
 Final Report

 JabberJack

 Team Member :

 Sara Harris, Tyler Zimmerman, Jiasheng Yang, Gabriel Proctor

 Team Mentor : Felicity H. Escarzaga

 Client : Dr. Andy Wang

 Northern Arizona University

 Version 1.0

 Client Signature:

 Team Signatures:

 5 May, 2022

 Contents
 1.0 Introduction 3

 2.0 Process Overview 4
 2.1 Team Roles and Responsibilities 4
 2.2 Tools and Artifacts 4

 3.0 Requirements 6
 3.1 Functional Requirements 6

 3.1.1 User Interfaces 6
 3.1.2 Authentication and Security 7

 3.2 Non-Functional Requirements 7
 3.2.1 Speed 7
 3.2.2 Security 7
 3.2.3 Usability 7

 3.3 Environment Requirements 8
 3.3.1 Operating System 8

 4.0 Architecture and Implementation 9
 4.1 User Interface 10
 4.2 Problem Retrieval System 10
 4.3 Database 10
 4.4 Web Portal 11
 4.5 Message Generator 12

 5.0 Testing 13
 5.1 Unit Testing 13

 5.1.1 Natural Language Processing 13
 5.1.2 User Authentication 14

 5.2 Integration Testing 15
 5.3 User Testing 16

 5.3.1 General User 16
 5.3.2 Faculty User 17
 5.3.3 Administrator User 18

 6.0 Project Timeline 20
 6.1 Fall 2021 Semester 20
 6.2 Spring 2022 Semester 20

 7.0 Future Work 23
 7.1 Long Term Goals 23

 7.1.1 Louie Robot Integration 23
 7.1.2 Artificial Intelligence 23
 7.1.3 Multithreading 23

 7.2 Starting Points 24

https://docs.google.com/document/d/1Yt8CCwomOfT4D5IdJE5oPBQOxQuyPZjcn1xThpSmrfM/edit#heading=h.73qq9bxpvltx
https://docs.google.com/document/d/1Yt8CCwomOfT4D5IdJE5oPBQOxQuyPZjcn1xThpSmrfM/edit#heading=h.73qq9bxpvltx
https://docs.google.com/document/d/1Yt8CCwomOfT4D5IdJE5oPBQOxQuyPZjcn1xThpSmrfM/edit#heading=h.kvz5l9cl0oob
https://docs.google.com/document/d/1Yt8CCwomOfT4D5IdJE5oPBQOxQuyPZjcn1xThpSmrfM/edit#heading=h.kvz5l9cl0oob

 7.2.1 Forgot Password Fix 24
 7.2.2 Web Portal Quality of Life Updates 24
 7.2.3 Continuous Connection 26
 7.3 Other Updates 26

 8.0 Conclusion 27

 9.0 Glossary 28
 9.1 Appendix A: Development Environment & Toolchain 28

 9.1.1 Hardware 29
 9.1.2 Toolchain 29
 9.1.3 Setup 29
 9.1.4 Production Cycle 30

 10.0 References 32

https://docs.google.com/document/d/1Yt8CCwomOfT4D5IdJE5oPBQOxQuyPZjcn1xThpSmrfM/edit#heading=h.na90hr36q3bz
https://docs.google.com/document/d/1Yt8CCwomOfT4D5IdJE5oPBQOxQuyPZjcn1xThpSmrfM/edit#heading=h.na90hr36q3bz

 1.0 Introduction
 JabberJack

 Chatbots and other helpful bots are becoming increasingly more common throughout
 both the world of business and within academia [1]. Websites use chatbots to answer simple
 questions that visitors may have about products or services. There are even chatbots that are
 present on some Northern Arizona University (NAU) websites such as the one present on the
 Campus Health Services page [2]. Chatbots are not as complex as many people believe them
 to be; chatbots are not able to hold a conversation or answer extremely complex questions[1].
 Even though chatbots cannot interact with humans in a human-like manner, there are a great
 deal of research teams working to improve the interactivity between chatbots and humans[1].
 Chatbots can either be simple such as rule based chatbots which operate based on a number
 of rules, or they can be complex with artificial intelligence (AI) such as chatbots similar to
 Amazon’s Alexa and Apple’s Siri which learn from interactions to improve future
 interactions. The world runs on data, and the more data that a chatbot has available to it, the
 more helpful they become [4].

 Chatbots are popular for customer consumption too, meaning that a great deal of
 chatbots can be found within regular people’s homes. Amazon’s Alexa is by far the most
 popular and the company holds about 62% of the market share within this industry [5]. In
 addition to Alexa, Google and Apple both have a comparable product. All of these chatbots
 are built utilizing complex computing called artificial intelligence. While artificial
 intelligence (AI) is the most popular type of chatbot, the more common chatbots are the ones
 that people can find located on websites. These chatbots are usually basic and only hold a
 small amount of information with little to no learning ability. They can answer basic
 questions about the website or about the company’s service or product, so the company does
 not need to employ a real person for that role.

 Our client Dr. Andy Wang is the dean of NAU’s college of engineering, informatics,
 and applied sciences (CEIAS). Dr. Wang maintains and runs the programs contained within
 CEIAS and facilitates growth for both the college and programs in CEIAS. Dr. Wang is in the
 business of computing, engineering, and most importantly helping people. Dr. Wang deals
 with lots of people on a daily basis and is interested in helping them find answers to their
 questions efficiently.

 2.0 Process Overview
 JabberJack

 The process overview will also introduce each team members’ role, main responsibilities. In
 addition, this section will go through all tools and artifacts that were utilized during the
 lifecycle development.All of these components have given the team an edge in running
 smoothly and creating an intelligent chatbot which meets all functional requirements that Dr.
 Andy Wang expected.

 2.1 Team Roles and Responsibilities

 The team consisted of four team members. The team assigned the different coding jobs
 for each team member based on prior knowledge and known skill. Everyone keeped their
 primary roles and assisted some other team members who needed during the lifecycle
 development. The team structure stood as follows:

 Member Role Coding Jobs

 Sara Harris Team Leader Web Portal’s Login and Register Page

 Jiasheng Yang Coder Natural Language Processing and Web
 Portal’s Management page

 Tyler Zimmerman Client
 Communicator

 User Interface

 Gabriel Proctor Release Manager Database

 Table 2.1 Team members, roles and coding jobs

 The team communicated with our mentor once a week at our mentor meetings. There
 was at least one coding meeting every week to combine the most recent modules together and
 arrange the next week’s coding job, which aimed to make sure the system is working well
 together, and to fix bugs as soon as possible. The team also has a Discord server to
 communicate with other team members. For the team meetings, we also had some brief
 meetings via Discord or Zoom as needed.

 2.2 Tools and Artifacts

 Team JabberJack utilizes lots of tools as aid to development of the ChatterJack chatbot.
 GitHub is used for version control during the development; there is a public repository named

 chatterjack to store codes. Every team member has access to the repository and is able to
 commit changes. For designing and drawing the flowcharts used in the document and
 presentation, the team used a software called draw.io. The team used Google Docs along with
 a team drive so that everyone can view and edit all of the documents and presentations. The
 core script was written in Python; Thus, PyCharm was the main IDE during the lifecycle
 development. Other team members who worked on the web portal used Vim as their IDE of
 choice.

 The general life cycle of development was one the team would work together to plan
 out the deliverable (be it code or documentation), then each member would work on it
 whenever they had time, during team meetings the team would review and complete
 deliverables, then finally each member would review and approve the deliverables. When the
 deliverables were complete they would be sent off to the mentor and placed on our website.

 We also utilized Discord as our main communication channel. Discord was also used as
 a meeting place for our team as some members were not always physically available. We held
 an in person meeting every Wednesday as well as met regularly over Discord to discuss,
 organize, and complete deliverables.

 3.0 Requirements
 JabberJack

 This section illustrates the three requirements of the project: functional, non-functional, and
 environment requirements.

 3.1 Functional Requirements

 The ChatterJack is able to meet the following functional requirements that define its
 system capabilities. In order to gather these requirements the team had meetings with our
 client, Dr. Andy Wang, and held many discussions around what should be included in the
 requirements.

 3.1.1 User Interfaces
 The user interfaces are the portion of the chatbot where users, be it general users or

 back end users, can interact with the software itself. There are two parts that need to be
 addressed regarding this:

 ● User to chatbot question/answer interaction interface
 ● Administration/Management to database interaction interface

 The graphical user interface has a text box for input. This is the most important
 function of the user interface as this is the only way for non-administrative users to interact
 with the chatbot. There is a submit button located to the right of the input prompt that is used
 to indicate that the chatbot can now search for the answer Once an answer has been found the
 chatbot then displays the answer to the user in an appropriate manner.

 These functional requirements can be summarized as follows:
 ● Text box for user textual input
 ● Able to view the entire question at once
 ● Question Submit button
 ● “Pop up” for the answer
 ● Displays textual answers.

 As for the web portal side there are several functions that were determined to be
 necessary for administrators. These requirements are as follows:

 ● Create new user accounts
 ● Page to input information
 ● View the system’s database of information:

 ○ Retrieve tables from the database
 ○ Display tables retrieved from database

 ● Add new entries to the database:
 ○ A Web Page to input new entries

 ● Remove data from the database:
 ○ View the tables from the database
 ○ Delete Entries

 ● Edit existing entries within the database:
 ○ View the tables from the database
 ○ Edit information contained within the tables

 3.1.2 Authentication and Security
 Authentication and security play an important role in any secure system; the

 ChatterJack chatbot is no exception. The authentication exists only on the server side of the
 application as there is no login required for “general” users of the chatbot. Administrators
 will need to be authenticated before they are able to access the chatbot’s data. The data will
 be the most secure part of the chatbot as people, aside from admins, should not be able to edit
 the database.

 ● Only administrators can access the all entries within the database
 ● Includes viewing and editing
 ● Only authorized users are allowed to access the administrative portal.
 ● Authorized users that do not have administrator privileges can only access

 information pertaining to them

 3.2 Non-Functional Requirements

 Upon requirements acquisition it was determined that speed, security, and usability
 were of paramount importance. The chatbot abides by all the following guidelines.

 3.2.1 Speed
 The chatbot will take a maximum of 5 seconds; if an answer is not found within that

 time period the chatbot will respond with a default “I’m sorry I could not find the answer”
 statement. This is done in order to ensure that users are satisfied and do not become
 impatient.

 3.2.2 Security
 The ChatterJack chatbot will not allow unauthorized users to access any of the data

 contained within the database. An unauthorized user will just continue to get the same error
 and be unable to access the data. This will be done in order to protect both user data as well
 as the database.

 3.2.3 Usability
 The simplicity is mainly pertinent to the User Interface (UI). A simple UI will allow

 non tech savvy users to utilize it . The user interface should be so simple that anyone who can
 read and write will be able to use it to its full capacity. The chatbot should respond to
 questions in a perceivably polite tone; although the chatbot itself cannot be “polite” the
 language implemented is able to be written in such a tone.

 3.3 Environment Requirements

 There are no explicitly stated environmental requirements requested by the client, and
 as such it was determined that our team self impose environmental requirements, as this
 project sets a foundation for future chatbot projects at Northern Arizona University.

 3.3.1 Operating System
 Since there are no project restrictions put into place by the client there is only a single

 self-imposed requirement: This product must be able to run on Windows.

 4.0 Architecture and Implementation
 JabberJack

 This section will demonstrate the architecture of the project and also the implementation of
 each model, including how each model works and how they work together.

 The project was built with five major modules: user interface, the problem retrieval
 system, database, message generator, and web portal. The connections are shown in figure
 4.1 below.

 Figure 4.1 Architecture Overview

 The user interface will receive a question from the user in the form of a string, then the
 problem retrieval system breaks it down into the question’s basic elements. Then it queries
 the “online” database for the answer to the question. The database returns the results of the
 query back to the problem retrieval system, where it is packaged as a dictionary containing
 only the bare minimum information needed to get the message generator on the right path.
 The message generator then uses this dictionary to create a proper response. Finally the
 message generator then gives the response to the user interface which then relays it back to
 the user. The last component is the web portal which only has interactions with the database.
 On the web portal authorized users are able to update the information database.

 The user interface is where general users (mainly students/staff) can interact with the
 chatbot side of the system. It receives input from the users and then receives responses from
 the message generator and displays them. Here users can type in their answers or there is a
 listen button they can press to input their questions in spoken form. Once it receives that
 response it then displays it and reads it out loud so that the user can listen. It has two
 connections; it hands information off to the problem retrieval system and receives
 information from the message generator.

 The problem retrieval system is where the magic happens; it utilizes natural language
 processing or NLP to break down user input into its most basic elements. It breaks it down
 into a subject and questioning word or interrogative. It forms a connection to the database and

 uses those basic elements to query it. It has connections to both the database and the user
 interface.

 The database is where all of the information is stored. Ideally it lives on a server with
 the web portal but it can also be set up as a local database on a machine; which is how the
 final delivery was set up for the client. The database has three connections as shown in figure
 4.1, it connects to the problem retrieval system, web portal, and the message generator. The
 database can be updated through the web portal and in general is just a place for all of this
 information to live.

 The web portal can either live on a server or can exist on a local server. This is where
 faculty users and administrators can access and make updates to the database. The web portal
 only connects to the database and has no other function other than updating the database
 currently.

 Finally the message generator is where responses are constructed. This is needed since
 in the database the information is just listed. It is not stored as human readable information or
 at least does not appear as sentences. The message generator uses the information returned
 from the database and some basic English elements to create a regular sentence that can be
 sent back to the user. The message generator has connections to both the database and the
 graphical user interface.

 4.1 User Interface

 The user interface is written entirely in python. It mainly uses wxPython as the main
 point of design but also utilizes other libraries which are listed and can be installed using the
 DwnLoadPackages.py file. Here is the link to the documentation on the library:
 https://wxpython.org/ . Everything that the GUI needs is all in the GUI folder on the github
 repo; it consists of three main python files plus the DwnLoadPackages.py and a png file that
 contains the picture that is used to serve as the face of the chatbot. The first file is
 record_user_speech.py which is what is used to get input from the user by listening. It uses a
 library called soundservice to record the users questions. The next file is speech_to_text.py
 where the spoken question is converted into strings that the computer can actually read. Then
 finally the text_to_speech.py is where the response is spoken back to the users. Most of the
 code contained in these files are self documenting and there are comments that can explain
 what each is doing.

 Essentially the only thing that the user interface is doing is displaying information,
 getting/converting information and then speaking information in a way that is usable to users.
 It “connects” with the problem retrieval system to pass off information that it has gathered
 from the user and gets information back from the message generator.

 4.2 Problem Retrieval System

 The problem retrieval system utilizes SpaCy to parse through the string given to it by
 the user interface module. Using a few methods native to SpaCy the software will pull out the
 words we want it to, in this case, the interrogative words, ”Who, what, when, where, how” as

https://wxpython.org/

 well as words that could be considered names or classes. Using these bits of information, the
 problem retrieval system then queries the database looking for only the information it pulled,
 for example, if the question were “Who is Dr. Doerry?”, the problem retrieval system would
 categorize Dr. Doerry as being a name of a person rather than a class, then query the person
 database looking for only the column “who”. This information will eventually be passed off
 to the message generator for final construction into a human readable string.

 4.3 Database

 The database is the heart of the chatbot. This is where all of the information that the
 chatbot has access to lives. In the final delivery the database existed solely on a local machine
 database rather than an online server. While we would like for it to be deployed on a server
 this is not needed. There are two databases that exist in the project: the “phplogin” database
 and the “chatterjack” database. The phplogin database is only for user credentials and cannot
 be accessed by the chatbot.

 The chatterjack database is much more complex. It consists of three tables each
 corresponding to a different “thing” the chatbot can have answers for. The person table is for
 people and contains eight columns: id: which is automatically incremented with each entry,
 person name, person spe name: which is like nicknames, where: office location, who, when:
 office hours, sex, and author. Then there's the class table which is for classes like CS480. In
 this table there are also eight columns which are similar to the person table: id, class name,
 class section, where, who, what, when, author. There is one more table, the organizations
 table or ORG for short it has 7 columns: id, org name, where, what, who, how, author.

 The way the database is set up determines what questions the chatbot is able to answer.
 Meaning that since it is only able to have information about person: who, where, when, and
 sex it can’t really answer anything further like “Does Dr. Smith have a dog?”. This is possibly
 the biggest pitfall of the chatbot. There is a file called DB.sql which contains the structure
 and a bunch of information for the database that can be run to both create and populate the
 database. The database can be managed with basic SQL commands and can be changed but if
 changed everywhere that accesses it, meaning the web portal (every file) and the chatbot, will
 need to be changed since it’s heavily dependent on the structure.

 4.4 Web Portal

 The web portal is built entirely in: PHP, HTML, and CSS and that’s it. Originally the
 initial description of the project was just the chatbot, the team saw this as a problem since
 unless we implemented complete artificial intelligence the chatbot would be unable to “learn”
 new things. The web portal provided a solution, it is the way that the chatbot can “learn” new
 things. The reason that it was not built using some framework like Django was because of
 time constraints and the fact that the web portal was in general an afterthought. While the
 web portal probably is not as secure as it should be it has some general security that the team
 was able to implement.

 Firstly there is a basic authentication system in place using the following files:
 auth.php, index.html(login page), register.php, register_user.php. The file, auth.php, is how

 users are authenticated and how they login; it’s connected to the login page. All that this file
 is doing is taking the username inputted and checking it against users in the database and then
 checks if the password matches the hashed version of the inputted password. To check the
 password it uses a built in function called password_verify. The other part of the
 authentication system is the register page; this is where administrators register new users. The
 form is the register.php page and the action is the register_user.php. It basically ensures first
 that there are no users with the inputted username and then hashes the password to store it.

 The other part of the web portal is the actual database interface. There are different files
 for both the faculty and the administrators. Faculty files are named with “faculty” and
 administrator files just have general names. The file index.php is the home page for admin
 members. Each file function corresponds to their names.

 In general the web portal is not well organized; there were ways to better organize the
 files but these actions were overlooked. There are two database files: accountsdb.php and
 db.php. The db.php file was well used where the accounts database file is not used but
 anywhere the accounts database is being accessed could be replaced by just including the
 accountsdb.php file.

 Most files are well documented with comments describing what exactly the code is
 doing. There are some “extra” files that are not worked into the website: change_Pass.php,
 change_pass_action.php, activate.php, and test_hash.php. These are incomplete features and
 testing files.

 4.5 Message Generator

 The message generator is the module within the chatbot responsible for constructing a
 human readable string to be passed back to the chatbot user. While it works closely with the
 problem retrieval system, there is only one file within this module, message_generator.py.
 The chatbot creates this string by taking the dictionary created by the problem retrieval
 system, and depending on the interrogative stored within this dictionary, the message
 generator goes through a series of checks, to determine what type of answer should be
 returned. The message generator determines whether to reply with masculine pronouns or
 feminine ones depending on the values within the dictionary created by the problem retrieval
 system. While not implemented, there is a message generator variation file that attempts to
 expand upon these binary “male” or “female” base pronouns.

 The message_generator_variation.py does the same thing as the message generator with
 the exception that it utilizes a “pronouns” column that was never able to supercede the “sex”
 column due to time contrains. The goal of this variation file was to give more variation to the
 way the chatbot replies, and was an attempt to be more inclusive, allowing faculty to input
 their pronouns instead of assuming gender from sex.

 5.0 Testing
 JabberJack

 This section contains information about how the software was tested and how that impacted
 development. The general process of testing was testing the most important features and then
 moving onto other ones. The adopted strategy was a test as we build; so once a feature was
 finished being built the team would run tests on how it was working as well as testing how it
 works with the rest of the system.

 5.1 Unit Testing

 Unit testing was mainly focused on the natural language processing module and the
 user authentication system. The team felt like these two systems needed to be focused since
 without them neither the chatbot nor web portal will function as intended.

 5.1.1 Natural Language Processing
 The natural language processing system is the core of the ChatterJack chatbot and

 forms the chatbot’s “understanding” of classes, people, organizations and interrogatives. This
 unit consists of two main classes; one is used for grabbing the interrogatives and subjectives,
 which is built by a python library named spaCy; another one is used for correcting the input
 and implementing fuzzy finding, which is built by a python library named sklearn and
 calculates the tf-idf. And all of them need to be tested to ensure that the chatbot is
 “understanding” input questions in a way that allows it to grab the correct answers needed for
 response.

 By using unit testing, the team can ensure that the chatbot is extracting the correct
 information from user questions. Below table 5.1.1 shows all of the tests for grabbing
 intention class, inputs, expected outputs, and whether they passed or failed.

 Function Tested Expected Outcome

 segmentSentence() Use token from spaCy segment the input
 sentence

 PASS

 segmentList() Store each word in a list from token result PASS

 interrogative() Grab the interrogative PASS

 person() Grab the normal person using entity from
 spaCy

 PASS

 nau() Grab the normal person using entity from
 spaCy

 PASS

 expandPerson() Grab the specific name, eg: Dr. D PASS

 classes() Grab the specific name using regular
 expression

 PASS

 intention() Store all grabbing information into a
 dictionary and corresponding labels

 PASS

 Natural Language Processing Unit Tests Table 5.1.1

 By using unit testing, the team can ensure that the chatbot is correcting the fuzzy input
 to the correct information stored in the database. Below table 5.1.2 shows all of the tests for
 correcting fuzzy input class, inputs, expected outputs, and whether they passed or failed.

 Function Tested Expected Outcome

 tf() Calculate the tf-idf value of inputting and
 standard information

 PASS

 compare() Store the inputting information and tf-idf value
 in a dictionary

 PASS

 perCheck() By tf-idf value, judge whether correct the
 inputting information (person and organization)

 PASS

 claCheck() By tf-idf value, judge whether correct the
 inputting information (class)

 PASS

 Natural Language Processing Unit Tests Table 5.1.2

 5.1.2 User Authentication
 User authentication exists so that the system is protected and so that the system can

 identify users. The management system for user authentication is written in PHP and utilizes
 the server’s database to create and store user credentials. Users are required to request an
 account and from there are able to login and access certain elements of the database based on
 who they are. There are three major parts of the authentication system that need to be tested:
 registration, login, and logout. A manual test will be run to ensure that users are able to be
 registered, login to their accounts, and logout of their accounts.

 To do this we will use a version of “black box testing”, a type of testing that tests
 functionality rather than code; the code is not visible hence the name blak box. The team will
 test the functionality of the authentication system and not directly test the code.

 Registration Flow Test
 ● Administration will create a new account by filling out the registration form

 ○ Expected : “Account Creation Successful” prompt, SUCCESS
 ○ Otherwise: FAIL

 Login Flow Test
 ● Login using the credentials just created

 ○ Expected : Homepage display, SUCCESS
 ○ Otherwise : FAIL

 Logout Flow Test
 ● Click the logout button present on the homepage and check if session is successfully

 cleared by trying to access the URL of another page
 ○ Expected : Return to login page if session is properly cleared, SUCCESS
 ○ Otherwise: FAIL

 System Tested Expected Outcome

 Register “Registration Successful” PASS

 Login Homepage display PASS

 Logout Login page display PASS

 Authentication Unit Tests Table 5.1.3

 By utilizing these three manual tests the team can tell where something is failing. If it
 fails in registration then there is a bug in the creation of a new user entry in the database. If it
 fails in login then there is an issue drawing user information from the database. If it fails in
 logout then the session is not properly cleared and needs to be refactored. When all tests pass
 then the authentication system works as expected. Completing these tests are necessary to
 ensure that user information is correctly being stored and drawn from the database; it is done
 to ensure that user information is being protected and properly handled.

 5.2 Integration Testing

 In figure 5.2.1 we can see all of the connections that are made between the 5 separate
 modules. Connections that have passed their testing are shown here in green; all connections
 have passed in a local environment.

 Figure 5.2.1 Integration

 The software was passed onto the client as built in a local environment meaning that
 there was no online or cloud computing service utilized in the final delivery.

 5.3 User Testing

 The team will separate the end user into three different groups, and each group has five
 to six end users who will participate in different testing tasks; no further information about
 the product will be given to them as it needs to be intuitive. Users will then be asked to think
 aloud as they interact with the product. Then the team will take notes on how users are using
 the product, what they think of the product, and will gauge how much users are enjoying the
 product.

 5.3.1 General User
 The general user, including NAU faculty, NAU student, visitor, or anyone who wants to

 know some information about NAU, will only be able to interact with the chatbot. This user
 is able to ask questions either by typing out the question into the user interface or by speaking
 aloud.

 Five to six general end users were asked to interact with the chatbot by asking questions;
 no further information about the product was given to them as it needs to be intuitive. Users
 were then asked to think aloud as they interact with the product. Then the team will take
 notes on how users are using the product, what they think of the product, and will gauge how
 much users are enjoying the product. Once the user is “done” working with the product they

 will be asked to rate several characteristics on a scale of 1 to 10. They will be asked to rate:
 Easability, enjoyment, and engagement. The user interactions with product should following
 these functionalities:

 ● User can ask the chatbot a question via text/speech input
 ● Receive a correct answer shown on the screen and read aloud it
 ● The conversation should feel like the human interaction
 ● It can handle the multiple different inputs for the same question
 ● Return “Sorry, answer not found” message when it cannot find the answer to

 the user’s question

 Results shown in table 5.3.1:

 General User Easability Rating Enjoyment Rating Engagement Rating

 01 7 9 10

 02 8 10 10

 03 9 10 7

 04 10 8 9

 05 10 7 8

 Table 5.3.1 General User Ratings

 Some user quotes:
 ● “I think it’s really fun to use, I like the accent on the chatbot it’s funny” - User 04
 ● “The listening function is kind of annoying it didn’t hear me right once” -User 01
 ● “It was pretty clear on how to use it but for me it wasn’t really that fun” -User 05
 ● “I wish it had answers to more questions it seemed kinda limited” -User 02

 This leg of testing got pretty decent reviews as shown in the table. Based on this testing
 we improved the message generator to give it better response structure. While we had some
 complaints that the range of questions was a bit limited, we really did not have any way to
 broaden that scope without scraping a large section of the project.

 5.3.2 Faculty User
 The faculty for this application can query or modify their own personal and course

 information. He/She cannot see or modify other faculty's information. They must get
 permission to get access to an account. When they login into the administration system it will
 link to the faculty manage page where they can manipulate data they have access to in the
 database.

 Five to six faculty members were asked to manage their own information. All selected
 faculty members should start the testing from registering. This testing should pay more
 attention to the simplicity of operation and design of the web portal. They were asked a scale
 of 1 to 10 for both characteristics. The user interactions with product should following these
 functionalities:

 ● Faculty can request an account be made with given credentials
 ● Check their own register information, including the account type and username
 ● Login to the management system
 ● Insert and modify the information according to the selected table, PERSON or

 CLASS
 ● For personal information, they can modify their job, office room, office hour, and

 specific name
 ● For course information, they can modify class time, location, definition, and professor

 name
 ● Logout of their account

 Results shown in table 5.3.2:

 Faculty User Operation Simplicity Rating Design

 01 6 5

 02 7 6

 03 9 5

 04 9 3

 05 (after changes) 10 7

 Table 5.3.2 Faculty User Ratings

 Some user quotes:
 ● “It was really easy to use I mean it seemed pretty self explanatory to me” - User 03
 ● “It’s pretty unusable I mean how do I even navigate this” - User 01
 ● “It looks pretty bad, it would look nicer if you added some color instead of having just

 white tables” - User 04
 ● “Wait so I can’t delete data?” - User 09
 ● “I really like the nav bar, the icons look really professional” - User 05

 Based on user feedback we made some changes to the faculty page. First we got some
 heavy feedback on the fact that faculty users are unable to delete their own entries so we
 quickly added that functionality. We found that most of our feedback was based on design
 and how that can be improved; based on that we changed the look of our web portal by giving
 it some color and making the login page more appealing. We also got a ton of feedback on
 how the only way to navigate through the website was with back buttons and links so we
 added in a navigation bar that was accessible from the entire website which should greatly

 improve navigational abilities. While many thought that it was pretty easy to use, the design
 needed work.

 5.3.3 Administrator User

 The administrator for this application has all permissions to manage all Question and
 Answer (QA) pairs from the database, including searching, deleting, inserting, and
 modifying. They also must get permission when they login into the administration system.

 Five to six administrators will be asked to manage all QA pairs of three tables from the
 database. All selected administrators should start the testing from registering. This testing
 should pay more attention to the simplicity of operation and beauty of the web portal. They
 will be asked a scale of 1 to 10 for both characteristics. The user interactions with product
 should following these functionalities:

 ● Administrators need to request administrative access for an account
 ● Check their own register information, including the account type, password, and user

 name
 ● Login to the administration system
 ● Search, insert, modify, delete the information according to the selected table,

 PERSON, ORG, or CLASS.
 ● For search operation, if they do not type the specific searching information, all the

 information will be displayed
 ● For insert operation, there should be the information shown on the text box
 ● For personal information, they can modify their job, office room, office hour, and

 specific name
 ● For course information, they can modify class time, location, definition, and professor

 name
 ● For organization information, they can modify its name, location, director, and how to

 go there
 ● Logout of their account safely

 Results shown in table 5.3.3

 User Operation Simplicity Rating Design

 01 5 3

 02 6 5

 03 (after changes) 9 8

 04 (after changes) 10 9

 01 (after changes) 8 7

 Table 5.3.3 Admin User Ratings

 Some user quotes:
 ● “Honestly this site looks awful it could use a lot of work on that end” - User 01
 ● “How do I go back…” “Oh I have to use the back button, thats dumb” - User 02
 ● “Oh you really dressed it up from before looks a lot nicer” - User 01 (after)
 ● “Wait, can I even change my password” -User 04
 ● “I mean it all makes sense to me” - User 03

 Based on this feedback from the initial testing with 01 and 02 we needed to change the
 way that it looked. Before changes the website barely had any CSS and there was not a
 navigation bar. While we can only do so much we really tried to improve the design. Also
 based on this feedback we added a change password button, we had not even thought that it
 was needed until user 04 had said something about it. As was similar with the faculty users,
 user 02 found it difficult to navigate the site since there was no navigation bar so that was
 added as well.

 6.0 Project Timeline
 JabberJack

 This section will go through the major milestones during the lifetime of this project. In Fall
 2021, the team focused on the requirements and determining feasibility and came up with the
 basic framework for the project. The 2022 Spring semester was mainly about software design
 and development. Details are below:

 6.1 Fall 2021 Semester
 There are four main milestones in the project for the Fall semester, including:

 Technological Feasibility Analysis, Requirements Document, Design Review 1, and
 Technological Demo. All of these set the foundation for the next semester to generate a
 chabot system. Here are some explanations for them:

 ● Technological Feasibility Analysis :
 List all technologies that the chatbot will be used for, explaining why the team chose
 them.

 ● Requirements Document :
 List all requirements including functional, non-functional, and usability requirements
 and the architecture about how to achieve them.

 ● Design Review 1 :
 Present initial problem and general solution. In addition, introduce all the
 requirements and techs the team chose.

 ● Technological Demo :
 Test and develop all the technologies that the team chose and how far the team
 reached.

 6.2 Spring 2022 Semester
 Figure 6.2 focuses on the development plan this semester so that JabberJack can finish

 the chatbot system and web portal to meet all the functional requirements that Dr. Andy
 Wang expected.

 Figure 6.2 Project Development Plan

 Here are explanations of the project development plan:
 ● Database Integration (01/24/2022 - 04/20/2022)

 As the database is the first step to implementing the key requirements, JabberJack
 began to collect and integrate the data set of Question and Answer (QA) from the end
 of 2022 January. This was finished by February 18th. JabberJack utilized the QA pairs
 as the corpus to train the chatbot so that it could be the intelligent brain.

 ● Database Management (02/01/2022 - 02/18/2022)
 The database was made up of two parts: local and online databases. The database
 management system tested with the administration system, which could update the
 Q/A through the administration system and online database.

 ● Problem Retrieval System (Winter - 02/25/2022)
 The Problem Retrieval System is the core of the chatbot, which affects the customer’s
 satisfaction directly. It utilized the spaCy and saved corpus to train the model.
 JabberJack spent a lot of time making sure that the system could return the
 instantaneous and accurate answer to the Message Generator.

 ● Web Portal (01/24/2022 - 04/20/2022)
 The overarching component of the administration system is the web application,
 which consists of four parts: login page, administration page, register page, and
 faculty page. This process integrated testing with the database system management.

 ● Text-To-Speech (02/21/2022 - 03/07/2022)
 The team used the Python library named TTS to show the answer to the question both
 in the chabot window and voice.

 ● Speech-To-Text (03/14/2022 - 04/20/2022)
 It is very complicated to identify the speech to text. JabberJack utilized a lot of
 Python libraries to achieve the client’s requirement.

 ● User Interface (01/24/2022 - 04/21/2022)
 JabberJack started designing the user interface (UI) from January 24th. The basic
 design should focus on the login window and chat window. The higher level should
 be a funny face shown on the screen. This process integrated the Message Generator.

 ● Message Generator (02/07/2022 - 03/04/2022)
 The Message Generator integrated with the Problem Retrieval System, User Interface,
 and Database. JabberJack utilized it to debug and test the system so that its answers
 are always reasonable and polite.

 ● Improve NLP (03/14/2022 - 03/31/2022)
 The team tried our best to improve the Natural Language Processing (NLP),which
 makes sure that the ChatterJack chatbot is as intelligent as it can.

 ● System Test & Final Delivery
 There are two system tests, one for examining the MVP, the other for the final product
 delivery.

 7.0 Future Work
 JabberJack

 This project has the potential to grow into something much larger than we were able to build
 this year. In this section there are some suggestions and routes that we wanted to take the
 project.

 7.1 Long Term Goals

 These are some of the goals we had for the project that we felt were bigger than what
 we could accomplish within the time that we had this year.

 7.1.1 Louie Robot Integration
 The ChatterJack chatbot has immense potential for extending functionality that will

 integrate a physical mobile bot in the form of Louie the Lumberjack. The Louie Robot is a
 project that was developed in parallel with this one; their project website is:
 https://sites.google.com/nau.edu/nau-louiebot-capstone/defining-the-problem?authuser=0 .
 Hopefully future teams will be able to successfully integrate the two projects. The two
 projects were both created with the intention of eventually being picked up by future teams
 and merged. Unfortunately the merge was unable to happen this semester. We feel like this
 would be a massive undertaking since it will take teams from multiple disciplines in order to
 integrate them properly.

 7.1.2 Artificial Intelligence
 Another aspiration that the team had for this project was artificial intelligence. While It

 would have been amazing to be able to implement it right off the bat, due to lack of
 experience and time constraints the team chose to focus on what they could accomplish. The
 ChatterJack has been designed with future work in mind; each section is modular and can be
 taken out and interchanged with future work. With artificial intelligence the ChatterJack will
 become easier to interact with and incidentally more enjoyable to do so. It will become able
 to answer a plethora of questions and not just the ones that were anticipated by the team. One
 lofty goal for this project that was expressed was to have something similar to Amazon’s
 Alexa; while the capstone projects are college students the team feels that this project could
 come close to that goal.

 7.1.3 Multithreading
 The chatbot in its current state, while working, could be improved greatly through the

 use of multithreading. Right now the way that the chatbot works is that it is supposed to grab
 the answer from the database, then display it on the graphical user interface, and then speak

https://sites.google.com/nau.edu/nau-louiebot-capstone/defining-the-problem?authuser=0

 the answer aloud. But what is actually happening is the answer is starting to display, then gets
 interrupted by the chatbot speaking the answer aloud. We did not realize this to be a problem
 until after it was deemed too late to actually fix it. The idea that we had was to have things
 operate in parallel with each other so that the chatbot can do more than one thing at a time.
 Multithreading would solve a lot of the problems that we’ve encountered within the project.
 Firstly the program could “listen” on a separate thread which would solve the issue of the
 program becoming overwhelmed when trying to listen to a spoken question. Secondly it
 would allow the chatbot to both display and speak the response at the same time; which
 currently they overlap with each other. Parallel programming is a difficult task to complete in
 the final strides of the project but the team feels it can be implemented seamlessly into the
 project.

 7.2 Starting Points

 Here are some starting points of features and fixes that we wanted to accomplish with
 the project but either ran out of time or needed more polish before being completely usable.

 7.2.1 Forgot Password Fix
 The first major feature that needs work is the forgot password feature. The team did not

 think of this until after user testing was run, this gave the team only 1 - 2 weeks to complete
 the feature. The code is present in the source code within the forgotpass.php file. Since the
 team did not have a server for the final product they were trying to implement it so that it
 would work without one. This is tricky since the built-in mail function in PHP needs a mail
 server so without a server using it becomes difficult. PHPMailer is a package that can be used
 in PHP to use an outside or third party mailing service like outlook or Gmail. Within the
 source code there is the package labeled PHPMailer, inside is examples on how to
 accomplish using the package properly. There is also a test file in the web server that tests the
 randomly generated password as well as the mail function (which does not work). With the
 fix in the mail function it could become completely automated; from requesting access to
 actually gaining the credentials.

 Once this becomes automated Admins on the web portal could click a single button and
 approve access on their dashboard. This would make the product more usable in the sense
 that not everything would be completely reliant on the involvement of a single admin or
 groups of admins.

 7.2.2 Web Portal Quality of Life Updates
 The web portal is not perfect and there needs to be some general updates in order for it

 to completely fit for everyday use. Firstly, the look of the actual operations of interacting with
 the database is a little non-intuitive which making everything intuitive was a massive deal for
 the team. In figure 7.2.2.1 there is an example of what administrators see when inserting new
 data into the information database. This is also the same as what a faculty user would see.

 Figure 7.2.2.1 Admin Insert

 Looking at this as a developer there does not seem to be a big issue but looking at it as
 a general faculty user it becomes evident that there is a problem; “What is
 ‘person_spe_name’?”. The titles of what is being inserted needs to be changed into something
 more user friendly, this also applies everywhere that these titles are being used.

 Next issue is the inserting function. In figure 7.2.2.1 each text box is filled with
 information as examples of what could be in these boxes. How it works currently is that the
 database needs all of these fields to be something, meaning that it cannot be empty, but
 instead of substituting unfilled out information the team leaves the example information. So if
 a user was to just click submit without filling out anything it would be all of that example
 information in the database. The fix to this would be if a user did not fill out the field either
 force them to put something there or autofill something like NA or TBD .
 Another massive problem is that when an administrator is deleting entries there is a
 dropdown menu that displays all information in the selected table, you can see this is in
 figure 7.2.2.2.

 Figure 7.2.2.2 Delete Dropdown

 This is annoying because an administrator will have to read through hundreds of entries
 to find the one that they want to delete. This is not an issue when an administrator wants to
 update an entry though since we implemented a search in that section. The update would give
 the delete function a search so that the dropdown menu would be reflective of that search.

 7.2.3 Continuous Connection
 Another problem that became apparent near the end of the project was that the chatbot

 did not have a continuous connection to the database. The way that it works currently is that
 when updates are made on the web portal the chatbot needs to be restarted in order to access
 that new data. Making a continuous connection with the server the chatbot does not have to
 be restarted every time for things to update. The idea is to make it so the chatbot can be
 working and receiving updates as it is answering questions.

 7.3 Other Updates
 There was very little direction on how the project was going to be built so the team

 developed a lot of ideas; while the main ones were implemented there were lots of features
 that the team could not implement. While this is not an exhaustive list it is some of the ideas
 that the team wanted to develop.

 ● Feedback system: the team wanted there to be some way to rate the answers to
 questions, this could allow faculty and administrators to detect when something was
 out of date

 ● Automated sign up: completely automate the signup process so that administrators
 can just approve accounts rather than set up accounts and manually have to enroll
 users

 ● Other languages: the chatbot is an english only chatbot, implementing other languages
 could allow it to reach a wider audience and allow more students to interact with it

 ● Implement some automatic basic web scraping: while there is a web scraper that our
 team developed it has to be run manually

 ● An online version: while it’s fun to be able to walk up to a chatbot and interact with a
 chatbot it could be beneficial to deploy the chatbot online as well

 8.0 Conclusion
 JabberJack

 Our client Dr. Andy Wang is the dean of the College of Engineering, informatics, and
 applied sciences which means part of his business is ensuring students, faculty and visitors
 have access to the information about the college. Right now at Northern Arizona University
 there is a disconnect between people and information. Information is difficult to access and
 within a world encompassed by the internet having quick access to information is a necessity.
 With chatbots like Amazon’s Alexa and Apple’s siri people have instant access to information
 at all times. Currently to get information people would need to:

 1. Find someone to ask a question; this is not always possible since employees are not
 always present in buildings and they have their own tasks to complete

 2. Search the internet; this is difficult since the NAU websites are difficult to navigate
 and sometimes the information present on them could be out of date

 3. Email departments; email is the new snail mail and waiting for answers is sometimes
 not an option, these emails are sometimes even never answered or forgotten about

 The ChatterJack chatbot can help bridge the gap between people and information.
 ● It is physically present in the engineering building on NAU campus meaning that it’s

 always available to answer questions
 ● Provides a way to bring information to a single space instead of scattering information

 out on the internet with an information database
 ● Is able to respond to questions in a 5 second time frame

 The ChatterJack is able to give instant answers to questions instantly eliminating the
 waiting period or work that currently goes into getting answers. The ChatterJack will allow
 the engineering college as a whole to function more efficiently. By utilizing natural language
 processing it is able to understand user questions and answer instantly.

 The ChatterJack can become the start of physical chatbots here on Northern Arizona
 University campus. This project really sets the foundation for a much larger idea of academic
 chatbots on college campuses. The team feels that the project accomplishes all that it set out
 to fix and can continue to grow into something much bigger than what it is right now. The
 team worked well together to provide this software and is excited to one day see it in use here
 on NAU campus. This capstone course has allowed us to put everything learned in our
 computer science courses to use and create something brand new. We hope to see this project
 continue to grow and help students learn new things.

 9.0 Glossary
 JabberJack

 Terms that were referenced in this document:

 9.1 Appendix A: Development Environment & Toolchain

 Here is a few important pieces of information for future development teams; it includes
 the minimum hardware requirements to how to set up the development environment.

 9.1.1 Hardware
 The software is only currently functional within a windows operating system, It is

 partially operational within Mac OS and how compatible it is within a Linux environment is
 unknown. While we do not think that there is anything hindering it from being semi
 functional in a Linux environment we have not tested it on Linux. The reason for this is some
 OS specific libraries used in Python, specifically the ones used for listening and responding.
 The Windows machines that it does work on all have an intel celeron or higher, which we
 think are the minimum requirements for the software.

 9.1.2 Toolchain
 The team mainly used PyCharm in developing the chatbot, no teammates used any

 plugins. Vim was also used but any editor can be used to develop. One major tool that was
 used in both the final product delivery and development was XAMPP. XAMPP provides a
 local apache server so that you can run PHP code and MySQL database on.

 9.1.3 Setup
 This section will walk you through how you can set up your machine in order to

 develop the product. While you can use any editor you want this walkthrough will show you
 how to set up PyCharm as the main Python editor.

 Python
 1. Download Python version 3.7.9 from this link

 https://www.python.org/downloads/release/python-379/ make sure that it’s the 64 bit
 since spaCy requires that

 PyCharm
 PyCharm is a helpful editor that will set up a python environment as well as run your

 code.
 1. Download the executable and download PyCharm

 https://www.jetbrains.com/pycharm/ you can use all of the default install options
 2. Once it’s complete you can use it to open python projects and make edits, it’s also

 helpful since it helps with tabbing and catching errors before the code runs

https://www.python.org/downloads/release/python-379/
https://www.jetbrains.com/pycharm/

 3. Once you’ve downloaded all of the source code from either Github or from the thumb
 drive provided to Dr. Wang you can run the DwnLoadPackages.py file which will
 install all of the needed python libraries for the chatbot

 4. run ChatterJack_GUI.py and that should run the chatbot GUI; you will need to have
 the MySQL and Apache turned on or else it may throw an error about the database,
 how to install Apache and MySQL is explained in the XAMPP section

 XAMPP
 XAMPP is a helpful tool that creates a local server where you can run and execute PHP

 code; this will allow you to test the web portal side of this project.
 1. Go download XAMPP from here https://www.apachefriends.org/download.html
 2. All of the default options work; although it may be helpful to put it somewhere that

 you can access easily like your desktop
 3. Once it’s installed you can run it from the control panel shown in figure 9.1.3.1

 Figure 9.1.3.1 XAMPP Control Panel

 You are only gonna need the Apache and MySQL for the web portal.
 4. In order to display the pages you’re going to need to store the information in a

 specific folder in the xampp folder: the htdocs folder as shown in figure 9.1.3.2

https://www.apachefriends.org/download.html

 Figure 9.1.3.2 Folder Setup

 5. Once you’ve saved your code in that folder you can see it by going to : http://localhost
 and as long as you have the index.html page set up it will display

 6. You can then edit the code in any of your preferred IDEs like vim, VSCode, or Atom
 it only matters that the code is saved within that htdocs folder

 9.1.4 Production Cycle
 The first thing that was done in the project was that each module was developed in

 parallel but completely separate from each other. There were really four major modules that
 were worked on: graphical user interface, database, core engine, and the web portal. Initially
 each member was in charge of a single section and then helped the other parts as needed. This
 general strategy was used until after the technical prototype. After that the team started
 working closely together in order to integrate everything together into a working system. The
 general flow of work went as follows:

 1. Create a feature
 2. Test the feature
 3. Test the feature with other needed parts and team members
 4. Fix bugs found during testing
 5. Do it all over again

 This process allowed for general bugs to be found quickly and fixed. Integration testing
 also was an as we go basis.

http://localhost/

 10.0 References
 JabberJack

 [1] Miklosik, Andrej & Evans, Nina & Qureshi, Athar. (2021). The Use of Chatbots in
 Digital Business Transformation: A Systematic Literature Review. IEEE Access. 9.
 106530-106539. 10.1109/ACCESS.2021.3100885.

 [2] NAU. 2021.(2021). Retrieved November 3, 2021 from
 https://in.nau.edu/campus-health-services/

 [3] NAU. 2021. Facts and stats. (2021). Retrieved November 3, 2021 from
 https://nau.edu/about/facts-and-stats/

 [4] Rooein, Donya. (2019). Data-Driven Edu Chatbots. 46-49. 10.1145/3308560.3314191.

 [5] Smilijanic Stasha. 2021. Amazon Alexa Statistics, facts, and Trends. (February 2021).
 Retrieved November 16, 2021 from
 https://policyadvice.net/insurance/insights/amazon-alexa-statistics/

https://in.nau.edu/campus-health-services/
https://nau.edu/about/facts-and-stats/
https://policyadvice.net/insurance/insights/amazon-alexa-statistics/

