3.2

for more details.)

Utility Functions

Utilities to log the output of the web scraper, as well as tools to help reduce the workload on

scraper-specific functions, can be found in util_functions.py. Each time the web scraper is

executed, a new session folder is created with the help of pre_processing() and displayed using

status_logger(). Not only does this containerize the files, but it allows the user to see what is

happening during execution. The final function, end_process(), is used to notify the user of

session completion.

25

For general use, this script does not need to be changed. However, users can modify the session

folder names within pre_processing() if desired. The variable logs_folder_name specifies the

name of the LOGS folder containing each session folder. Abstracts_log_name specifies the name

of the database file within each session folder, while status_logger_name specifies the name of

the status file for each session. By default, these are assigned to the time at which they were

created.

Figure 21. Declaration of filenames generated by the web scraper can be modified if desired.

4. Maintenance & Testing
At this point in the manual, the client should know how to install, configure, and operate all

MapONE features. This section outlines the testing and potential maintenance necessary to

properly run and operate MapONE in the future.

4.1 GUI
Unspecified errors are common in Flutter application development, specifically with compiler

errors. To ensure the development environment is properly running, change into the

“mapone_frontend” directory and run Flutter doctor in the command line. As shown in Figure

22, in this example, the Android toolchain was not properly set up. Thus, the debug command

recognized and displayed this error. This tool allows users to quickly identify any issues with a

Flutter application. For all additional issues or questions, please visit Flutter at https://flutter.dev/.

26

https://flutter.dev/

Figure 22. Run Flutter doctor to ensure correct Flutter functionality.

4.2 Backend APIs
All backend testing is outlined in “mapone_backend_docker/mapone-api/tests.py.” Here, the

client can view the following Django test cases:

1. WebScraperTestCase: Tests the web scraper main script to ensure publications are being

scraped and stored correctly in the database.

2. APITestCase: Tests all actions listed in section 3.2 for the user, entry, and archive APIs

to ensure APIs are correctly completing calls.

3. UserTestCase: Tests all class functions in the user.py file (in the same directory as

tests.py).

4. EntryTestCase: Tests all class functions in the entry.py file (in the same directory as

tests.py).

5. ArchiveTestCase: Tests all class functions in the archive.py file (in the same directory as

tests.py).

For more information on how Django testing works, please visit https://docs.djangoproject.com/

en/4.0/topics/testing/overview/.

To run all test cases, the client can do the following steps:

27

https://docs.djangoproject.com/en/4.0/topics/testing/overview/
https://docs.djangoproject.com/en/4.0/topics/testing/overview/

1. Change into the backend directory, “mapone_backend_docker/mapone-api/” using a

command-line tool.

2. Run pip install -r requirements.txt to install all necessary packages. For this step, it is

recommended the client use a virtual environment. For more information, visit

https://virtualenv.pypa.io/en/stable/.

3. Enter a valid email address for test variables in tests.py. Otherwise, all tests that require

an email_address or test_email will fail.

4. Run python3 manage.py test mapone_api to run all tests.

5. Run python3 manage.py test mapone_api.tests.WebScraperTestCase to run the individual

Web Scraper test case.

6. Repeat step 5 for all other TestCases by replacing the WebScraperTestCase with the

desired test case name.

For all other inquiries or overall maintenance, please refer to Django at https://www.

djangoproject.com/ for any updates or dependencies.

4.3 Web Scraper
For the sake of modularity, the web scraper is capable of running independently from the rest of

the system. As mentioned in section 4.2 step 5, running python3 manage.py test

mapone_api.tests.WebScraperTestCase will run the main function of the web scraper file,

scraperV2.py. This allows the client to adjust the web scraper while still running the backend

tests in the same directory/code material. Before running the web scraper, be sure to comment

out the web scraper API requests shown in Figure 20. Otherwise, all scraped publications will be

added to the database (not recommended during testing). As a note, it is recommended that the

default version of the web scraper be saved before making any changes or adjustments.

When running the main function, the web scraper should generate a LOG folder containing a

session folder with one database file and a status logger file. This process may take a few

minutes for keywords with multiple page URLs, but the status logger will display a session

completion message on the command line.

28

https://virtualenv.pypa.io/en/stable/
https://www.djangoproject.com/
https://www.djangoproject.com/

To test individual keywords, the main script can be modified to only search for specific map

bodies or keywords. This may be useful for locating publications on map bodies not already

declared in the keyword list.

Figure 23. Modified main function used to test individual keywords.

Depending on the keywords provided, and their level of specificity, the web scraper may return

“IndexError: list index out of range”. Searches with strict parameters may not return any

resulting publications, or the publications found do not contain planetary maps. If this error

occurs, it is suggested to:

● Broaden the search query for that specific keyword.

● Check the results on Springer (https://link.springer.com/search) directly to ensure results

(if any) are found for that specific keyword.

● Append the keyword search to the end of keyword_list in the main() function.

The last suggestion, although not ideal, allows the web scraper to extract results for all other

keywords in the list before encountering the error. This may be done if the user wishes to save

keywords for future searches when more results become available. The error-inducing keyword,

so long as it is placed at the end of the list, will not affect the rest of the system.

5. Conclusion
This user manual discussed the access, installation, configuration, operation, and maintenance of

MapONE. The client should now have access to all source material and accounts as well as know

29

https://link.springer.com/search

the internal and external operations of the system. For additional information, please refer to the

code material or discussed installed software: GitHub (https://github.com/), Heroku

(https://www.heroku.com/), Docker (https://www.docker.com/), Flutter (https://flutter.dev/), and

Django (https://www.djangoproject.com/). For any additional questions or concerns, please

contact MapONE’s team leader, Samantha Milligan, at smm885@nau.edu.

30

https://github.com/
https://www.heroku.com/
https://www.docker.com/
https://flutter.dev/
https://www.djangoproject.com/
mailto:smm885@nau.edu

