
Software Testing Plan

Team name:
LangLens

Faculty Mentor
Italo Santos
Sponsor
Dr. Okim Kang
TeamMembers
Stefan Mihailovic, Daniel Navarette Martin
Brian Ruiz, Sami Tanquary
Kyle Young

Overview
The Software Testing Plan describes how LangLens intends to
ensure that the expectations presented in the requirements and
design specification documents are met.

Version 1.0

April 19, 2023

Contents

Contents ii

1 Introduction 1

2 Unit Testing 3
2.1 Text_Mode . 4
2.2 Yolo_View . 8

3 Integration Testing 10
3.1 Camera Integration . 10
3.2 Language Integration . 11
3.3 Object Detection Integration . 12
3.4 Text Recognition Integration . 12
3.5 Learning Page Integration . 13

4 Usability Testing 14

5 Conclusion 16

ii

1

Introduction

LangLens is a language learning web application that utilizes augmented reality
to help people learn languages by scanning objects and text around them. The big
component of the application is the scanning, which is done on the user’s end where
they take a picture of the object or text they want to scan and then pick the object/text
they want translated. From there the user is redirected to Collins Dictionary with the
data that was collected from the scan; the data being the language the user selected, and
the text or object that was scanned. The user also has the option to change the language
of the application of their appropriate language.

The purpose of this document is to outline the software tests that we will conduct for
our product. We want to test our application to see what it is capable of doing, as well
as seeing where our application may break for us to know if it has any limitations and
perhaps see if we can push past these limitations. Additionally, we want to make sure
that it functions properly with the tests we give and that it gives the correct outcome
from the tests. On the other hand, there may be certain small bugs that we are not
aware of, which is why testing the application may flush out these bugs.

There are three types of tests we will conduct on our application: unit tests, integra-
tion tests, and usability tests. Firstly, the unit tests will be focused on certain parts of the
application or components of code to ensure that the back end framework is process-
ing data correctly by testing valid and invalid requests that are coming from the user.
Secondly, the integration tests will be to see if the actions that we want the application
to perform are running smoothly such as: testing the scanning of objects and text, re-
turning the accurate results of scanning, and making sure the learning page provides
the accurate outcome. Lastly, the usability tests will be more focused on the front end

1

Chapter 1. Introduction

and make sure that a user is capable of using the application with little to no trouble by
having people use the product.

For the most part these tests are more geared towards the scanning of objects/text,
and producing the correct translations, since these are the two main components of the
application. We want to make sure that it scans correctly, returns the correct translation
of object or text, and makes sure that there are no problems with using the scanner. On
the other hand, the translations need to be accurate, otherwise the user will be receiving
incorrect translations. The next sections of this document will go more in depth on the
three types of tests for our product individually.

2

2

Unit Testing

Unit testing is a software testing technique that focuses on testing individual com-
ponents or units of code independent from an entire system. In most cases, these units
would be considered functions, methods, or subroutines and are typically simple in
design in order to get the most accurate and efficient outcomes. The goal of unit testing
is to ensure that each unit of code is working as intended and meets the specified re-
quirements which is crucial for improving the quality of software, detecting bugs and
reducing the time and cost of fixing future defects.

The following section will discuss the two critical components of the web applica-
tion, Text Recognition Mode and Object Detection Mode, and their related unit tests.
The LangLens web application uses Django, a Python-based web framework, which
utilizes Python’s standard unittest module. Within the unittest module, is the subclass
TestCase which allows the team to create and run each test inside an isolated transac-
tion. Additionally, the subclass Client will be used to act as a simulated web browser
allowing the team to test the functionality of the views, templates, HTTP requests /
responses, and URL mapping for both of the web app components in this section.

The team is specifically focused on testing the main functionality of the web appli-
cation’s server-side components or Apps: Text Recognition Mode (OCR) and Object
Detection Mode (Yolov5). Due to the fact that the Client testing class can be used to
simulate frontend actions, as explained above, the primary subset for unit testing is
the Views functions for each detection mode component that handles the processing
of the user’s requests and responses as these are the most critical parts of the backend
functionality.

3

Chapter 2. Unit Testing 2.1. Text_Mode

For the OCR App, the following units will be tested: text_mode. This is the core
view for Text Recognition Mode that is recognized by the Django backend to process
client-side requests and responses. Within the unit is a 2 sets of unit tests specifically
designed to target individual processes in both the request and responses, as well as
the OCR processes and translations.

For the Yolov5 App, the following units will be tested: yolo_view. This is the main
and only one view that handles the Object Detection Mode. We will test the responses
of the view, as well as to ensure that the data is being handled correctly, even though
there may be missing data or incorrect one.

2.1 | Text_Mode

Text_Mode is the main method in the OCR App. This method is a Django View
function and handles a POST request containing image data and the approved lan-
guage code information. This view function is responsible for performing all the OCR
image processing on the inputted image data using Pytesseract (a Python-wrapper
for Google’s Tesseract OCR) and then translates the detected text from English into
whichever approved target language is selected by the user. The correct response from
this function is a JsonResponse containing a query dictionary with the url to the stored
image, the target language information, and the coordinates of the bounding boxes in
order to create clickable links for the user to be redirected to CollinsDictionary.com for
more information on a detected word.

The following test cases for the Text_Mode unit were designed based on the follow-
ing equivalence partitions and boundary values to test the request and responses of the
view:

■ Equivalence Partitions:

– Valid Image Data vs. Invalid Image Data:

* Valid Image Data is an image/png data url which is base64 encoded.

* Invalid Image Data includes the other variety of image types (i.e. JPEG,
PDF, GIF)

– POST Request vs. GET Request

– Present AJAX Header vs. No AJAX Header:

4

Chapter 2. Unit Testing 2.1. Text_Mode

* The AJAX Header should contain the type, url, header types, data img,
language, dataType, and success flag.

– Valid Language Data vs. Invalid Language Data:

* Valid Language Data includes any of the approved target languages for
our system (i.e. ‘language’ : ‘korean’, ‘language’ : ‘spanish’, ‘language’ :
‘french’)

* Invalid Language Data includes any language not approved as a target
language for our system (i.e. ‘language’ : ‘german’, ‘language’ : ‘arabic’)

■ Boundary Values:

– Min Input: Empty image payload

– Max Input: Maximum size image payload (2.5MB)

Unit Test Description Sample Input Expected Out-
come

Valid POST re-
quest with image
data, language,
and AJAX header

Test a valid POST
request made from
user containing
correct base64 en-
coded png image,
language data, and
AJAX header

{‘img’:
‘data:image/png;
based64,ivBORw
0KGg. . . ==’, ‘lan-
guage’: ‘spanish’}

JSON response
with status code
200 contain-
ing image URL,
language, and
coordinates of
detected text

Valid POST re-
quest with invalid
image data, lan-
guage, and AJAX
header

Test a valid POST
request made from
user containing in-
correct image data,
language data, and
AJAX header

{‘img’:
‘data:image/jpeg’,
‘language’: ‘span-
ish’ } {‘img’:‘ ‘,
‘language’: ‘ko-
rean’ } {‘language’:
‘korean’ } image
larger than 2.5MB

JSON response
with status code
500 containing
an invalid image
error

Invalid GET re-
quest with image
data, language,
and AJAX header

Test a invalid GET
request made from
user containing
image data, lan-
guage data, and
AJAX header

{‘img’:
‘data:image/png;
based64,ivBORw0
KGg. . . ==’, ‘lan-
guage’: ‘spanish’ }

JSON response
with status code
405 containing an
invalid request
method error

POST request with
no AJAX header

Test a POST re-
quest made from
user containing
image data, lan-
guage data, but no
AJAX header

$.ajax({ type:
“POST”, url:
“text_mode”,
headers: { }, data: {
img: url, language:
language.value},
dataType:
“json”.

JSON response
with status code
405 containing an
invalid request
method error

5

Chapter 2. Unit Testing 2.1. Text_Mode

The next set of test cases for the Text_Mode unit were designed based on the follow-
ing equivalence partitions and boundary values to test the OCR / translation processes
of the view:

■ Equivalence Partitions:

– Valid Image: a PNG image with clear text or no text

– Invalid Image: a JPEG, GIF or any other data type

– Valid Language: a 2 character string representing a valid language code
approved for our system (i.e.’en’ = English, ‘es’ = Spanish, ‘fr’ = French, ‘ko’
= Korean)

– Invalid Language: a string representing an invalid language code (i.e.
‘arab’)

■ Boundary Values:

– Min Input: An image with no text or a single character

– Max Input: An image with more than 100 words

6

Chapter 2. Unit Testing 2.1. Text_Mode

Unit Test Description Sample Input Expected Out-
come

OCR Image with
Text

Tests for valid
OCR of an image
with English text

pytesseract. im-
age_to_string
(testImg.png)
PNG image with
one word, ‘Restau-
rant’ PNG image
with 50 words

Passed assertion
test with correct
OCR of the text in
the image

OCR Image with
No Text

Tests for valid
OCR of an image
with no Text

pytesseract. im-
age_to_string
(testImg.png)
PNG image with
no text

Passed assertion
test with zero
words detected

OCR invalid image
type

Tests for invalid
image type input

pytesseract. im-
age_to_string (tes-
tImg.jpg) JPEG
image with text
GIF image with
text

Error response
with status code
415 for unsup-
ported image type

Translate OCR
text from English
to valid target
language

Test for valid
translation of text
obtained from
pytesseract from
English to valid
target language

translator.translate
(ocr_text,
dest=’es’).text
PNG image with
one word and
language code ‘es’
PNG image with
100 words and
language code ‘fr’

Passed assertion
test with all words
correct detected
and translated
to the target lan-
guage

Translate OCR im-
age from English
to invalid target
language

Test for invalid
translation of text
obtained from
pytesseract from
English to invalid
target language

translator.translate
(ocr_text,
dest=’foo’).text
PNG image with
one word and lan-
guage code ‘foo’
PNG image with
100 words and
language code
‘arab’

Error response
with status code
400 for invalid
language code
specified

Translate OCR
image with no
text from English
to valid target
language

Tests for transla-
tion of no text

translator.translate
(“ “, dest=’es’).text
PNG image with
no text

Passed assertion
test with zero
words detected

7

Chapter 2. Unit Testing 2.2. Yolo_View

2.2 | Yolo_View

Yolo_View is the main function for the Object Detection Mode. When the user
accesses the Object Detection mode, the view will render the yolov5 template, which
will apply for camera access, and once accepted, will display the camera using the
whole size of the screen. The user can select a desired language, and take a picture
of their environment, pressing the take picture button, which will generate an Ajax
POST request, sending the image and the selected language in the request. The view
will receive the request, checking if it is an Ajax request, and will retrieve the values,
process them, and send back a JsonResponse with the url of the resulting image, the
selected language and the coordinates of the scanned objects.

The following test cases for the Yolo_view unit were designed based on the follow-
ing equivalence partitions and boundary values to test the request and responses of the
view:

■ Equivalence Partitions:

– Valid Image Data vs. Invalid Image Data:

* Valid Image Data is an image/png data url which is base64 encoded.

* Invalid Image Data includes the other variety of image types (i.e. JPEG,
PDF, GIF)

– POST Request vs. GET Request

– Present AJAX Header vs. No AJAX Header:

* The AJAX Header should contain the type, url, header types, data img,
language, dataType, and success flag.

– Valid Language Data vs. Invalid Language Data:

* Valid Language Data includes any of the approved target languages for
our system (i.e. ‘language’ : ‘korean’, ‘language’ : ‘spanish’, ‘language’ :
‘french’)

* Invalid Language Data includes any language not approved as a target
language for our system (i.e. ‘language’ : ‘german’, ‘language’ : ‘arabic’)

■ Boundary Values:

– Min Input: Empty image payload

8

Chapter 2. Unit Testing 2.2. Yolo_View

– Max Input: Maximum size image payload (10MB)

Unit Test Description Sample Input Expected Out-
come

Valid POST re-
quest with image
data, language,
and AJAX header

Test a valid POST
request made from
user containing
correct base64 en-
coded png image,
language data, and
AJAX header

{‘img’:
‘data:image/png;
based64,ivBORw
0KGg. . . ==’, ‘lan-
guage’: ‘spanish’}

JSON response
with status code
200 contain-
ing image URL,
language, and
coordinates of
detected text

Valid POST re-
quest with invalid
image data, lan-
guage, and AJAX
header

Test a valid POST
request made from
user containing in-
correct image data,
language data, and
AJAX header

{‘img’:
‘data:image/jpeg’,
‘language’: ‘span-
ish’ } {‘img’:‘ ‘,
‘language’: ‘ko-
rean’ } {‘language’:
‘korean’ } image
larger than 2.5MB

JSON response
with status code
500 containing
an invalid image
error

Invalid GET re-
quest with image
data, language,
and AJAX header

Test a invalid GET
request made from
user containing
image data, lan-
guage data, and
AJAX header

{‘img’:
‘data:image/png;
based64,ivBORw0
KGg. . . ==’, ‘lan-
guage’: ‘spanish’ }

JSON response
with status code
405 containing an
invalid request
method error

POST request with
no AJAX header

Test a POST re-
quest made from
user containing
image data, lan-
guage data, but no
AJAX header

$.ajax({ type:
“POST”, url:
“text_mode”,
headers: { }, data: {
img: url, language:
language.value},
dataType:
“json”.

JSON response
with status code
405 containing an
invalid request
method error

The tests for the YoloV5 view and Text Mode are the same since both receive the
same requests, and return the same response

9

3

Integration Testing

Integration testing is a type of software testing that focuses on testing the inter-
actions between different modules or components of a software system. The goal of
integration testing is to ensure that these different parts of the overall system work to-
gether correctly when combined. Additionally, it is also used to detect bugs and defects
in the interfaces and interactions between these different components which ultimately
saves extra time and money put into reducing these potential defects.

Our team is focused on connecting the two main modules, being Object Detection
and Text Recognition, to the other parts of the application. These parts of the appli-
cation must use the data that has been received from the object and text recognition
portion to be functional. The camera, the language and the learning page all interact
with the object detection mode and text recognition mode to make LangLens the full
package. The test harnesses for the integration testing will compare the data of the re-
sults of the integration tests to the expected outcomes. The following integration tests
will show the interactions between each part of the application and will be necessary
to the success of the product.

3.1 | Camera Integration

Users on the application will be able to access the camera to be able to make use
of the object detection and text recognition portions of the application. This part of the
application will allow for immersive language learning through a visual element, being
the camera. The activation of the camera is the start of the entire process that LangLens
provides.

10

Chapter 3. Integration Testing 3.2. Language Integration

Integration Test Description Expected Outcome
Camera Permission Accept Tests for ability for user

to give the application au-
thorization to use their
device’s camera

When the user gives per-
mission for the camera to
be used, the user will be
able to see from the cam-
era’s point of view

Camera Permission Deny Tests for ability for user
to deny the application
authorization to use their
device’s camera

When the user denies per-
mission for the camera to
be used, there should not
be any image

Take Picture Tests for the ability for the
user to take a picture with
the camera using the pic-
ture button

When the user pushes the
picture button, it should
show the user the photo
they have taken, and then
send that to their respec-
tive modes

Disable Camera Tests for the ability to turn
off the camera

When the user disables
the camera, they should
no longer see from the
camera’s point of view

3.2 | Language Integration

User’s on the application will be able to change the language to fit not only what
language they know, but also what language they want to know. The language portion
change the results of the object detection, text recognition and the learning page, so
accurate results will be the utmost importance

Integration Test Description Expected Outcome
Change base language Tests for the ability to

change the language of
the instruction text

The text of the instruc-
tions for the homepage,
object detection and text
recognition are correctly
translated into the de-
sired language

Change Translation Language Tests for the ability to
change what language
the Object Detection
and character recogni-
tion translate

The object detection
and text recognition
correctly translate to the
desired language

11

Chapter 3. Integration Testing 3.3. Object Detection Integration

3.3 | Object Detection Integration

The object detection module is able to detect objects within a photo from a camera
feed. The expected outcome is that a bounding box with an accurate label is drawn
around the object. Verification that the app can successfully detect the object is crucial
so that the main functionality of the application can take place, as well as communicat-
ing with the backend and other modules.

Integration Test Description Expected Outcome
Receive photo Tests for the ability to receive

the captured photo from the
camera feed

The photo displayed to the user
is the same as the photo that the
camera had taken

Detect Object Tests for the ability to detect the
object in the camera feed and
return accurate results

A bounding box is drawn
around the detected object. An
accurate label containing the
name of the detected object
is shown within the bounding
box.

3.4 | Text Recognition Integration

The Text Recognition Mode is able to recognize characters within a photo from
a camera feed. The expected outcome is that a bounding box with an accurate label
is drawn around the character or characters. Verifying that the application can suc-
cessfully recognize a character or characters is integral to the main functionality of the
application.

12

Chapter 3. Integration Testing 3.5. Learning Page Integration

Integration Test Description Expected Outcome
Receive photo Tests for the ability to

receive the captured
photo from the cam-
era feed

The photo displayed
to the user is the same
as the photo that the
camera had taken

Recognize Character or Characters Tests for the ability to
recognize the charac-
ter or characters in the
camera feed and re-
turn accurate results

A bounding box is
drawn around the
recognized charac-
ters. An accurate
label containing the
name of the recog-
nized characters is
shown within the
bounding box

3.5 | Learning Page Integration

The learning page integration is the last step within the LangLens web application,
as after either the detected object or recognized word has its bounding box drawn, in-
teracting with the bounding box should take the user to the external Collins-Dictionary
learning page.

Integration Test Description Expected Outcome
User access learning page Tests for the ability to in-

teract with the bounding
box of detected object or
recognized word for each
respective mode

The user is taken to a
Collins-dictionary page of
the accurate translation ac-
cording to their own lan-
guage and their desired
translation language

13

4

Usability Testing

Usability testing is the final testing strategy in our plan, and it involves incorporat-
ing the end-users into the testing process. The main purpose of usability testing is to
ensure that the software is intuitive and easy to use for the end-users. Due to the nature
of usability testing, it will not involve code based test cases, and instead will focus on
acquiring feedback on the user interface, as well as the workflow of the system.

As LangLens is an application that is focused on entry level language learning, a
simple and easy to use interface with a modern design is crucial to the success of the
application. We need to be able to get feedback from not only our client, but also gen-
eral users of our application, so we can take a step back and really understand the
usability of our product. Not only do we need our application to be usable, but we also
need our application to be aesthetically pleasing. While aesthetics are technically sub-
jective, good aesthetics are clearly easier to evaluate than bad aesthetics. The following
usability tests will be necessary to the success of the design of the product:

■ Main Menu Usability: Evaluate how easily users can access the text recognition
and object detection modes from the main menu, how easily users can change
the language of the site, as well as evaluating how aesthetically pleasing the main
menu’s user interface is.

■ Text Recognition Mode Usability: Evaluate how easily users can open text recog-
nition mode and use the app to scan and recognize text.

■ Object Detection Mode Usability: Evaluate how easily users can open object
detection mode and use the app to scan and detect text.

14

Chapter 4. Usability Testing

■ Learning Page Redirect Usability: Evaluate how easily users can understand to
open the redirect to the Collins-dictionary page.

■ User Feedback: Gather feedback from users about their experience using the app,
including any suggestions or issues they encountered, as well as their preference
to the aesthetics of the site.

■ Overall Usability: Evaluate the overall ease of use and user-friendliness of the
app, including its interface design and workflow.

To conduct our usability testing, we will be having participants ranging from friends
and family, to roommates and classmates. The testing process will be structured in a
linear way, going down the list as provided above. The participants will be sat down
with one of the LangLens team members, and will be given the link to the web ap-
plication. The present LangLens team member will work with the participant to walk
through the usability tests, starting from Main Menu, to Learning page test. Finally, the
LangLens team members will gather feedback from the participants concerning their
overall experience using the app, as well as any suggestions or particular issues they
encountered. Finally, the overall ease of use and user-friendliness of the app will be
evaluated, including its interface design and workflow, and the results will, in addition
to integration and unit testing, provide a more clear picture regarding the quality of our
web application.

As mentioned earlier, usability testing will be the final software testing conducted,
allowing us to make any final adjustments necessary, before our web application is
handed over to our client.

15

5

Conclusion

To conclude, as we mentioned before we want our tests to make sure that our prod-
uct is working efficiently and properly. The unit testing will help us understand what
it can and cannot process by having the tests give valid and invalid inputs. The actions
of the product such as the scanning, translating, and retrieving the learning page will
be tested with the integration tests that we have for it. Finally, by having people who
are unaware of our product use the product and provide feedback to us we will be able
to gauge the usability of our product. The purpose of these tests is to help us under-
stand the limitations of our product, therefore these tests will serve that purpose and
will help us make any fixes that must be done for the product. That way we can ensure
that LangLens performs as the expected language learning tool that we have designed
it to be.

16

	Contents
	Introduction
	Unit Testing
	Text_Mode
	Yolo_View

	Integration Testing
	Camera Integration
	Language Integration
	Object Detection Integration
	Text Recognition Integration
	Learning Page Integration

	Usability Testing
	Conclusion

