
Software Testing Plan

Presented By: Team HealthLit

Devin O’Neal

Leslie Gurrola

Brendan Tjeerdsma

Ahmir Hughes

Project Sponsor: Dr. Olivia Lindly

Team Mentor: Han Peng

Project Title: Parent Health Literacy Mobile App

April 3rd, 2022

Version 2.0



Contents

1 | Introduction Pg. 1

2 | Unit Testing Pg. 1

2.1 | Mobile Application Pg. 2

2.2 | Web Application Pg. 6

3 | Integration Testing Pg. 7

3.1 | Mobile Application and Database Integration Pg. 7

4 | Usability Testing Pg. 8

5 | Conclusion Pg. 9



1 | Introduction

Our team built the HealthLit application to help parents of young children learn skills that

are crucial to the proper care of their children. HealthLit uses health literacy testing and

interactive modules to teach parents these skills and then reinforce them. This, combined with

easy access to information that is easy to understand, will ensure that these parents retain the

information given to them. In turn, this will prevent many of the common accidents that occur

with young children.

Software testing is done to ensure that the software that has been created meets the

standards outlined in the requirements document, as well as the standards agreed to by the client

and development team. This testing aims to ensure that each part of the software works as

intended, both on its own and in conjunction with the other parts of the software. Software

testing must be rigorous to ensure that the highest quality software is presented to the client.

Our team’s software testing will consist of three main parts, with those being unit testing,

integration testing, and usability testing. Unit testing will consist of tests for the web and mobile

applications, ensuring that all of their components perform as expected. Next, integration testing

will consist of tests to ensure that the separate components of the app can work together as

expected. Finally, usability testing will consist of tests designed to gauge how well naive users

can navigate the app. All of these tests will ensure that our application functions as specified.

Next, we will discuss our unit testing strategies.

2 | Unit Testing

Unit testing is testing individual parts of our code by isolating sections of our project to

maximize efficiency of use. For unit testing we will test both the web and mobile application



individually, using controlled input to test out the performance of each part from the average

user’s perspective. We will be testing the performance of the page setups and correct movement

throughout our applications. To further our testing we will be using the Flutter’s unit testing

package that is readily available to download from the internet. The unit testing package allows

users to create test files for the classes made for our applications, with these testing files working

independently from the actual performance of the application. We will be focusing our testing on

receiving and retrieving data to make sure that there is no lack of performance with

communication between our two components – the web and mobile applications – along with our

database.

For our mobile application we will be testing:

● Module Setup

● Module Completion

● Sign-In/Up Response

● Game Response

For our web application we will be testing:

● Module Upload

● Database Retrieval & Filtering

2.1 | Mobile Application

This section will outline the main functionalities of the mobile application that we will be

testing. Most of the topics we will cover are the responses from the database to the mobile

application, however we will also test the components within our application, such as our games.



Module Setup:

Modules for our mobile application act as the functional component of our app, bringing

in the information of a certain topic such as Food Nutrition or Medication Dosing to the app’s

user for them to read about. The modules will contain a text document full of information that

has been provided by our client, Dr. Lindly. This information will contain the title, pictures, and

module text needed for the addition of any new module. The user should be able to click the

‘open’ button to get into the modules, then the modules should contain the corresponding

information as mentioned previously. There should be a correlating game that is customized to

each module, with any pictures needed. The modules should also be formatted and displayed

according to the design that our team has agreed upon.

● Module 1 Unit Testing:

○ Select Module from list of Modules

○ Test scrolling feature to make sure that it contains all of the information

○ Click on game button

○ Flip through game see the response to mimic the use of app use

○ Exit out of game in the middle of use to test the response of trying to go

back home

● Module 2 Unit Testing:

○ Select Module from list of Modules

○ Test scrolling feature to make sure that it contains all of the information

○ Click on game button

○ Click one wrong answers to see the response of game

○ Fail test to see if there is a lag of getting information



● Module 3 Unit Testing:

○ Select Module from list of Modules

○ Test scrolling feature to make sure that it contains all of the information

○ Click on game button

○ Test game by clicking on different components to see response

Module Completion:

Unlike Module Setup, module completion will have its own testing properties due to the

statistical need of transferring each mobile user’s data across the database and viewing it from

the web application. The module completion will be tested by using a corresponding user

variable that will store a boolean that will trigger if the application user has completed the

module. The boolean value will be true if completed and false if the module is not completed.

The variable will be able to track all the current modules and be able to correspond to the

uniqueID of the user.

Sign-In/Up Response:

For this stage of testing, we will first create an account with an email address that has not

been used. After filling out all the sign-up information, we will then need to check with the

database or web application if all the information of the ‘new’ mobile application user has been

successfully uploaded. Then we will login using the newly created account and once logged in

the account will have access to the module selection page. On the other hand, if they are not

successful, then they will be notified that there is no account information based on their inputs

and they will not be signed in and they will remain on the login page.



Game Response:

In terms of testing the gamified sections and NVS tests in the application, we will need to

check certain variables that are utilized inside the files in order to make sure that they are what

they’re supposed to be. When the user does certain actions in the game section, certain variables

will be modified accordingly in order to simulate the functionality of the game. Essentially, we

will make unit tests that will simulate certain actions by the user and the variables (typically

integers and arrays) hold values that would have contents that would only happen if that action

takes place. The NVS will contain a couple of unit tests that will test if the user got a certain

amount of questions correct based on the responses they submit. This will be done by having a

unit test simulate inputs that the user would do when actually taking the test and checking the

status of the game’s variables. There will also be an edge case unit test for this to ensure that

certain questions are skipped if they answer some questions in a certain way.

The first module game is a simple flashcard game where the user can click through

different cards to review terms and definitions. Due to the simplicity of this game, the only unit

test that will be done here is one that will test whether the contents of the array contain the

correct answer. The next module involves a quiz the user has to take where they cannot move on

to the next question until they choose a “correct” answer. A unit test will be done to test that if

the user gets a question wrong, the question number variable will not increase. The third module

game involves the user utilizing a slider in order to get the proper medicine dosage for each

problem. Unit tests will be implemented to ensure that the function that calculates the correct

medicine dosage is accurate and to solve any edge cases as needed.



2.2 | Web Application

This section will outline the main functionalities of the web application that we will be

testing. Because the web application works in tandem with the database, all of the topics involve

writing or reading from the database.

Module Upload:

The web application is designed to upload text into the database. For the purposes of

testing, we need to make sure that not only does the Module Text transfer correctly into the

database, but also the module title correctly gives a unique title in numerical counting order in

relation to the pre-existing modules. In order to test this, the unit test will create a module with

sample text and then read the database after the creation in order to test that the sample text

transferred correctly and that the module title is correct.

Database Retrieval & Filtering:

The web application is also designed to obtain and display user data, while being able to

filter it based on specific filter types. For the purposes of testing, we need to make sure the

information read is correct, and that each filter works as intended, along with multiple filters

being able to work. In order to test this, the unit test will read the database information and verify

that the information read by the application is the same information read by the unit test. To test

each filter, the unit test will set each filter and verify that the filters change the results each time

as intended by checking if the results match what the filter is intended to do. There are a total of

six filters to be tested, so not only does each filter need to be tested separately, but each

combination of filters needs to be tested too, creating 63 unique tests.



3 | Integration Testing

3.1 | Mobile Application and Database Integration

The mobile application is responsible for communication with the database and the web

portal. The database acts as a middle man where it receives and gives data to the mobile

application. While the mobile application does not immediately interact with the web

application, the database acts as its proxy.

Our database is a Google Firestore database, this allows the two end points to be able to

interact with each other using the same database. The web application is able to view and parse

through application users, and upload modules to be transferred to the database and therefore to

the mobile application. To test these components in integration testing, we will first verify that a

new user’s information is readily available to view from the web application. If viewing the new

mobile application user is successful then that means that the transferring of user’s data across

the components is correctly done.

The second component that falls under the mobile application and database is the

successful integration of creating a module through the web application. As mentioned above,

another feature of the web application is the ability to create new modules. Once all the

information of the module components are successfully uploaded to the web application then that

should be able to be viewed from our mobile application.

Another component that is under the mobile application is data collection for the

database. There are certain aspects of the application that need to grab certain statistics from the

user when they use the application. An example of this is figuring out how long a user takes on a

module. We will need to be able to test that the data can be successfully recorded in the

application and sent into the database for the web application to utilize.



4 | Usability Testing

The last kind of testing that we will implement is usability testing, which involves

potential users of our software. The goal of usability testing is to ensure that a naive set of users

can use the application as intended and achieve expected results. Users are selected and guided

through a certain number of use cases, and their responses to the tasks are recorded along with

their feedback. This type of testing helps to ensure that the application works as intended and

successfully reaches our target audience.

To execute usability testing for our application, we will find a sample size of naive users

to present our application to. Ideally, these users will be a part of our targeted demographic of

parents. After this population is found, we will present them with the application and guide them

through several use cases, recording their results and comments. These use cases will consist of

activities such as logging into the app, creating an account, and completing a number of modules.

After this, we will refine our application and continue these tests until we are satisfied with the

application’s performance. We hope to complete these tests by April 15th, 2022, so that we can

effectively implement any changes to the application.

5 | Conclusion

To summarize, extensive unit, integration and usability testing will ensure that our

application meets all of our requirements and satisfies our target userbase. We have outlined our

plans for these three types of testing in this document, and we believe that these tests will

accurately gauge how well we have implemented the required features into our application, and

in the case of usability testing, give us good feedback to implement. The goal of the HealthLit



project is to educate parents so that they can care for their young children. Part of reaching this

goal is ensuring that the work we have done guides us there, and these tests will validate all of

our hard work. Currently, our team is preparing to begin the testing process on our application

and preparing our final version for presentation to our peers. Our team is excited to complete

development of this application and share it with the world.


