
GreenAZ: Software Design Document

Ryan Demboski, Justin Eggan, Jack Gilliam

CS-486C, Northern Arizona University

Instructor: Michael Leverington

Mentor: Vahid Fard

Sponsor: Richard Rushforth

Februrary 17, 2023

v1.0

Demboski, Eggan, Gilliam 1

Contents

Introduction.…………………………………………………………………………………….…2

Implementation Overview.……...…………………………………………………….…………...3

Architecture Overview…………………………………………………………………….………4

Module & Interface Descriptions………………………………………………………...………..6

Front-end Technologies………………………………..………………………………….6

Back-end Technologies…...……………………...………………………………………..8

GIS Technologies…………..……………………………………......…………………...11

Implementation Plan…………………………………………………………………..…………12

Conclusion…………………………………………………………………………...…………..14

Demboski, Eggan, Gilliam 2

Introduction

The state of Arizona is currently one of the lowest ranking of the fifty continental states

for recycling waste and waste management. According to a study performed by LawnStarter,

Arizona sits presently at the 47th worst state for recycling - with the Ball Corporation citing that

the state has an 18 percent recycling rate. This problem only contributes to the massive problem

in the country and world regarding handling waste and, more importantly, recycling. While some

Arizona municipalities have been able to invest millions of dollars into infrastructure to avoid

filling new landfills, smaller municipalities cannot meet this.

Our project sponsor, Dr. Rushforth, is an Assistant Research Professor at Northern

Arizona University, and is working in tandem with the Arizona Board of Regents at ASU to

deliver a complete software solution to help mitigate the current waste problem in our state.

GreenAZ is to aid in improving Arizona waste management by using Arizona Recycling

Potential data, and helping their team visualize that data in a more convenient manner than just

viewing a cluttered, confusing excel spreadsheet. There needs to be a better process for viewing

what is going on with waste management in our state. A process that is publicly accessible, has a

clean and professional user interface, and engineered from the ground up to be simple to

understand.

Since taking the reins on this project in August 2022, GreenAZ has thoroughly

researched the pros and cons of available web technologies, and ultimately settled on a solution

that can best be used to meet all the desired characteristics of the project set by Richard

Rushforth and the Arizona Board of Regents. In this document, we will go into complete detail

on what these technologies are, how they work, and how they will be used to reach our end

goals.

Demboski, Eggan, Gilliam 3

Implementation Overview

Our web-based visualization system will use data gathered from the previous phases of

our project. This data we will be using includes an inventory of all Arizona communities and

their associated demographics, waste management and recycling service availability, and

associated economic development metrics. The data also includes waste processing infrastructure

and logistics of the policies, practices, and partnerships in place regarding recycling services in

Arizona. Accompanying this data, we will also look at the data of end markets for recycling

materials, as well as the economic impact of recycling at the national and state levels. This data

is critical for our system to reliably create visualizations of the recycling trends in Arizona and

be able to compare Arizona’s current recycling economic performance with other states and

regions. Our system will be able to use the existing data given to us and process it into data about

what recycling materials are available or not available at each Arizona municipality. Using this

processed data, our system will be able to create multiple types of easy to read graphs, such as

pie charts, bar graphs, and line graphs.

Some key characteristics of our planned MVP implementation will include:

● Allowing users to interact with a map of Arizona municipalities.

● Making each municipality display data about what recyclable materials are

available and not available in that location.

● Categorizing different types of available materials in the map for each location

● Using that data to display it via different types of charts and graphs depending on

what the user chooses to display it as.

● Stretch goal: Giving a qualified user the ability to import their own data or change

the data inside the GIS map.

Demboski, Eggan, Gilliam 4

Architecture Overview

Part of the process of GreenAZ’s research thus far into the project was deciding on the

perfect technologies to utilize, in order to meet all of the requirements set for us from the

beginning. Dr. Rushforth made it clear in his proposal what we need to accomplish to be an

acceptable minimum viable product. After much consideration, we’ve settled on a modern and

relevant web stack that is increasingly popular in 2023.

GreenAZ’s chosen web stack is commonly referred to in industry as the MEAN stack. In

this method of developing full stack web applications, the acronym MEAN stands for

MongoDB, Express.JS, AngularJS, and Node.JS. Each of these technologies does something

completely different and helps form our application into a whole.

Fig. (1): MEAN Stack - Credit http://blog.skillbakery.com/2020/06/fundamentals-of-mean-stack.html

As shown in Figure 1, every element of the stack has its own distinct purpose. AngularJS,

our front-end framework, is the top of the stack, and handles HTTP requests from the back-end

to display to the client/user. It also allows the client/user to send HTTP requests from the

Demboski, Eggan, Gilliam 5

front-end to the back-end. Lastly, it serves as a method of delivering customizable Javascript,

HTML, and CSS code to the end-user’s web browser, to create a great looking user interface.

Node.JS sits in the very middle of the stack, and it acts as a gateway to accessing both the

front-end and the back-end of the application. In essence, Node allows developers to execute

Javascript code outside of a traditional web browser. Without it, the stack would have no way to

communicate with the HTTP protocol, thus having no way for our client to get any information

on the website.

Express.JS is the second-to-last component of the stack. Express is needed to connect to

our database system, as well as connecting to external APIs (Application Programming

Interfaces). As an example, we can connect to an API that provides dynamic Arizona waste data,

allowing our website to use datasets that update automatically every day, week, month, and

more. Lastly, Express sends requests from the Node server to the database, and vice-versa.

Finally, MongoDB resides on the very bottom of the stack. This NoSQL database system

allows GreenAZ to import real recycling data from the Arizona Board of Regents, and display it

to our end-users in innovative ways on our website. Its the foundation of the project, and gives us

the ability to load and store our data in a simple way that conforms to the rest of the stack.

With this MEAN stack approach, we are able to mainly use Javascript code, rather than

multiple types of back-end languages in our source code, in order to keep the entire application

consistent, maintainable, and well optimized. It’s perfect for this project because it will

eventually be given to another capstone team for further development. This architecture allows

every future developer to get up to speed with the code quickly, as well as enable them to

contribute to new requirements with nearly pure Javascript code in all phases of the application

as a whole.

Demboski, Eggan, Gilliam 6

Module & Interface Descriptions

Front-end Technologies

We need a way to present our web application in a web browser. We need a tool that is

able to communicate with the back-end in order to access our data and display it in our online

web application. Since we are primarily using Javascript, we need a tool that can handle

client-side Javascript code, along with HTML and CSS, to produce customizable web pages.

In order to compare the viability of each front-end web application development tool, we

did extensive research on when each option works best. We have decided to choose Angular as

the tool we will use when developing the front-end of our web application.

Angular is a Model-View-Controller framework that is used as a front-end interface to

create dynamic web applications. Each web page is a standalone Angular project that can be

hosted on an HTTP server, in our case we will be using Node.JS and its built in http-server

package to host our Angular project.

Fig. (2): Angular Diagram - Credit https://avaldes.com/angularjs-introduction-and-sample-programs/

Demboski, Eggan, Gilliam 7

Shown above in Figure 2 is an example of how a typical Angular project works

internally. The first component is the Model class, which is an object mapper class that translates

the JSON packets from the database queries into fully javascript compatible objects on the

front-end (see Back-end Technologies section for more details on this topic). It gives developers

the ability to create database objects in their front-end code without needing to write complicated

SQL (Structured Query Language) queries to the database. It makes the whole process much

simpler for consumption of data on our front-end.

Next, Views are the second component of the Angular class architecture. These classes

are the actual web pages that the end-user will see when they visit our website. These pages

don’t include any code that communicates with our back-end system, rather they are focused on

delivering our user interface to the web browser – styled however we want to make them look.

These files contain all of the HTML and CSS code, as well as client-side Javascript code, like

having forms, buttons, or other interactive features that you may have seen on other websites.

The final component of an Angular project is the Controller class. Essentially, this is the

brain of the web page. Writing server-side Javascript code in the controller allows us to come up

with any functionality we want for our page. If we want a login/create account system, we write

that functionality in the controller. This means the Controller is in charge of routing the user to

different pages, communicating with our back-end system, and is how we add the functionality

code for the different models and views we create, to make them do exactly what we intend them

to do.

With these three features making up the full Model-View-Controller architecture that

Angular provides, we now have everything we need to deliver the full-stack web experience that

our sponsor expects this project to become. Angular is most easily integrated with the other

Demboski, Eggan, Gilliam 8

technologies we will use, making it the most desirable choice for us. Because Angular is capable

of being quick and dynamic, it will serve as a great way for our team to display our web

application in a modern and professional way.

Back-end Technologies

Every web application that relies on displaying dynamic content and data to the user must

have a back-end system. A back-end system connects a web server to a database system to

dynamically add, delete, or view data on a database directly from the front-end interface of the

web application. In our application specifically, the back-end will be responsible for importing

recyclable material datasets into the database, to then be displayed on the website through

various front-end technologies and techniques. Eventually, it should be able to allow the user to

upload new datasets directly from the front-end into the database to ensure the user never has to

interact directly with the actual database itself. The site should be fully user operable from the

front-end alone. MongoDB, Express.JS, and Node.JS will help to achieve these requirements.

Starting off, MongoDB gives us a foundation to the entire application. Having obtained

the data that was recently collected by the Arizona Board of Regents, we can import this data

into MongoDB and setup schemas based on how we want the data to be stored (and how it can

be queried by Express.JS). We can load and store this data in an efficient way and make it easily

accessible throughout the entire application.

Demboski, Eggan, Gilliam 9

Fig. (3): MongoDB Diagram - Credit https://www.geeksforgeeks.org/how-mongodb-works/

Shown in Figure 3, MongoDB consists of an Application Layer, and a Data Layer.

Starting from the bottom, the Data Layer contains the MongoDB server instance itself, as well as

the storage engine (which is where the ARP data will be kept). When the web server that is

hosting the MongoDB instance queries the Data Layer, Mongo will reply with a JSON response

that contains the data needed by the query. An example of this is shown below, where the query

is asking to find one random customer within the dataset.

Demboski, Eggan, Gilliam 10

Fig. (4): MongoDB Schema Design - Credit https://www.slideshare.net/juanroycouto/mongodb-basics-unileon

The Application Layer of MongoDB delivers the queries from the Data Layer to the

front-end of the application, for the end-user to see in their web browser. In our case, we can

query for the recycling data on our database and display it on our website, and then style it

however we see fit. However, as shown above in Figure 0, The data query first needs to access

the back-end system before it can be displayed to the end-user. This means Node.JS acts as the

driver that hosts our database instance on our server, and Express.JS acts as our method of

connecting to the database and routing the queries to/from our front-end interface.

Since MongoDB uses NoSQL schema design, thus opting for JSON snippets rather than

SQL statements, it means every aspect of our application can use strictly Javascript code to

achieve our goal of delivering content from the database to the front-end. Express.JS does all the

work of mapping the JSON data to front-end Angular objects for us, as long as we correctly

implement the Javascript code to do so.

Demboski, Eggan, Gilliam 11

GIS Technologies

As our project is a visualization system that aims to generate a map with data on it, the

most obvious hurdle is that of picking the correct GIS tool to use for our project. GIS

(Geographic Information System) tools are applications that allow the user to create maps of

areas while also utilizing some kind of visual editor or tool to allow the user to mark specific

areas or add tags in the creation of said specific areas. These tools fit our product’s description

perfectly, and are some of the main tools we need to build the product.

The GIS tool we chose to use for our product is QGIS, due to its open-source nature

allowing us to freely use the tool without needing to purchase an expensive license, and it

meeting the requirements we needed in a GIS tool. These requirements were simply the ability to

create a map that spans over county, state, and ideally country levels, a way to store data inside

of specific areas on the map, and a basic zoom feature. These three features were all provided by

QGIS, which is also well-documented enough that future users of our product will be able to

search up interactions that we might not have thought of for future versions.

Fig. (5): A class Diagram of what data each part of the QGIS map entails.

Demboski, Eggan, Gilliam 12

As shown above in Figure 5, the QGIS systems are quite simple on how they build upon

each other. The overall map contains the counties, each of which contain their respective cities

within. Each level of the map contains the data for those areas, which includes recycling data and

recycling efforts for those areas. The recycling data is a mix of how much paper is recycled,

plastics, and other such efforts for recycling.

QGIS’ public interface provides many tools necessary for our product. For one, it allows

for integration into tools like Python and Javascript, which are the two main languages our

product is built on. Next, it easily integrates with HTML and web pages which perfectly

coincides with our final product’s end goal. By having these features on it’s public interface, it

allows our product to become better overall.

Implementation Plan

The successful execution of our minimum viable product development will depend on a

couple of key factors. Because we have already chosen the technologies needed for this project

and have gotten familiar with each, we have now put together a concrete schedule that we will

follow for development. Our front-end developer will build our web pages using Angular,

HTML and CSS. Our back-end developer will create our database system, hook it up with

Express.JS, and finally get the Node HTTP server up and running. Our GIS developer will utilize

QGIS to prepare an interactive map of Arizona using our database, and export it as an HTML

compatible element. Finally, all the pieces will be brought together to form a cohesive web

application.

Once development starts, starting 2/20/23, some major milestones for us to look forward

to during development will include:

Demboski, Eggan, Gilliam 13

1. Starting a Node web server that displays a “Hello World” Angular webpage.

2. Connecting the server to a MongoDB database and displaying dummy data from

that database onto the Angular webpage.

3. Creating a test GIS map and a few graphs using that dummy data.

4. Importing the official data from the ARP team into our database.

5. Using that data to determine which municipalities we need to hardcode into the

GIS map.

6. Creating a GIS map of Arizona using the municipalities from the ARP data and

allowing users to interact with it to view the data that belongs to each location.

7. Implementing charts and graphs to display the data for each municipality.

Fig. (6): GreenAZ Development Timeline

Demboski, Eggan, Gilliam 14

When these milestones have been completed, our project will have sufficiently met the

minimum viable product requirements set by Dr Rushforth, and it will be delivered on time,

before the designated due date.

Conclusion

In conclusion, the Arizona Recycling Potential (ARP) team has entrusted us with creating

a visualization system to aid in the use of the Arizona Recycling Potential Model. The Arizona

Recycling Potential Model seeks to help clean the state of Arizona due to it being one of the

lowest ranked states for recycling waste. While some parts of the state have started trying to

alleviate this issue, this visualization system will be a web-based system that displays a map that

houses the requisite data and displays it through varying means. Our job, as a capstone team, is

to produce this visualization system and allow the Arizona Recycling Potential team to input

their data into the system for further use in their project with the Arizona Board of Regents in

order to help clean up the state of Arizona.

So far, we have produced draft versions of each part we deem absolutely necessary for

the final product. We have produced proof that our front-end, back-end, GIS technologies, and

other visualization implementations can work. We are currently awaiting further data and server

space from our sponsor, so that way we can start development using real data rather than using

fictitious data. Once we receive the real data and server space from our sponsor, we plan on

having development done as soon as possible, so that alpha and beta testing phases can start

without further delay.

With our technologies chosen, and our documented plans on how we will code the project

within this document, we are confident in making this product a reality. Our biggest goal aside

Demboski, Eggan, Gilliam 15

from a successful minimum viable product is to make a product that is genuinely useful for real

companies, counties, and communities outside of our university, to better understand Arizona’s

waste management needs and what they can do to help those needs.

