
MapONE
Technological Feasibility Analysis

November 2, 2021

Sponsors:
Planetary Geologic Mapping Program, USGS Astrogeology Science Center

Dr. Sarah Black, Research Physical Scientist
Marc Hunter, IT Specialist

Faculty Mentor:
Melissa D. Rose

Team Members:
Samantha Milligan

Michael Nelson
Ricardo McCrary

Jacob Stuck

Overview: The purpose of the Technological Feasibility Analysis document is to outline the
project’s proposed methods for developing an end product. The following pages discuss the
technological requirements and selected tools.

1



Table of Contents

1. Introduction 3

2. Technological Needs 4

3. Technological Analysis 6

3.1 GUI Implementation

3.2 Web Framework

3.3 Central Database

3.4 Machine Learning Enhanced Web Scraper

3.5 Remote Storage and Servers

4. Technological Integration 25

5. Conclusion 26

References 27

2



1. Introduction
From the 1957 Sputnik 1 mission to the 2020 Mars Rover mission, scientists continue to enhance

and create new ways to explore space. For many researchers, the discovery of other planets and

galaxies challenges current scientific research and pushes technological boundaries. New space

missions provide an opportunity to tackle unknown mapping areas in the planetary science

community. Similar to geologic mapping on Earth, missions require identifying key features such

as craters, canyons, and fault lines on other planets. Scientists can map exploration sites and

show what missions will encounter with knowledge of the surrounding area.

The client, the United States Geological Survey (USGS) Planetary Geologic Mapping (PGM)

Program, is responsible for many of today’s existing planetary maps. USGS supports the

National Aeronautics and Space Administration (NASA) in developing these resources for space

missions. Many other research teams, such as the Lunar and Planetary Institute, also support the

planetary science community by developing maps [1]. These non-USGS organizations often

publish their mapping efforts in various journal articles and conference papers. For the client,

these publications are valuable map products when gathering resources for a specific region of

interest. Currently, the client and the planetary science community lack a centralized system for

maps published in journal articles and conference proceedings.

In response to the client’s needs, the project team will create a centralized system for all

non-USGS map products. The envisioned product, MapONE, is a user-friendly interface on the

client’s website. The interface will display map images, sources, and other related information

for a selected region of interest. The interface will connect to one database containing all

non-USGS maps. As part of the product, a web scraper will use machine learning techniques to

collect and identify new maps in articles and conference papers. Overall, the product will allow

researchers to access critical non-USGS map information.

3



2. Technological Needs
To collect and display non-USGS map information for the client, the project team will need to

develop and integrate the following components:

1. GUI Implementation
A web-based user interface will be the foundation of MapONE. The client will need a

simple web application to view and filter map information by author, source, region, etc.

Most importantly, the interface needs to display map images using interactive, visual

components. This way, researchers can easily visualize the geologic area of interest. A

Graphical User Interface (GUI) will provide this interactivity.

2. Web Framework
A web application framework will be the skeleton of MapONE. The framework will be

responsible for connecting the interface to the database. When the client uses the

product’s interface, they will be searching and gathering map information stored in the

database. To filter and display the correct map information, the framework can be used to

facilitate communication between these two systems. When the client searches for a

select criteria (author, date, region, etc.), MapONE’s framework must locate the correct

information in the database and output it to the interface.

3. Central Database
MapONE must store all map data into one centralized database. Any number of maps

may be pulled at any time by the client. The information may also consist of unstructured

data such as images, coordinates, source links, publication dates, etc. depending on

availability. Thus, the project team needs a database framework that supports changing

data sizes with minimal risk on performance. The data will be organized by its most

notable characteristics including publication dates, mapping areas, and data sources. This

will provide convenience for both the client and the developers when integrating data

from the database to the web interface.

4



4. Machine Learning Enhanced Web Scraper
The project’s success heavily relies on MapONE’s ability to accurately identify and

collect non-USGS maps from various online sources. To accomplish this, the project

team needs to develop a data extraction tool known as a web scraper. The team will need

to use machine learning techniques, including image recognition, to detect maps. The

accuracy of the image detection is essential to the client. Without proper configuration,

the tool may collect unrelated information, bypass necessary map products, or add

duplicate data. To avoid this potential issue, the project team will need to develop a

machine learning model familiar with the key components of a planetary map. Examples

could include coordinates, legends, and scales. Finding machine learning libraries with

mapping information and related image detection tools will provide this functionality.

5. Remote Storage and Servers
As required by the client, the final product must be hosted on the USGS’s website. To

create a product, there must be remote servers to handle data storage. With cloud

computing, the client and team will have instant access to the project’s data at any given

time. This flexibility means there is no need for physical storage space, as the cloud will

automatically increase storage capacity and update software as needed. Data stored

within the cloud will be automatically backed up and synced to all devices for

consistency and ease of access.

Other limitations should be considered as well during the development of MapONE. Based on

the client’s requirements, MapONE must be a Python-based open-source tool. Python is a

popular scripting language, a programming language that automates execution. This limits the

project’s technologies to compatible software. The challenge will be to encompass the project’s

needs within a Python, open-source environment. The client also requires the product to be

packaged in a Docker container. Docker is an open-source containerization platform that

packages data and any dependencies into a standard unit of software [2]. Containers offer a

simple, portable structure to store data and facilitate easy application deployment. Because of

these limitations, all proposed technologies discussed in this document need to be open-source,

Python-based or compatible, and can be contained in a Docker.

5



3. Technological Analysis
For each of these components, the project team outlines potential technologies that can satisfy

MapONE’s technological needs. Based on the following analysis, the technologies best suitable

for product development will be integrated into the final product.

3.1 GUI Implementation
Technological Need
As the foundation of MapONE, the GUI needs to navigate researcher requests for map

information. The interface needs to be visually appealing and user-friendly. Overall, MapONE

needs to display a variety of demographics to ensure each planetary region in the system offers

source information and interactive map images.

Criteria
For each proposed GUI framework outlined in this section, the project team will use the

following criteria to rank the best solution.

Criteria Description

Implementation The ability to integrate into the overall project solution. May

include the project team’s familiarity with the technology.

Documentation The technology is well-documented and user-friendly.

Cross Compatibility The technology can effectively complete runtime conversions.

Proposed Technologies
Flutter

Flutter is a GUI framework designed by Google and built upon the Dart programming language

[3]. Dart is a Java Virtual Machine (JVM) based language which indicates its ability to be

compiled into Java bytecode [4]. This can be used to the project team’s advantage as an easy way

6



to convert code from one language and then import into Dart. Because Java and Kotlin are built

upon JVMs, these languages provide an easy way to interact with Dart. For MapONE’s purposes,

Python can be converted into Dart using a simple library [5].

Flutter utilizes material design for its icons, interactivity, and appearance. Flutter is based on the

concept of widgets. Widgets are objects that heavily rely upon Object Orientated Programming

(OOP) concepts [3]. Figure 1 shows the encapsulation of an AppBar widget which the project

team found can easily create a search bar. Similar to this example, Flutter offers a variety of

widgets to create icons, place images, and add text to an interface. MapONE will need these

features to create a simple but interactive interface for the client.

Figure 1. A simple search bar implementation in Futter [6].

Although Flutter offers an interactive environment, the development environment requires a high

level of proficiency and comfort in a Unix-based terminal. The technology requires the user to

7



edit the main configuration files ./bashrc and ./zshrc depending on the terminal

environment [3]. This may cause implementation issues for the project team as Flutter’s

complexity may require more expertise. Fortunately, the project team is familiar with the

software at the configuration level.

React.js

React.js is a Javascript web-based framework owned by Facebook [7]. The framework can create

simple, concise, and visual UIs. React.js also pairs objects associated with markup and logic. For

product purposes, the project team can easily edit markup-related objects inside the framework

instead of in a separate file [7]. This reduces development errors since the project team would

only be editing within the framework. Similar to Flutter, rather than decoupling markup and

logic, React.js creates concrete classes using widgets with a degree of inheritance [7]. This

would provide modularity to MapONE’s functions. React.js also uses a syntax extension called

JSX which defines these objects as an expression instead of a markup; this syntax is similar to

HTML which is easier to understand for the project team [7].

Unlike Flutter, React.js does not have runtime compatibility with other languages. This can be

problematic because the project will need to integrate other languages and solutions. For

MapONE purposes, using Python may require multiple calls to the backend for any required

frontend service.

Analysis
The above technologies are rated based on the following criteria and scored using a rating system

between 1 (inadequate) and 5 (exceptional). The adequacy rating (total score over possible score)

determines how well-suited a technology is for the final product expectations.

Technology Implementation Documentation Cross

Compatibility

Adequacy

Rating (%)

Flutter 4 5 5 93%

8



React.js 2 5 2 60%

Decided Solution & Feasibility
Based on the above analysis, Flutter is the choice of technology. This decision was based on the

implementation criteria as both frameworks have excellent documentation. The project team’s

familiarity allowed for ease of implementation. Because Flutter supports runtime conversions

between multiple languages (including a plug-in for Python), implementing a wide range of

technologies will be most suitable. Furthermore, the limited cross-compatibility React.js offers

does not support the envisioned solution.

3.2 Web Framework
Technological Need
Since MapONE is a web-based tool, a web framework is necessary for the project’s interface and

database connection. The framework facilitates the communication between the two and

structures their input and output to each other. In this way, map data stored in the database can be

easily accessed by the interface.

Criteria
For each proposed web framework outlined in this section, the project team will use the

following criteria to rank the best solution.

Criteria Description

Implementation The ability to integrate into the overall project solution. May

include the project team’s familiarity with the technology.

Documentation The technology is well-documented and user-friendly.

Production-Ready The technology is intended for deployment purposes.

9



Proposed Technologies
Django

Django is a Python-based web framework. The full-stack framework provides both a frontend

and backend to easily create full web applications. The project team found Django’s easy setup

useful for MapONE as a production-ready application. Figure 1 shows how quickly the Django

server can be launched on localhost. The framework also establishes security, administrative

permissions, and configuration settings. Figure 2 shows how Django’s settings can be configured

to run on different hosts and has built-in security measures. Because MapONE will be hosted on

the client’s website, Django can create a secure, portable application. Because of its variety of

features and the project team’s familiarity, Django is easy to implement and deploy. Lastly,

Django is one of the most popular web technologies and provides thorough documentation.

Figure 1. Django server operating on localhost.

10



Figure 2. Django’s configuration settings for a simple web application.

Flask

Flask is a lightweight, Python-based web framework and is one of the most popular web

application technologies [8]. Whereas Django is structured, Flask does not use a specific layout.

The project team noted developers have full control over design decisions in Flask. Whereas

Django’s application components must adhere to its built-in template, Figure 3 shows how the

Flask can be configured in numerous ways. This may be useful for MapONE as client needs and

requirements change. However, unlike Django, Flask is not a “production-ready” framework [8].

Although the project team is less familiar with Flask, the technology is known for its ease of

implementation. Lastly, because of its popularity and easy setup, Flask is well-documented and

provides user guides.

11



Figure 3. Flask’s development settings and the interface can be configured in the same file [9].

Analysis
The above technologies are rated based on the following criteria and scored using a rating system

between 1 (inadequate) and 5 (exceptional). The adequacy rating (total score over possible score)

determines how well-suited a technology is for the final product expectations.

Technology Implementation Documentation Production-Ready Adequacy

Rating (%)

Django 5 5 5 100%

Flask 4 5 2 73%

Decided Solution & Feasibility
Based on the above analysis results, Django is the choice of technology for the web framework.

Although both technologies are well-documented and easy to implement, the team’s familiarity

with Django over Flask will allow for easier development. Most importantly, because Flask is

not intended for heavy-weight production-ready applications, Django would be more suitable for

a deployed finished project. Overall, Django provides a simple framework to access and

structure MapONE’s planetary data for the interface view.

3.3 Central Database

12



Technological Need
A database is an organized collection of structured information that is stored on a server. In this

sense, a database can be seen as an electronic archive where specific information is stored for

use. The team will use the database as a central repository for all maps and journals found

through the use of a web scraper. Through web scraping, any map or journal will be collected

and stored in MapONE’s database for ease of access and display.

Criteria
For each proposed database structure outlined in this section, the project team will use the

following criteria to rank the best solution.

Criteria Description

Scalability The technology can account for and support changing data sizes,

functionality, and architecture.

Performance The technology can timely execute functions and operations.

Data Management The technology can efficiently manage large data amounts.

Cost The technology is cost-effective to the client.

Proposed Technologies
PostgreSQL

PostgreSQL is a database structure recommended by the client. With over thirty years of

development, this reliable, stable database provides a variety of features [10]. Plug-ins, including

a Geographical Information System (GIS), can be used for mapping information [11]. Figure 1

shows how data can be structured using GIS. MapONE would store map coordinates and region

information in a similar way. Figure 2 also gives an example of how PostgreSQL can be

organized.

As an open-source database, PostgreSQL requires no cost and offers detailed documentation.

The database also supports web applications that are necessary for the product’s web-based

13



design. Despite these benefits, PostgreSQL’s performance is comparatively lower than other

common database structures. For example, the database often demonstrates slower data uploads.

Since MapONE will be using an automated web scraper for uploads, these operations may

experience delays.

PostgreSQL poses potential issues for scalability as well. The server running the structure needs

to be upgraded when the database expands. Thus, the database installation must be the same for

all operating systems. Otherwise, the structure may not support all possible functions. This

means the same database version is required to minimize formatting errors. The project team can

reduce this risk by configuring the web framework’s settings; installing a specific database

version can be easily accomplished each time the application is run.

Figure 1. Data output from the GIS plug-in [12].

Figure 2. An example of how PostgreSQL handles data organization [13].

MySQL

MySQL is the most common database for novice developers. Thorough documentation is

available on many online resources. The versatile database allows for multiple program language

14



connections; these connections include languages such as Python and PHP [14]. Development

tools can also be easily integrated using MySQL. The database is capable of effectively

managing the Central Processing Unit (CPU) resources which would improve the execution time

of processes and requests [15]. In turn, this would improve the web scraper portion of the

project. With faster CPU times and memory management, the web scraper has the potential to

accomplish more tasks on a single run cycle. MySQL also offers cross-platform support; the

database can support all operating systems with minimal compatibility issues.

Although MySQL offers system flexibility, the database is not suitable for large data

management. Figure 3 shows how MySQL handles spatial data storage. This does not provide

the full functionalities required of MapONE; a mass collection of planetary maps is necessary for

the project solution. Security may also be a priority for MapONE, and this database is known for

infrequent security updates.

Figure 3. User view of MySQL’s database [16].

MongoDB

Unlike PostgreSQL and MySQL, MongoDB is not a SQL-based database. MongoDB is used to

structure unformatted data instead of relational tables [17]. Figure 4 shows an example of how

15



the database handles data organization. MongoDB also offers faster query execution as the data

is stored in a computer’s Random-Access Memory (RAM) instead of the hard drive while

operating. This would be beneficial to the client’s request that the project is hosted on a constant

running server. The database also provides documentation on storage and indexing, and the

query syntax is easier to understand compared to SQL.

MongoDB offers high-speed performance and querying. Thus, incorrect indexing can create data

discrepancies and slow performance. The largest data size this database can store is 16

megabytes [18]. This is a critical issue for the project team since MapONE requires a large

storage capacity. Lastly, since MongoDB is closed-source, it requires an additional cost to the

clients.

Figure 4. An example of how MongoDB may store data [19].

Analysis
The above technologies are rated based on the following criteria and scored using a rating system

between 1 (inadequate) and 5 (exceptional). The adequacy rating (total score over possible score)

determines how well-suited a technology is for the final product expectations.

16



Technology Scalability Performance Data

Management

Cost Adequacy

Rating (%)

PostgreSQL 4 3 5 5 85%

MySQL 4 4 2 5 75%

MongoDB 4 5 5 2 80%

Decided Solution & Feasibility
Based on the above analysis results, PostgreSQL is the choice of technology. The fact USGS

uses this database to structure its maps is one of the major deciding factors. The project team

would also have plug-in access for handling the specific mapping data. MySQL’s limited mass

data management is not suitable for MapONE’s application. MongoDB is also unsuitable as a

closed-source database; the client would be required to pay an additional cost which is not

necessary for the project’s scope at this time.

3.4 Machine Learning Enhanced Web Scraper

Technological Need
Artificial Intelligence (AI) is the general term for any technique used by machines to imitate

human intelligence. Machine Learning (ML) is a branch of AI that uses deep learning algorithms

to improve a machine’s capability with certain tasks via repetition. The project team must locate

and identify planetary maps throughout the internet. ML can assist and increase the speed of the

web scraping process. A solid machine learning library with image recognition capabilities is

necessary for extracting viable data from the internet. As a design choice, the project team will

also use existing Python libraries to fluidly integrate machine learning into MapONE.

Criteria
For each proposed machine learning-assisted library outlined in this section, the project team will

use the following criteria to rank the best solution.

17



Criteria Description

Scalability The technology can account for and support changing data sizes,

functionality, and architecture.

Implementation The ability to integrate into the overall project solution. May

include the project team’s familiarity with the technology.

Documentation The technology is well-documented and user-friendly.

Performance The technology can timely execute functions and operations.

Proposed Technologies
Pandas

Pandas is an open-source Python library used for data manipulation and analysis. Unlike the

other technologies in this category, Pandas is built over Numpy, a package used for data science

[20]. Pandas can evaluate data from a variety of sources, including SQL, using ML techniques.

Most notably, Pandas can coincide with other Python libraries for more versatile functionality.

Overall, Pandas is a powerful tool used for machine learning and has become the “backbone” of

many data science projects [21].

Beyond data organization, Pandas requires assistance from other ML libraries for image

detection; thus, it cannot be used as a standalone software for MapONE’s development.

However, Pandas’ data sorting is a convenience the project team will likely consider after the

data collection. Figure 1 shows how convenient reading in data and creating subsets for analysis

are.

18



Figure 1. Creating and organizing a dataset into a table using Pandas.

TensorFlow

With a focus on AI training and deep neural networks, TensorFlow is an open-source library

accessible via Python and Javascript. Analysts typically use TensorFlow for large numerical

computations with its flexible architecture [22]. This allows users to quickly and easily deploy

ML tools harnessing advanced techniques, such as image recognition and text generation.

TensorFlow is also well-documented with numerous tools and demos available to the

community. The project team can take advantage of these tools since the web scraper will require

accurate planetary map detection.

A reliable architecture will also benefit the implementation of image recognition given the

complexity of select planetary images. TensorFlow alone cannot classify an image as a planetary

map. Instead, Keras provides this functionality.

Keras

Created as an extension of the TensorFlow platform, Keras is a powerful interface used to solve

ML problems of large iterations. Keras is used by NASA for its performance and scalability [23].

Many developers also use Keras as their primary ML software for its readable syntax.

Considering the large dataset the web scraper will predictably collect, Keras may be a more

practical solution for handling the unknown size of the database.

19



Keras creates datasets using validation splitting, a tool commonly used in ML to “fine-tune”

model performance [24]. This means it can create training and testing sets to ensure the final

model is accurate. Keras can also implement data augmentation on the training set; this includes

performing random transformations on existing data to accommodate the learning model [25].

Figures 2 and 3 are examples of these tools.

Lastly, since Keras is an extension of TensorFlow, documentation for the library mostly appears

in TensorFlow forums and can be easily accessed.

Figure 2. A dataset is split into training and validation sets.

20



Figure 3. Augmentation of an image to be flipped horizontally from its original position.

Analysis
The above technologies are rated based on the following criteria and scored using a rating system

between 1 (inadequate) and 5 (exceptional). The adequacy rating (total score over possible score)

determines how well-suited a technology is for the final product expectations.

Technology Scalability Integration Documentation Performance Adequacy

Rating (%)

Pandas 3 5 5 4 85%

TensorFlow 4 5 5 4 90%

Keras 5 5 4 5 95%

All three solutions prove to be effective technologies for the client. Pandas provides exceptional

readability, documentation, and can be easily integrated with either of the remaining

technologies. TensorFlow is the most documented library, providing extensive demos that

directly correlate to MapONE’s needs. Keras is simply a more advanced version of TensorFlow

designed to efficiently read large datasets and maintain simplicity.

21



Decided Solution & Feasibility
Based on the above analysis results, the most practical solution for the project team will use

Keras as an extension to TensorFlow. Given the project’s database will expand over time, Keras

will manage data uploads. Keras is imported through TensorFlow as a Python library. Thus, the

project team can utilize TensorFlow’s strong documentation for Keras. For performance, Keras is

designed with less extensive implementation to promote “fast experimentation” for quicker

results [23].

3.5 Remote Storage and Servers
Technological Need
Cloud computing services provide a remote way to access and secure data. Effective data storage

would prevent data loss and facilitate continuous product deployment. With this service, USGS

can access MapONE’s map data on a remote, secure service.

Criteria
For each proposed cloud computing service outlined in this section, the project team will use the

following criteria to rank the best solution.

Criteria Description

Scalability The technology can account for and support changing data sizes,

functionality, and architecture.

Implementation The ability to integrate into the overall project solution. May

include the project team’s familiarity with the technology.

Documentation The technology is well-documented and user-friendly.

Cost The technology is cost-effective to the client.

22



Proposed Technologies
Amazon Web Services (AWS) S3

AWS S3, a technology recommended by the client, is the leading industry’s data storage service

at 33% of the total market share [26]. Amazon offers several storage classes with uses ranging

from frequent to infrequently accessed data. Specifically, the S3 Intelligent-Tiering storage class

is used for both types and accounts for changing data patterns [27]. This class would be the most

beneficial to monitor the unpredictable volume of data; MapONE’s web scraper will be

automatically and continuously adding new map data. Thus, a storage class must account for

these frequent changes.

Amazon also supports a wide range of clients and datasets. Companies, especially startups, use

AWS regardless of size or overhead which is ideal for a project of this scale. S3 is also easy to

implement given the project team’s familiarity with the software and the thorough

documentation. Amazon provides an S3 Representational State Transfer (REST) API as a

reference for its cloud computing services. Creating an account, setting up servers, and managing

costs are all documented on the Amazon website [27].

Microsoft Azure

Microsoft Azure, a technology recommended by the client, is a fierce competitor of AWS and

second in the industry. For USGS’s purposes, Azure’s storage class Blobs “allows unstructured

data to be stored” and supports “random access” [28]. As previously mentioned, the planetary

map datasets may frequently change; this service provides the ability to account for

unpredictable access and updates.

Similar to S3, because of Azure’s popularity, the service is well-documented and includes

training and developer guides. The ease of implementation would be similar, although the project

team is less familiar with its services than AWS. Azure is most known for its large clientele with

ninety-five percent of Fortune 500 companies as clients [28]. Many of these companies partner

with Microsoft for its wide range of products. For this reason, Azure is a prime candidate for

USGS to partner with and may be more cost-effective; Microsoft offers bundle purchases for a

variety of their products. According to CAST AI, a cloud expert platform, an upfront

23



commitment plan (compute optimized) costs about fifty percent less for Azure than AWS.

However, Azure and AWS offer similar pricing for on-demand rates (general purpose and

memory) [29].

Analysis
The above technologies are rated based on the following criteria and scored using a rating system

between 1 (inadequate) and 5 (exceptional). The adequacy rating (total score over possible score)

determines how well-suited a technology is for the final product expectations.

Technology Scalability Implementation Documentation Cost Adequacy

Rating (%)

AWS S3 5 5 5 4 95%

Microsoft

Azure

4 4 5 5 90%

Notably, both services provide similar capabilities. However, because of its notoriety for large

applications and easy setup, S3 provides a better beginner-friendly environment. However, Azure

provides a more cost-effective approach for large organizations like USGS. Overall, as the two

most popular cloud computing services, both AWS S3 and Microsoft Azure are well-documented

interfaces.

Decided Solution & Feasibility
Based on the above analysis results, AWS S3 is the choice of technology. Because Amazon

offers scalable solutions, ease of implementation, and thorough documentation, the project team

will use this service for cloud computing. To integrate into the final solution, AWS S3 will serve

as the basis for storing all planetary map data including images, source links, and publication

dates. USGS servers will be hosted remotely on AWS.

24



4. Technology Integration
Based on the previous analysis, the following components form MapONE’s web application tool.

Figure 1. System diagram for MapONE.

In this figure, the system process is broken down into five main components. At the center is the

database, where all metadata collected from the machine learning model will be stored. AWS’s

cloud computing service will host and store all information passed into the database. Django’s

web framework will filter the dataset to satisfy USGS criteria and display it to the GUI. Lastly,

the user will be able to interact with the database using a Flutter interface.

25



5. Conclusion
As previously mentioned, the client currently lacks a centralized system for all planetary map

publications. Many non-USGS maps are often published in journal articles and conference

papers. This limits USGS’s ability to gather all resources for a specific mapping area of interest.

MapONE, a planetary map interface, will display metadata on these valuable map products. This

product will support the planetary science community as a central point for map information.

As shown in the system diagram, the envisioned product encompasses many aspects as a web

application. A web scraper will be used to scan journals and other academic sources for notable

map information (region, images, etc.). This machine-learning assisted tool will then identify and

collect relevant data. Most importantly, MapONE’s interface will display this to researchers.

Throughout this document, the project team analyzed potential technologies for MapONE’s GUI,

web framework, database structure, web scraper, and data storage. These components are

necessary to build an automated web-based tool capable of identifying, collecting, and displaying

map data. From the project team’s research and analysis, the following technologies will be used

for this tool:

1. Flutter: A user interface tool capable of displaying visual map components.

2. Django: A web framework that can connect MapONE’s interface and database.

3. PostgreSQL: A database structure to support and store map data.

4. Keras and TensorFlow: Machine learning libraries used to identify map information.

5. AWS: A cloud computing and data storage service to host the product’s application.

Although these technologies and their integration form MapONE’s foundation, additional steps

are necessary to create a fully functional product. Next, the project team will expand on the

individual functional and non-functional requirements for each component discussed in this

document.

26



References

[1] “Lunar and Planetary Institute.” Lunar and Planetary Institute. https://www.lpi.usra.edu/

(accessed October 28, 2021).

[2] “What is a Container?” Docker. https://www.docker.com/resources/what-container

(accessed October 28, 2021).

[3] “Beautiful native apps in record time.” Flutter. https://flutter.dev/ (accessed October 15,

2021).

[4] “Binding to native code using Dart:FFI.” Flutter.

https://flutter.dev/docs/development/platform-integration/c-interop (accessed October 15,

2021).

[5] H. Javaid. “How to run Python scripts on Flutter.” Medium.

https://medium.com/@ihassanjavaid/how-to-run-python-scripts-on-flutter-d6a4aedb6227

(accessed October 15, 2021).

[6] “How to create a search bar in Flutter.” LogRocket Blog.

https://blog.logrocket.com/how-to-create-search-bar-flutter/ (accessed October 28, 2021).

[7] “React – a JavaScript library for building user interfaces.” React.js. https://reactjs.org/

(accessed October 15, 2021).

[8] “Flask vs Django in 2021: Which Framework to Choose?” Hackr.io.

https://hackr.io/blog/flask-vs-django (accessed October 18, 2021).

[9] “Quickstart.” Flask. https://flask.palletsprojects.com/en/2.0.x/quickstart/

#deploying-to-a-web-server (accessed October 28, 2021).

[10] R. Peterson.“What is PostgreSQL? Introduction, Advantages & Disadvantages” Guru99.

https://www.guru99.com/introduction-postgresql.html (accessed October 15, 2021).

[11] “PostgreSQL.” PostgreSQL https://www.postgresql.org/ (accessed October 15, 2021).

[12] “PostGIS 3.1.5MDev manual.” PostGIS. https://postgis.net/stuff/postgis-3.1.pdf

(accessed October 31, 2021).

[13] “70.6. Database Page Layout.” PostgreSQL. https://www.postgresql.org/docs/current/

storage-page-layout.html (accessed October 31, 2021).

[14] “MySQL.” MySQL. https://www.mysql.com/ (accessed October 15, 2021).

27

https://www.lpi.usra.edu/
https://www.docker.com/resources/what-container
https://flutter.dev/
https://flutter.dev/docs/development/platform-integration/c-interop
https://medium.com/@ihassanjavaid/how-to-run-python-scripts-on-flutter-d6a4aedb6227
https://blog.logrocket.com/how-to-create-search-bar-flutter/
https://reactjs.org/
https://hackr.io/blog/flask-vs-django
https://flask.palletsprojects.com/en/2.0.x/quickstart/#deploying-to-a-web-server
https://flask.palletsprojects.com/en/2.0.x/quickstart/#deploying-to-a-web-server
https://www.guru99.com/introduction-postgresql.html
https://www.postgresql.org/
https://postgis.net/stuff/postgis-3.1.pdf
https://www.postgresql.org/docs/current/storage-page-layout.html
https://www.postgresql.org/docs/current/storage-page-layout.html
https://www.mysql.com/


[15] “Pros and Cons of MySQL 2021.” Trustradius.

https://www.trustradius.com/products/mysql/reviews?qs=pros-and-cons (accessed

October 15, 2021).

[16] “Table structure for Geo Spatial Data.” Stack Overflow.

https://stackoverflow.com/questions/25232316/table-structure-for-geo-spatial-data/25237

180 accessed (October 31, 2021).

[17] “Understanding the Pros and Cons of MongoDB.” KnowledgeNile.

https://www.knowledgenile.com/blogs/pros-and-cons-of-mongodb/ (accessed October 15,

2021).

[18] Xtivia. “The Pros and Cons of MongoDB.” Virtual-DBA.

https://www.virtual-dba.com/blog/pros-and-cons-of-mongodb/ (accessed October 15,

2021).

[19] “Structure your data for MongoDB.” MongoDB.

https://docs.mongodb.com/guides/server/introduction/ (accessed October 31, 2021).

[20] “What is Pandas In Python? Everything You Need to Know.” ActiveState.

https://www.activestate.com/resources/quick-reads/what-is-pandas-in-python-everything-

you-need-to-know/ (accessed October 18, 2021).

[21] “Python Pandas Tutorial: A Complete Introduction for Beginners.” Learndatasci.

https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-

beginners/\ (accessed October 18, 2021).

[22] “An end-to-end open source machine learning platform.” TensorFlow.

https://www.tensorflow.org/ (accessed October 18, 2021).

[23] “About Keras.” Keras.io. https://keras.io/about/ (accessed October 18, 2021).

[24] “The Train, Validation, and Test Sets: How to Split Your Machine Learning Data.”

V7Labs. https://www.v7labs.com/blog/train-validation-test-set (accessed October 31,

2021).

[25] “Image Classification.” TensorFlow.

https://www.tensorflow.org/tutorials/images/classification (accessed October 31, 2021).

[26] V. Sharma, V. Nigam, and A. Sharma, “Cognitive analysis of deploying web applications

on microsoft windows azure and amazon web services in global scenario,” Materials

Today: Proceedings, vol. 10, no. 126, Nov. 2020, doi:10.1016.

28

https://www.trustradius.com/products/mysql/reviews?qs=pros-and-cons
https://stackoverflow.com/questions/25232316/table-structure-for-geo-spatial-data/25237180
https://stackoverflow.com/questions/25232316/table-structure-for-geo-spatial-data/25237180
https://www.knowledgenile.com/blogs/pros-and-cons-of-mongodb/
https://www.virtual-dba.com/blog/pros-and-cons-of-mongodb/
https://docs.mongodb.com/guides/server/introduction/
https://www.activestate.com/resources/quick-reads/what-is-pandas-in-python-everything-you-need-to-know/
https://www.activestate.com/resources/quick-reads/what-is-pandas-in-python-everything-you-need-to-know/
https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/%5C
https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/%5C
https://www.tensorflow.org/
https://keras.io/about/
https://www.v7labs.com/blog/train-validation-test-set
https://www.tensorflow.org/tutorials/images/classification


[27] “Amazon S3.” Amazon. https://aws.amazon.com/s3/?nc=sn&loc=1 (accessed October

18, 2021).

[28] “Microsoft Azure: Cloud Computing Services.” Microsoft.

https://azure.microsoft.com/en-us/ (accessed October 18, 2021).

[29] P. Santis. “Ultimate cloud pricing comparison: AWS vs. Azure vs. Google Cloud in

2021.” CAST AI. https://cast.ai/blog/ultimate-cloud-pricing-comparison-aws-vs-azure-

vs-google-cloud-in-2021/ (accessed October 18, 2021).

29

https://aws.amazon.com/s3/?nc=sn&loc=1
https://azure.microsoft.com/en-us/
https://cast.ai/blog/ultimate-cloud-pricing-comparison-aws-vs-azure-vs-google-cloud-in-2021/
https://cast.ai/blog/ultimate-cloud-pricing-comparison-aws-vs-azure-vs-google-cloud-in-2021/

