
Final “As-Built” Report

Team name:
LangLens

Faculty Mentor
Italo Santos
Sponsor
Dr. Okim Kang
TeamMembers
Stefan Mihailovic, Daniel Navarette Martin
Brian Ruiz, Sami Tanquary
Kyle Young

Version 1.0

May 8, 2023

Contents

Contents ii

1 Introduction 1

2 Process Overview 3

3 Requirements 5
3.1 Functional Requirements . 6
3.2 Non-Functional Requirements . 9
3.3 Environmental Requirements . 11

4 Architecture and Implementation 12
4.1 Main UI . 13
4.2 Object Detection App . 14
4.3 Text Recognition App . 16

5 Testing 18
5.1 Unit Tests . 18
5.2 Integration Tests . 21
5.3 Usability Tests . 24

6 Project Timeline 27
6.1 Fall 2022 Semester . 27
6.2 Spring 2023 Semester . 28

7 Future Work 30

ii

Contents

7.1 Internal Learning Page . 30
7.2 Personal User Accounts . 30
7.3 Train Object Models . 31
7.4 Add More Target Languages . 31

8 Conclusion 33

9 Glossary 34

10 Appendix A: Development Environment and Toolchain 35
10.1 Hardware . 35
10.2 Toolchain . 35
10.3 Setup . 37
10.4 Production Cycle . 39

iii

1

Introduction

One of the most crucial aspects of humans is language. It is an essential tool we
have that we use to make connections through verbal and written communication,
which helps people from different backgrounds to be able to understand and connect
with others. Additionally, when it comes to speaking different languages one must first
be able to master a new foreign language in order to transcend through the language
barrier. At first, it would take someone years to learn and master a new language by
practicing, memorizing, and writing endless lists of vocabulary by taking classes or go-
ing through textbooks. Now, technology has helped us to the point where anyone can
have access to learning any new language they want. One way is by creating language
learning tools that help people learn new languages by focusing on the key elements
of language learning being: meaning, use, and form. This tool is what our team, Lan-
gLens, has created.

Team LangLens has created a language learning tool that focuses on the key ele-
ments of language learning as well as the crucial audible and visual elements. Our
product is also capable of utilizing augmented reality in the forms of scanning text
and detecting objects, therefore we have named it EducationalAR. Our client Dr.Okim
Kang, who is a professor in the department of english at Northern Arizona University,
wanted us to create such a tool because she noticed the lack of tools that use augmented
reality for language learning purposes. With that being said, our product does this by
having two modes: one for scanning text and another for detecting objects, which are
then translated to their appropriate language selected by the user. So far, the languages
our product can translate to are English, Spanish, French, Korean, and Chinese. Now,
our client has also noticed that the applications that do use augmented reality only fo-

1

Chapter 1. Introduction

cus on scanning text or objects, but rarely use both, and if they do they are usually
locked behind expensive paywalls or subscriptions. As a result, EducationalAR is a
free product that is easy to use, as we provide instructions on how to properly scan ob-
jects and text. Our product also redirects learners to Collins Dictionary where they are
given a definition of the word, as well as how to pronounce it and use it in a sentence.
EducationalAR is meant to be a free and easy-to-use language learning tool to be used
by learners of all levels to be able to learn new languages through the use of augmented
reality.

2

2

Process Overview

Our team didn’t follow a traditional scrum like approach for our development life-
cycle. Since the project was not given to us with an already established codebase, we
had to start from scratch. Due to this, a big challenge we faced was figuring out what
needed to be done, and in what order. As a result, upon figuring out our goals and
requirements, we would estimate a timeframe needed to complete them, and work
through them in that order.

The tools used to develop our project included:

■ GitHub for version control and issue tracking.

■ PyCharm as our IDE of choice.

■ Roboflow for training the object detection models.

Our team had five primary roles with specific duties assigned to each team member:

■ Team Lead - duties include delegating tasks and making sure everyone is staying
on track

■ Recorder - in charge of writing down meeting minutes

■ Architect - responsible for designing the overall structure and functionality of our
software system

3

Chapter 2. Process Overview

■ Customer communicator - served as the bridge between both our client, and end
users, mostly for the purposes of testing the software, and the rest of the develop-
ment team

■ Release manager - making sure that our code and deliverables are up to standard
and delivered on time. Was also in charge of merging pull requests.

Our primary channel of communication was a Discord server dedicated to our Cap-
stone project.

4

3

Requirements

TThis section will summarize the project’s requirement acquisition process and the
obtained functional, non-functional, and environmental requirements.

In summary, while we did not necessarily follow a traditional SCRUM development
process from the start, we did base our requirement acquisition process on manageable
2-4 week sprints. This process meant each requirement was reviewed based on our
MVP goals, rated on technological feasibility, refined to a single sprint, given accep-
tance criteria for testing, and then assigned to a team member with a time estimation
and deadline. We also met with our client, Dr. Okim Kang, at the beginning of the
project to discuss all of her desired features and high-level requirements where she
ultimately gave us the final say on design choices.

From these meetings and the above requirement acquisition process, we obtained
the following Key Project Requirements:

■ The web-app will be freely accessible from any mobile device with internet access
and a camera.

■ The web-app will be packaged in a simple, easy to understand, user interface
capable of quickly and securely scanning objects or retrieving text from an image.

■ The web-app will offer the ability to choose a target language for translation from
English to Spanish, French, English and/or Korean.

■ The web-app will be capable of toggling between two detection modes: Object
Detection and Text Recognition.

5

Chapter 3. Requirements 3.1. Functional Requirements

■ The web-app will offer the ability to restart the scanning process.

■ The web-app will scan objects and texts in a live viewing mode for real time de-
tection.

■ The web-app will display clickable links after each scan to an external learning
page that provides the correct definition, word-in-use guide, and pronunciation
example.

The requirements above have been divided into the following categories:

■ Functional Requirements.

■ Non-Functional Requirements.

■ Environmental Requirements.

3.1 | Functional Requirements

3.1.1 | User Actions
The User Actions consist of all the specific user functions associated with the UIs.

Our target users for this system include anyone who would like to learn a new language
including, but not limited to, young people (children), monolingual individuals, and
people who struggle with text. Users will have multiple utilities accessible to them
when interacting with the UIs that serve as the core functions for the application. With
that said, users must be able to execute the following actions:

■ Allow or deny the application permission to access their mobile device’s camera

■ Select a target language for translation offered in Spanish, French, English, or Ko-
rean via a target language selection toggle and drop down options of the currently
available languages

■ Toggle between two detection modes: Object Mode and Text Mode

– Object Mode: the user can scan objects in their environment and see the
translation in their chosen target language.

6

Chapter 3. Requirements 3.1. Functional Requirements

– Text Mode: the user can scan words in their environment and see the trans-
lation in their chosen target language.

■ Click on any of detected objects or words and be redirected to an external learning
page.

– The learning page must provide the correct definition, sentence usage, and
audible pronunciation of the detected object / word.

■ Restart the scanning process as many times as desired by clicking a “Restart”
button.

3.1.2 | Object Detection
Object detection is a crucial portion of EducationalAR. Team LangLens is using

YOLOv5, a Python-based object detection algorithm that utilizes a single deep neural
network to perform real-time object detection with trainable models. Object detection
functions must adhere to the following functional requirements:

■ Detect objects from a picture taken by the user of their current environment.

■ Show the user’s desired scanned objects in a visual bounding boxes.

■ Display the objects’ translated labels above the detect objects that matches the
language selected from the target language selector.

3.1.3 | Text Recognition
Text recognition is another important portion of what makes EducationalAR dis-

tinguished from other augmented reality language learning applications, as few of
these existing AR applications have both text recognition and object detection within
the same system. Text recognition will be powered by Google’s Tesseract OCR en-
gine, specifically the Python wrapped version, pyTesseract, to perform optical charac-
ter recognition and extraction. Text recognition must adhere to the following functional
requirements.

■ Detect text from a picture taken by the user of their current environment.

■ Show the user’s desired scanned words in visual bounding boxes.

7

Chapter 3. Requirements 3.1. Functional Requirements

■ Display the words’ translated labels above the detected words that matches the
language selected from the target language selector.

3.1.4 | Translation
Translation will occur after the text or objects have been detected. The words or

objects will be translated from the user’s base language of English to their selected
target language.

■ Display the translated label of detected objects to the chosen target language.

■ Display the translated label of detected text to the chosen target language.

3.1.5 | External Learning Page
After any successful scan, the bounding boxes around the detected objects or words

will be clickable links that redirect the user to an external learning page (Dr. Okim
requested Collins Dictionary). The contents of the learning page will be provided by
Collins Dictionary and must contain the correct definition, word-in-use, and pronun-
ciation for any of the detected objects or words in the result image. The point of the
learning page is for the user to be able to immerse into the key elements of language
learning being meaning, usage, and form. The learning page must adhere to the fol-
lowing functional requirements:

■ Is displayed by clicking on any detected object’s or word’s bounding box.

– Bounding boxes are externally linked to Collins Dictionary.

■ Provides the correct definition, sentence usage, and pronunciation for any re-
quested object or word.

3.1.6 | Frontend
The frontend of the web-app must have a user interface for the homepage, Object

Mode, and Text Mode, all designed and developed using Bootstrap. Users will interact
with these UIs to perform the following tasks:

■ Homepage UI

8

Chapter 3. Requirements 3.2. Non-Functional Requirements

– Two buttons for toggling between the detection modes: Object Mode and
Text Mode.

■ Object / Text Mode UIs

– Requests camera access from the user displayed as a permission prompt.

– A toggle for target language selection.

* Displays the preliminary options in a dropdown menu of Spanish, French,
English and Korean.

– Displays clickable bounding boxes around any detected objects / words that
redirects to the external learning page after each scan.

– A restart button at the bottom of the UIs that allows the user to restart the
scanning process.

3.1.7 | Camera Actions
Requirements are needed from the camera to access our application to create a

seamless language learning experience. The camera must do the following:

■ Use the camera to detect object.

– Using a live-video stream, the user can take a picture which is used as input
for the object detection engine (YOLOv5).

■ Use the camera to detect words.

– Using a live-video stream, the user can take a picture which is used as input
for the text recognition engine (Tesseract OCR).

3.2 | Non-Functional Requirements

While in the section above we outlined the functional requirements our application
must follow, in this section we will discuss how the application will be expected to
perform.

9

Chapter 3. Requirements 3.2. Non-Functional Requirements

3.2.1 | Speed
In terms of speed, object detection and text recognition must be relatively fast when

it comes to detection and recognition. The application should not take more than 5 sec-
onds to successfully detect and scan an object / word. The result image displayed after
each scan falls into this 5 second window and should not take more than 2 seconds.
The backend must also be highly responsive as it is responsible for storing and retriev-
ing image data, and therefore, it should not take more than 1-2 seconds to accomplish
either. Lastly, when the user clicks on any of the detected objects’ or words’ bounding
boxes, the application must redirect the user to the Collins Dictionary learning page in
no more than 3 seconds.

3.2.2 | Accuracy
Both object detection and text recognition accuracy should not fall below 65%. This

is a large buffer, but necessary as we are using free detection software and is prone to
experience at least one error in every 6 out 10 detections. When it comes to translation,
since the YOLOv5 object models have to be trained in each available language offered
on the web-app, the accuracy of the translation of the objects in our custom dataset
should be no lower than 90% accurate. This is because there is no API being used
to translate them during each scan and instead Google Translate is used to manually
translate each object in our custom dataset during the model training. Therefore, the
buffer of 90% is given as Google Translate cannot be fully relied on for 100% linguistic
accuracy in any use case. The translation for Text Mode is being handled by Google-
Trans API and in this case is being done during each scan. Therefore, accuracy of the
translation is given a larger room for error at a minimum of 65% since each translation
is live and relies on the accuracy of the OCR engine which can vary case by case when
using the application. Finally, the search query sent to Collins Dictionary when the user
clicks on any of the bounding boxes should be 95% accurate with a 5% buffer for the
occasional detection errors that our chosen free engines are prone to make.

3.2.3 | Usability
The frontend of the application must provide an intuitive and easy to use interface.

Users should not need any training to use and navigate the application, but there is a
“Guide” button on both detection mode UIs that provides an explanation on how to
properly use either of the modes for further clarification.

10

Chapter 3. Requirements 3.3. Environmental Requirements

3.3 | Environmental Requirements

The following section will describe the environment requirements related to the
constraints imposed upon the application by the client and the chosen solution software
and hardware.

3.3.1 | Web-Based Mobile Application
As requested by our Dr. Okim, EducationalAR will be a web-based mobile appli-

cation and will be accessible via any type of web browser (i.e. Google Chrome, Mozilla
Firefox, Safari, etc.) on any type of mobile operating system (i.e. Apple iOS, Google An-
droid, Microsoft’s Windows Phone OS, etc.). Due to the nature of the application, the
mobile device that is accessing the EducationalAR web-app will need to have a stable
internet connection in order to use the application.

3.3.2 | Free Software
EducationalAR is required to utilize only freely available software and tools and

will not utilize any paid services or platforms for development. Dr. Okim has specif-
ically requested that EducationalAR must be free-to-use by any user and should not
require the use of a developer’s license for distribution of the application via an app
store.

3.3.3 | Mobile Device with Camera
A hardware requirement that was not explicitly stated by the client but is implied

by the functionality of the application is that EducationalAR will require the use of a
mobile device camera. This means that any user accessing the web-app must have a
mobile device with access to a camera or if they are accessing the website from a PC or
laptop, they must have a webcam.

11

4

Architecture and Implementation

The following section will provide a high-level overview of the EducationalAR web-
app architecture, as well as insight into the responsibilities of its three main compo-
nents, their data control flows, architectural styles and illustrations of their typical use
cases.

EducationalAR follows a three-tier, client-server architecture using Bootstrap for
the frontend, which uses HTML, CSS, and JavaScript, and Django for the backend,
which uses Python and HTML. The system consists of three major components: Main
UI, Object Detection App and Text Recognition App. The Object Detection App and
Text Recognition App components communicate directly with the server’s static files
to store and retrieve image data from the user’s live video stream.

12

Chapter 4. Architecture and Implementation 4.1. Main UI

Figure 4.1: System Architecture.

4.1 | Main UI

■ Key Responsibilities: The Main UI, or “homepage”, serves as the client-side in-
terface when accessing the EducationalAR web-app. It houses the two main user-
operated features, Object Mode and Text Mode, which are the core functions for
the entire web application. The user is also able to change the entire web-app’s
native language if English is not their primary language.

■ Control Flow: The Main UI is deployed through Django, a fully-featured server-
side Python web framework that allows for the use of both Python and HTML
to create web-based applications. The Main UI serves as a pipeline between the
user’s HTTP requests and the Django server by relaying these requests via URL
mapping to the targeted app’s View file. The View file interacts with the targeted
app’s Python programs and renders an HTTP response as an HTML Template file
which is received and dispatched to the Main UI.

■ Architectural Style: The overall influence for the Main UI’s architecture is based
on its involvement with the system’s overall three-tier application architecture. In

13

Chapter 4. Architecture and Implementation 4.2. Object Detection App

a modular client-server architecture, there are three layers: a presentation layer,
an application layer, and a data layer. The Main UI serves as the presentation
layer for this style as it is the user interface for the web application.

Figure 4.2: Main UI

4.2 | Object Detection App

■ Key Responsibilities: The Object Detection App is one of the two major detec-
tion mode modules used within the Django backend framework that contains the
View, Template, and URL files that execute the Object Mode. When the user tog-
gles to Object Detection Mode, the App package is executed on the server-side
and dispatched to the user as a separate UI page designed specifically for object
detection mode. Once rendered, the user is able to start the scanning process,
choose a target language for translation, click on an object’s bounding box for
redirection to the learning page, restart, or stop the scanning process completely
and return to the Main UI.

■ Control Flow: Each App package created for Django requests, handles, and re-
sponds the same way. First, an HTTP request from the user using the Object
Detection Mode URL is received by the Django URL Mapper. The mapper iden-

14

Chapter 4. Architecture and Implementation 4.2. Object Detection App

tifies the request for this mode and redirects it to the appropriate View file . The
user then chooses a target language, aims their camera at their desired object and
hits the Detect button. This sends an AJAX POST request from the Template to
the View containing the base64 encoded image of the object and their target lan-
guage. The View preprocesses the image with OpenCV and sends it to YoloV5 to
identify the object with one of our custom trained object models (depending on
the target language selected). The YOLOv5 algorithm then returns the detected
object’s bounding box coordinates, confidence score, and result image as a JSON
response. The response data is rendered back to the Template after the frontend
JavaScript transforms the bounding boxes around the object in the result image
as a clickable link to the external learning page (Collins Dictionary).

■ Architectural Style: The architectural style for the Object Detection App is component-
based to allow for the decomposition of the package into logical components. This
is the most efficient and modular use of the components within the application as
it opens up the possibility for new feature implementation and seamless collabo-
ration.

Figure 4.3: Object Detection App Component and Use Case Images

15

Chapter 4. Architecture and Implementation 4.3. Text Recognition App

4.3 | Text Recognition App

■ Key Responsibilities: The Text Recognition App, similar to the Object Detec-
tion App, is the Python App package used within the Django backend frame-
work that contains the Model, View, Template, and URL files that execute Text
Mode. The Text Recognition tasks are very similar to Object Detection, but instead
uses Google’s Tesseract OCR package, specifically the Python wrapped version,
pyTesseract, to perform optical character recognition and extraction. Simply put,
pyTesseract uses a pre-trained neural network of Leptonica’s language-specific
training data and a collection of machine learning algorithms to detect characters
and recognize full words.

■ Control Flow: As stated in section 4.2, each App package created for the Django
backend requests, handles, and responds the same way. So very similarly to our
Object Detection App, the user’s image is again preprocessed with OpenCV, sent
to pyTesseract for text recognition and extraction, and then returned as an array
with any detected words in the image and their bounding box coordinates. The
detected text is then translated to the user’s target language with GoogleTrans
API and drawn onto the original image with PILLOW using the obtained bound-
ing box coordinates. From here, the control flow of this App package is the exact
same and only differs in computational logic and the Template page response
which would be the Text Recognition UI instead.

■ Architectural Style: The architectural style is component-based, as previously
described for section 4.2, for reusability and easy reconfiguration of logical com-
ponents.

16

Chapter 4. Architecture and Implementation 4.3. Text Recognition App

Figure 4.4: Text Recognition App Component and Use Case Images

17

5

Testing

In this section, we will discuss our overall testing strategies and results that vali-
dated our implementation and improved EducationalAR.

Testing is a crucial part when developing software, as it helps to make sure that
everything works as expected and discover possible bugs. For our overall testing plan
we conducted three kinds of tests:

■ Unit Tests: A software testing technique that focuses on testing individual com-
ponents or units of code independent from an entire system.

■ Integrations Tests: A type of software testing that focuses on testing the interac-
tions between different modules or components of a software system.

■ Usability Tests: To ensure that the application is intuitive, easy to use, and aes-
thetically pleasing for end-users.

5.1 | Unit Tests

The following section will discuss the two critical components of the web appli-
cation, Text Mode and Object Mode, their related unit tests and results. The Educa-
tionalAR web application uses Django, a Python-based web framework, which utilizes
Python’s standard unittest module. Within the unittest module, is the subclass Test-
Case which allows the team to create and run each test inside an isolated transaction.
Additionally, the subclass Client was used to act as a simulated web browser allowing

18

Chapter 5. Testing 5.1. Unit Tests

the team to test the functionality of the views, templates, HTTP requests / responses,
and URL mapping for both of the web app components in this section.

Team LangLens was specifically focused on testing the main functionality of the
web application’s server-side components or Apps: Text Recognition Mode (OCR) and
Object Detection Mode (Yolov5). Due to the fact that the Client testing class can be used
to simulate frontend actions, as explained above, the primary subset for unit testing was
the Views functions for each detection mode component that handles the processing of
the user’s requests and responses as these are the most critical parts of the backend
functionality.

5.1.1 | Text Mode
Text Mode is the main method in the Text Recognition App. This method is a Django

View function and handles a POST request containing image data and the approved
language code information. This view function is responsible for performing all the
OCR image processing on the inputted image data using pyTesseract and then trans-
lates the detected text from English into whichever approved target language is selected
by the user. The correct response from this function is a JsonResponse containing a
query dictionary with the url to the stored image, the target language information, and
the coordinates of the bounding boxes in order to create clickable links for the user to
be redirected to CollinsDictionary.com for more information on a detected word.

The following test cases for the Text Mode unit were designed to test the request and
responses of the View function:

Unit Test Expected Outcome Results
Valid POST request with
image data, language, and
AJAX header

JSON response with sta-
tus code 200 containing
image URL, language,
and coordinates of de-
tected text

Pass

Valid POST request with
invalid image data, lan-
guage, and AJAX header

JSON response with sta-
tus code 500 containing an
invalid image error

Pass

Invalid GET request with
image data, language, and
AJAX header

JSON response with sta-
tus code 405 containing an
invalid request method er-
ror

Pass

POST request with no
AJAX header

JSON response with sta-
tus code 405 containing an
invalid request method er-
ror

Pass

19

Chapter 5. Testing 5.1. Unit Tests

The next set of test cases for the Text Mode unit were designed to test the OCR
engine and translation processes of the View function:

Unit Test Expected Outcome Results
OCR Image with Text Correct OCR of the text in

the image
Pass

OCR Image with No Text Zero words detected Pass
OCR invalid image type Error response with status

code 415 for unsupported
image type

Pass

Translate OCR text from
English to valid target lan-
guage

All words correctly de-
tected and translated to
the target language

Pass

Translate OCR image
from English to invalid
target language

Error response with status
code 400 for invalid lan-
guage code specified

Pass

Translate OCR image with
no text from English to
valid target language

Passed assertion test with
zero words detected

Pass

5.1.2 | Yolo_View
Yolo_View is the main function for the Object Detection Mode. When the user

accesses Object Mode, the View will render the yolov5.html template, which will re-
quest camera access, and once accepted, displays the camera using the whole size of
the device’s screen. The user can select a target language and take a picture of their
environment, pressing the Detect button, which will generate an AJAX POST request
that sends the image and the selected language to the View. The View will receive the
request, checking if it is an AJAX request, and will retrieve the values, process them,
and return them as a JSON response with the url of the resulting image, the selected
language, and the coordinates of the scanned objects.

The following test cases for the Yolo_View unit were designed based to test the re-
quest and responses of the View function:

20

Chapter 5. Testing 5.2. Integration Tests

Unit Test Expected Outcome Results
Valid POST request with
image data, language, and
AJAX header

JSON response with sta-
tus code 200 containing
image URL, language,
and coordinates of de-
tected objects

Pass

Valid Language Selection HTTP response with
200 status code with
‘yolov5.html’ template
correctly rendered con-
taining the correct lan-
guage as context

Pass

Invalid Language Selec-
tion

HTTP response with 404
status code containing a
message warning that the
application does not sup-
port the language

Pass

Although it was not explicitly tested in these units, we did find through these tests
that the response times for these two main View functions could have been faster. To
reduce the round-trip time (RTT), we condensed the View functions to have fewer im-
age processing steps when using OpenCV which brought the RTT down to less than 5
seconds on average.

5.2 | Integration Tests

The following section will discuss the interactions between the critical components
of the web application, their related integration tests, and results.

Team LangLens was focused on connecting the two main modules, Object Mode and
Text Mode, to the frontend of the application. These parts of the application must use
the data that has been received from the object and text recognition portion to be func-
tional. The camera, the language and the learning page all interact with Object Mode
and Text Mode to make EducationalAR a complete application. The test harnesses for
integration testing were to compare the data of the results of the integration tests to the
expected outcomes. The following integration tests show the interactions between each
of these components and were necessary for the success of the product.

5.2.1 | Integration Tests
Users on the application will be able to access the camera to make use of the object

detection and text recognition portions of the application. This part of the application

21

Chapter 5. Testing 5.2. Integration Tests

will allow for immersive language learning through a visual element, being the cam-
era. The activation of the camera is the start of the entire process that EducationalAR
provides and without it the application would be rendered functionless.

Integration Test Expected Outcome Results
Camera Permission Ac-
cept

When the user gives per-
mission for the camera to
be used, the user will be
able to see from the cam-
era’s point of view.

Pass

Camera Permission Deny When the user denies per-
mission for the camera to
be used, there should not
be any image.

Pass

Take Picture When the user pushes the
Detect button, it should
show the user the photo
they have taken, and then
send that to their respec-
tive modes.

Pass

Disable Camera When the user disables
the camera, they should
no longer see from the
camera’s point of view.

Pass

5.2.2 | Language Integration
User’s on the application will be able to change the language to fit not only what

language they know, but also what language they wish to learn. The language selection
changes the results of the object detection, text recognition and the learning page, so
accurate results are of the utmost importance.

Integration Test Expected Outcome Results
Change Native lLanguage The text of the instructions

for the homepage are cor-
rectly translated into the
desired native language.

Pass

Change Target Language The object detection and
text recognition correctly
translate to the desired
target language (Spanish,
French, English, Korean,
or Chinese).

Pass

22

Chapter 5. Testing 5.2. Integration Tests

5.2.3 | Object Mode Integration
The Object Mode is able to detect objects within a photo from a live camera feed.

The expected outcome is that a bounding box with an accurate translated label is drawn
around the object. Verification that the app can successfully detect the object is crucial
so that the main functionality of the application can take place, as well as communicat-
ing with the backend and other modules.

Integration Test Expected Outcome Results
Receive photo The photo displayed to

the user is the same as the
photo that the camera had
taken.

Pass

Detect Object A bounding box is drawn
around the detected ob-
ject. An accurate label
containing the name of the
detected object is shown
within the bounding box.

Pass

5.2.4 | Text Mode Integration
The Text Mode is able to recognize characters and extract text within a photo from

the live camera feed. The expected outcome is that a bounding box with an accurate
translated label is drawn around the detected words. Verifying that the application can
successfully recognize a character or characters is integral to the main functionality of
the application.

Integration Test Expected Outcome Results
Receive User Photo The photo displayed to

the user is the same as the
photo that the camera had
taken.

Pass

Recognize Full Words and
Correctly Translate

A bounding box is drawn
around the recognized
characters. An accurate
label containing the name
of the recognized charac-
ters is shown within the
bounding box.

Pass

23

Chapter 5. Testing 5.3. Usability Tests

5.2.5 | External Learning Page Integration
The external learning page integration is the last step within the EductionalAR web

application, as after either the detected object or recognized word has its bounding
box drawn, interacting with the bounding box should redirect the user to the exter-
nal Collins-Dictionary learning page with the correct definition, sentence usage, and
pronunciation.

Integration Test Expected Outcome Results
User access learning page The user is taken to a

Collins-dictionary page
of the accurate transla-
tion according to their
own language and their
desired translation lan-
guage.

Pass

It is worth noting that during the integration testing for Text Mode and Object Mode
we found a broken pipe error if either of the detection engines didn’t successfully detect
an object/word. This would result in the user having to refresh the entire web-app to
use either of the modes again which was not ideal. To fix this bug, we implemented
a fail catch for both modes that ensures that if either of the detection results contain
empty query dictionaries, then the user is shown a “Failed to Detect ” page. From
this failure page, the user is shown examples of how to get a successful scan and then
the option to either restart the scanning process or return to the homepage all without
causing a broken pipe error on the server side.

5.3 | Usability Tests

In this final testing section, we will discuss the usability testing of EducationalAR
and its results.

As EducationalAR is a web application that is focused on entry-level language learn-
ing, a simple and easy to use interface with a modern design is crucial to the success
of the application. We needed to be able to get feedback from not only our client, but
also general users of our application, in order to really understand the overall usability
of our product. Not only do we need our application to be usable, but we also need

24

Chapter 5. Testing 5.3. Usability Tests

our application to be aesthetically pleasing. While aesthetics are technically subjective,
good aesthetics are clearly easier to evaluate than bad aesthetics.

The following usability tests were conducted in a random selection of 10 users (friends,
family and students at NAU) to assess the overall usability and aesthetics of Education-
alAR on a scale of 1-5 with 1 being unusable to 5 being completely usable:

■ Main Menu Usability: Evaluated how easily users can access the text recognition
and object detection modes from the main menu, change the native language of
the site, as well as how aesthetically pleasing the main menu’s user interface was.

– Average Rating: 4.5

■ Text Mode Usability: Evaluated how easily users can open Text Mode, select a
target language, detect text, and view the correctly translated labels.

– Average Rating: 4

■ Object Mode Usability: Evaluated how easily users can open Object Mode, select
a target language, detect objects, and view the correctly translated labels.

– Average Rating: 4

■ External Learning Page Redirect Usability: Evaluated how easily users can click
on an object / text bounding box, be redirected to Collins Dictionary, and whether
or not the definition, sentence usage, and pronunciation were correct.

– Average Rating: 4

■ User Feedback: Gathered feedback from users about their experience using the
app, including any suggestions or issues they encountered, as well as their pref-
erence to the aesthetics of the site.

– General Feedback:

* A few users suggested we implement a loading spinner to visually show
when an image is processing as they felt it was unclear if they need to
retake a photo or simply wait for the result to appear.

* One user suggested that we limited the detection to one object / word at
a time to reduce the amount of bounding boxes. We had to explain that
this was not feasible given our chosen technologies but added a line to

25

Chapter 5. Testing 5.3. Usability Tests

our guide explaining that to reduce the amount of boxes users should
try to get as close to their desired object / word as possible.

■ Overall Usability: Evaluated the overall ease of use and user-friendliness of the
app, including its interface design and workflow.

– Average Rating: 4

The testing process was structured in a linear way going down the list provided
above. The participants were sat down with one of the LangLens team members and
given the local link to the web application. The LangLens team member worked with
the participant to walk through the ordered list of usability tests. The LangLens team
members then gathered feedback from the participants concerning their overall expe-
rience using the app, as well as any suggestions or particular issues they encountered.
Finally, the overall ease of use and user-friendliness of the app was evaluated, including
its interface design and workflow.

Overall everyone in the testing group agreed the application was intuitive and easy
to use, but a few users suggested adding a loading spinner to visually show that an
image is processing. They also had a general consensus that they wished the detection
results were a little more accurate. We had to explain that because we are using free
software for the detection engines that there is not a feasible way to achieve higher
than 65

26

6

Project Timeline

In this section, we will review the project’s major milestones for the entirety of the
Capstone experience. The Fall 2022 semester was mainly focused on the research phase
of the project including requirement gathering and technological feasibility. The Spring
2023 semester was heavily focused on the development, testing, and implementation
phases of the project and their associated documentation.

6.1 | Fall 2022 Semester

Regarding the Fall semester schedule, we carried out our research phase, hitting five
major milestones: Team Website, Technological Feasibility, Requirement Specification
Document, Tech Demonstration, and Design Review I.

Figure 6.1: Fall 2022 Schedule

27

Chapter 6. Project Timeline 6.2. Spring 2023 Semester

The Team Website was considered a major milestone that lasted throughout the en-
tirety of the Fall 2022 semester. It was constantly updated and needed to be complete
with all project info, requirements, documentation, envisioned architecture, mini video,
and schedule by the end of the term. The Technological Feasibility document was the
next major milestone and was primarily focused on research and proving the feasibil-
ity of the chosen technologies we were planning to use to develop EducationalAR. The
Requirements Specification Document was arguably our most important milestone for
the middle of the semester as it outlined and described in detail all the functional, non-
functional, and environmental requirements that would be necessary to include in our
final product. This document was edited at the end of the Fall semester after a meet-
ing with our client who wanted to adjust some of the requirements originally asked of
us regarding the learning page. The second to last milestone completed was the Tech
Demonstration which was a live demonstration to our mentor and client that proved
our chosen technologies were capable of being implemented into the development of
the final product. The final major milestone was the Design Review I presentation that
was held live at the FEST 1 Engineering Conference at NAU to explain our first look at
the project’s design choices and envisioned solution. It was the most important wrap
up to the Fall semester and ensured that the team was ready to tackle implementation
in the Spring.

6.2 | Spring 2023 Semester

The Spring 2023 semester was the beginning of development, testing, and imple-
mentation phases. It was primarily focused on following our system design plan and
architecture to develop EducationalAR and be ready for final deployment at the con-
clusion of the Capstone experience in May.

28

Chapter 6. Project Timeline 6.2. Spring 2023 Semester

Figure 6.2: Spring 2023 Schedule

Following the Gaant chart above, we first set up our Django project configuration
and started working on the implementation of the two main modules of the web ap-
plication, Object Mode and Text mode. At the same time, we were designing and im-
plementing the user interfaces and training the language models used in the YOLOv5
algorithm for Object Mode. Once everything was implemented and working, we could
finally deploy the project on the server. After each major milestone was developed, we
followed our specified testing plan previously discussed in section 5.

29

7

Future Work

In this section, we will discuss the future work that lies ahead for EducationalAR.
While we were able to create a distinguished first version, EducationalAR is capable of
much more than we had time to implement during the course of this year.

Once Team LangLens has graduated, future work on this project will be handled
by Dr. Okim and her PhD candidate, Kevin Hirschi, as we have given them access to
and ownership of the application’s code base. While these are not all of the possibili-
ties for the future of EducationalAR, these outline the next steps to take regarding the
development of version 2.0.

7.1 | Internal Learning Page

Dr.Okim has future plans for integrating the learning page from Collins Dictionary
internally as well as other learning resources so that the user is not redirected to a
different website. This would involve setting up a Model in the Django backend that
is capable of creating unique learning page templates that can be filled in with the
detect object or word’s definition, sentence usage, pronunciation and any other future
learning resources that Dr. Okim desires.

7.2 | Personal User Accounts

Other future work on this project includes implementing personal user accounts
with the ability to store words from detected objects and text for future language learn-
ing and practice. This was a stretch goal for our team this year, but unfortunately we

30

Chapter 7. Future Work 7.3. Train Object Models

did not have enough time to implement this feature. These accounts would be set up
in the backend using a Django database and would require additional security mea-
sures to ensure that user’s personal information cannot be leaked or accessed in any
way. With these accounts, an admin side would need to be developed in order to have
access to edit, remove, or ban individual accounts if necessary as well as access the
server’s database. In addition to the database for the accounts themselves, a database
for each detection mode would be needed as these personal accounts would allow users
to save any scanned object or word into their account and review them in a flash card
style game. To reduce the size of the amount of objects or words stored in the databases,
modifying the process of detection of objects and words would need to include reduc-
ing the amount of detection boxes to 1, or configuring the saving of objects or words
to the user’s select choice. Basically this means users should not be able to save every
single object or word in their photo as this would overflow the database or require a lot
of additional storage that can get pretty costly over time with more users.

7.3 | Train Object Models

Additionally, more object models will be trained in order to increase object detection
accuracy. Our team used RoboFlow to train each individual language model. This pro-
cess included drawing the bounding boxes manually around 10-15 similar images and
providing the correct label of the object in each language available in our application.
Because of this, the amount of hours that went into training each model was too much
to provide more than 300 objects for the Object Mode. As of now, there are currently
no freely available object models online which means that future work for this portion
would require a lot of additional person hours and is something that future developers
of the project might consider hiring additional developers to handle completely.

7.4 | Add More Target Languages

The last step for the next stages of EducationalAR include adding a variety of other
languages, such as Vietnamese, in order to further Dr. Okim’s language learning re-
search. While this process is incredibly easy for Text Mode since Tesseract OCR is
pre-trained in over 100 languages, it is not that easy for Object Mode, as mentioned
in section 7.3. To add more languages for Object Mode, each new language has to
have its own custom trained object model. This means countless person hours for man-
ually adding every single object you want the model to include, drawing bounding

31

Chapter 7. Future Work 7.4. Add More Target Languages

boxes manually around every object in every provided photo, and including the cor-
rect translation of the object for each object training in the model. As you can probably
imagine, this process is painstakingly time consuming and therefore, future work for
adding more languages is not as trivial as it may seem at first glance and any future
developers should consider hiring designated members to train these models around
the clock.

32

8

Conclusion

Dr.Okim has observed a lack of free, web-based language learning applications that
have the latest augmented reality features of both object detection and text recognition
that focus on the key elements of language learning being meaning, usage and form.
These applications do not offer practical visual and audible links between the written
forms and meanings of words. In collaboration with Dr. Okim and Kevin Hirschi,
Team LangLens have created an immersive and intuitive, mobile-first, language learn-
ing web application that focuses on the key elements of language learning and offers
object detection and text recognition. Our team has been able to complete all of the
minimum viable product requirements, including both object detection and text recog-
nition as well as connection to the Collins Dictionary learning page. We have imple-
mented the MVP target languages being Spanish, English, French, Korean, and an ad-
ditional stretch goal language of Chinese into our text and object detection modes. With
these distinguished features combined, we have truly created a polished final product.
Dr.Okim is very happy with the work we have done throughout the course and we as
a team are very proud of our project. We hope we can inspire many language learners
to achieve their aspirations in an immersive and interactive way, as well as furthered
Dr.Okim’s research for many years to come.

33

9

Glossary

The following are terms referenced throughout the document and their definitions.

Term Definition
AR Augmented Reality is an interactive experience that combines the real

world and computer-generated content.
SCRUM A framework for project management that emphasizes teamwork, ac-

countability and iterative progress toward a well-defined goal. The
framework begins with a simple premise: Start with what can be seen
or known. After that, track the progress and tweak, as necessary.

MVP Minimum Viable Product is an early, basic version of a product (typically
a computer program or piece of technology) that meets the minimum
necessary requirements for use but can be adapted and improved in the
future, especially after customer feedback.

OCR Optical Character Recognition is the identification of printed characters
using photoelectric devices and computer vision software.

UI User Interface is the means by which the user and a computer system
interact, in particular the use of input devices and software.

34

10

Appendix A: Development
Environment and Toolchain

10.1 | Hardware

Throughout development of EducationalAR, our team used a variety of operating
systems (Linux, Windows, and Mac) as our product is not dependent on any specific
OS. The two minimum hardware requirements is to have at least 5gb of disk space on
your device to ensure proper installation of all project packages, and a decent graphics
card on your chosen device for the YOLOv5 engine to run and detect objects smoothly.
Note that an upgraded or expensive graphics card is not necessary as we were still able
to run YOLOv5 on laptops that did not have powerful graphics cards, but be aware
that the speed of the CPU will be a bit slower than on PCs that have powerful gaming
graphics cards.

10.2 | Toolchain

The following subsection will discuss the chosen software tools for the development
of EducationalAR.

■ PyCharm: For the duration of the project, our team used PyCharm, a Python
IDE, to develop the web application. We chose PyCharm because it provides
code analysis, a graphical debugger, an integrated unit tester, and supports web
development with Django.

35

Chapter 10. Appendix A: Development Environment and Toolchain 10.2. Toolchain

■ Django: The full stack web framework we chose to work with for the over-
all project was Django, which is highly popular for responsive mobile web app
development. Django uses Python and HTML for all server-side development
which was perfect for the implementation of our Python based YOLOv5 and
Tesseract OCR packages in our backend.

■ Bootstrap: Bootstrap is a frontend web framework that is highly popular for re-
sponsive, mobile, web-app development. Bootstrap uses HTML, CSS, and JavaScript
for all client-side development. Bootstrap is not necessarily required as Django is
more than capable of developing frontends, but Bootstrap is specifically designed
for creating mobile web applications and made developing our UIs much easier
than if we just stuck with Django for the full-stack.

■ YOLOv5: YOLOv5 is a Python based object detection algorithm that utilizes a
convolutional neural network to identify objects using customizable and trainable
object models. We chose YOLOv5 because it was free to use, based in Python, and
was the most accurate object detection algorithm we could find that didn’t require
monthly payments for detections.

■ Google’s Tesseract OCR: Google’s Tesseract OCR, or more specifically for our
project, the Python wrapped version pyTesseract, is an optical character recogni-
tion engine that uses uses a pre-trained neural network of Leptonica’s language-
specific training data and a collection of machine learning algorithms to detect
characters and recognize full words. Similarly to YOLOv5, we chose this pack-
age for the text recognition feature in our application as it was free, open-source,
based in Python, and the most recommended to use in a free application while
still maintaining a relatively high detection accuracy rate.

■ OpenCV: In order to use YOLOv5 and pyTesseract with the highest achievable
accuracy and speed, all images need to be preprocessed with color correction and
orientation fixes which is why we implemented OpenCV: a computer vision li-
brary popular for image processing. OpenCV is free and open source and pro-
vided all of the necessary image processing tools needed for both detection en-
gines and was the most compatible for our system as it is based in Python as well.

■ RoboFlow: RoboFlow is a developer tool for creating computer vision models.
When designing our project, we neglected to realize that we would need to train
an object model for every offered language in the web-app. After discovering

36

Chapter 10. Appendix A: Development Environment and Toolchain 10.3. Setup

that we couldn’t just translate YOLOv5’s provided object labels, we needed to
find a model training tool that could help us create our own object models and
add to our existing datasets. To use RoboFlow, you upload 10-15 images of your
desired new object, manually draw the bounding box around the object to identify
it in each photo, provide it with a label (in each language you want to offer in a
separate model for each language), and then run the images through the detection
algorithm. RoboFlow will then provide you with an object model package that
you can download and easily just implement into the code base’s main directory
for YOLOv5 to use.

10.3 | Setup

This subsection will walkthrough how to install the project to your local device for
future development.

To install EducationalAR on any device for future development or deployment on
another platform, the first step is to ensure that you have a Python IDE installed on
your local device. We recommend PyCharm (download) as it was the IDE we chose to
develop the project with for this year.

Once you have PyCharm installed on your device, the next step is to download
the .zip folder containing the actual source code for EducationalAR from the GitHub
repository provided by Dr. Okim.

After the project code is fully downloaded on your device, you will need to unzip
the project source code folder and open the folder named “CapstoneApp” within Py-
Charm.

37

https://www.jetbrains.com/pycharm/

Chapter 10. Appendix A: Development Environment and Toolchain 10.3. Setup

NOTE: The folder name “CapstoneApp” should have a black terminal box symbol
next to it indicating that it is a Python compatible project.

Once the project is opened in PyCharm, the next step is to open the terminal, which
is located at the bottom of the IDE window, in order to create a Python virtual environ-
ment.

10.3.1 | Creating the Virtual Environment

1. Open the terminal in PyCharm and check if Python3 is installed. You should see
Python3 [current version number] if your device has Python3 installed.
Python3 –version
NOTE: If you do NOT see a version number appear, you will need to install
Python3 before moving onto the next steps. (https://www.python.org/downloads/)

2. Create the new virtual environment.
python3 -m venv educationalAR-env

3. Activate the virtual environment.
educationalAR-env\Scripts\activate.bat

4. Install Django package.
pip install django

38

https://www.python.org/downloads/

Chapter 10. Appendix A: Development Environment and Toolchain 10.4. Production Cycle

5. Install all the requirements in the virtual environment.
python -m pip install -r requirements.txt
NOTE: If any of the packages in the requirements do not successfully install, you
can manually install them via the terminal using pip.
pip install [package name]

10.3.2 | Running the server locally (for development)

1. Open the terminal and make sure you are inside the project’s directory.
. . . \LangLens\CapstoneApp
NOTE: If you are not in the CapstoneApp directory, you will need to cd into the
project directory wherever it is stored on your device using the terminal com-
mand line.

2. Run the ssl server in the terminal.
python manage.py runsslserver <your ip address>:8000
NOTE: To connect to the server from your mobile device, make sure you are con-
nected to the same WiFi network as your laptop/PC and enter the following URL
into your mobile phone’s browser. It is important to make sure to use https and
not http or else your phone will not have access to video elements used in Educa-
tionalAR.
https://<your ip address>:8000/

10.4 | Production Cycle

In this subsection, we will walkthrough how to edit, compile, and deploy Educa-
tionalAR for development and testing.

10.4.1 | Editing

1. Open the project in PyCharm. Make sure you are opening the directory name
“CapstoneApp” and not any of the demo directories.

2. You should see the project’s entire directory on the left hand side of the IDE.

39

Chapter 10. Appendix A: Development Environment and Toolchain 10.4. Production Cycle

3. To make changes to the Text Mode feature of the application, you will want to en-
ter the “OCR” directory. Inside, you will find all of the HTML, CSS, and JavaScript
files under “Static” where you can make any frontend changes to the UI. The other
most important file is the “views.py” file where you will find all of the code for
image processing and OCR engine. This is the file that you will make all of your
backend edits to when modifying the processes that run Text Mode.

4. To make changes to the Object Mode feature of the application, you will want
to enter the “YoloV5” directory. Inside, you will find all of the HTML, CSS, and
JavaScript files under “Static” where you can make any frontend changes to the
UI. The other most important file is the “views.py” file where you will find all of
the code for image processing and the YOLOv5 engine. This is the file that you

40

Chapter 10. Appendix A: Development Environment and Toolchain 10.4. Production Cycle

will make all of your backend edits to when modifying the processes that run
Object Mode.

■ Note: You will also see in this folder the object models that end in “.pt”.
These are the trained object models for each language offered in the appli-
cation. To create you own, review the RoboFlow section in 10.2 or review
RoboFlow’s documentation (RoboFlow)

10.4.2 | Compiling

1. Once all your changes have been made, save the project. The next steps follow
the end of Setup subsection in 10.3.

2. Open the terminal at the bottom of the PyCharm IDE and make sure you are in
the current project’s main directory.
. . . \LangLens\CapstoneApp>

3. Run the SSL server in the terminal. It is imperative that you run the SSL server
and not just “runserver” as the SSL certificate will allow you to access the local
website on your mobile device for testing.
python manage.py runsslserver <your ip address>:8000
NOTE: To connect to the server from your mobile device, make sure you are con-
nected to the same WiFi network as your laptop/PC and enter the following URL
into your mobile phone’s browser. It is important to make sure to use https and
not http or else your phone will not have access to video elements used in Educa-

41

https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/

Chapter 10. Appendix A: Development Environment and Toolchain 10.4. Production Cycle

tionalAR.
https://<your ip address>:8000/

10.4.3 | Deploying
To deploy the project in the production environment, you will need the login access

from Dr. Okim for the Hostwinds server. Once logged in, you will need to SSH into
the server using an ssh client such as PuTTY. Inside the server, you will see the existing
project files and you can just update the existing project files with any changes you
made using a file transfer tool such as WinSCP.

42

	Contents
	Introduction
	Process Overview
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Environmental Requirements

	Architecture and Implementation
	Main UI
	Object Detection App
	Text Recognition App

	Testing
	Unit Tests
	Integration Tests
	Usability Tests

	Project Timeline
	Fall 2022 Semester
	Spring 2023 Semester

	Future Work
	Internal Learning Page
	Personal User Accounts
	Train Object Models
	Add More Target Languages

	Conclusion
	Glossary
	Appendix A: Development Environment and Toolchain
	Hardware
	Toolchain
	Setup
	Production Cycle

