Software Design Document

2/18/2022

(l\\&%/jir\

GeoSTAC

Sponsor:
United States Geological Survey (USGS)
Astrogeology Science Center

Mentor: Melissa Rose

Team Members:
Jacob Cain
Zachary Kaufman
Gavin Nelson
Amy Stamile

Version 2.0

Table of Contents

1 Introduction
1.1 Problem Statement
1.2 Solution Vision

2 Implementation Overview

3 Architectural Overview
3.1 Astro
3.2 GUI

4 Module and Interface Descriptions
4.1 AstroMap
4.1.1 ApidsonCollection
4.1.2 loadFootprintLayer and addFootprintLegend
4.2 GeoTIFFViewer
4.3 GUI
4.3.1 SortAndFilterinput
4.3.2 SearchResultContainer
4.3.3 GeoTiffContainer
4.4 AstroDrawControl
4.4.1 shapesToFootprint

5 Implementation Plan

6 Conclusion

© 00 NN O s W N2 =

o N

-
W -

1 Introduction

New technological advances have opened opportunities for space research and
exploration'. The majority of this exploration is through launching satellites that orbit
planetary bodies, including planets, moons, and asteroids. These satellites collect large
amounts of data and take images while orbiting the planetary bodies. The information is
then sent back to Earth for the planetary science community to research and better
understand our solar system.

As space exploration increases among both federal agencies and private
citizens, there is a need for community access to accurate planetary maps and data.
Mars is a target for exploration due to its proximity to Earth inside of our solar system. In
order to plan for future exploration, it is vital that scientists use the data and images that
our satellites and non-human space missions have gathered.

Using these resources, scientists can perform analyses of data from Mars to plan
for future missions and scientific discovery. There are many tools that allow scientists to
analyze and create maps from the information gathered; however, these tools are not
well-developed. The planetary science community processes these images by using
software that requires extensive knowledge for complex tools. In addition to using
traditional software, the planetary science community must store terabytes of data on
their own devices in order to interact with and research the images.

Rather than require researchers to independently process their own cartographic
data products, the United States Geological Survey (USGS) Astrogeology Science
Center (ASC) in Flagstaff Arizona provides the international planetary science
community with analysis ready data. These products support research in planetary
cartography, geoscience, and remote sensing. The ASC also develops software for
scientific and cartographic analysis of planetary data which can be easily accessed by
members of the international scientific community.

1.1 Problem Statement

The USGS Astrogeology Science Center serves data using a community
developed standard to the planetary science community to access Analysis Ready Data
(ARD). USGS has already distributed this analysis ready data through the Spatial
Temporal Asset Catalog (STAC). STAC is a standard for storing, discovering, and

' https://www.nasa.gov/specials/60counting/future.html

1

analyzing spatial-temporal data to describe various geospatial information. This
provides better indexing and discovering of the analysis ready data?.

The STAC specification describes a JSON schema for machine data discovery.
The STAC specification also provides an API specification for developers to write
human-usable discovery tools. Using these machine-accessible specifications, USGS
would like a human-usable data discovery tool that uses web mapping to help users
search for and locate data.

USGS needs an interactive visualization tool to link the analysis ready data from
the STAC API. This will allow the scientific community to make discoveries of planetary
data and further facilitate interactions with the STAC API.

In 2019, the USGS assigned an NAU capstone team to develop an interactive
web map that supports planetary data. The map is called CartoCosmos, reflecting the
capstone team’s name. The CartoCosmos team developed a plugin extension for
Leaflet, an open source Javascript library for interactive maps. This plugin extension
was developed to support mapping of planetary data sets.® The CartoCosmos web map
is great for visualizing large planetary image mosaics, but has no support for visualizing
the individual STAC assets or STAC catalogs the clients wish to make available.

Thus, the USGS team has tasked Team GeoSTAC with upgrading and adding
new features to the interactive web map. This includes the ability to visualize individual
STAC asset locations on a map of a target body and load the associated images into
the CartoCosmos web map.

1.2 Solution Vision

To solve the problem of interacting with the USGS STAC catalog within the
CartoCosmos web map, the team will use the following solutions:

e Query the STAC API endpoint for a given planetary body and render footprints
onto the CartoCosmos web map.

e Implement a frontend search functionality that queries information from the STAC
API and displays the information of the selected footprints.

e Render Cloud Optimized GeoTIFF (COG) images within CartoCosmos for
viewing without the need to download large image data.

2 https://stacspec.org/
3 https://ceias.nau.edu/capstone/projects/CS/2020/CartoCosmos-S20/#/

2

The overall vision for this project is to have CartoCosmos display a certain
number of footprints for specified planetary bodies. These footprints will be interactive:
The user will be able to individually click a footprint and display the information
associated with it. The user will have the option to view the COG image associated with
the footprint. In addition, the user will be able to select multiple footprints. This will
display a table of available footprints of the selected area and allow the user to select a
footprint based on the table. Finally, the user will be able to use a searching tool that will
allow them to search within the existing rendered footprints to display only the footprints
associated with the information searched.

2 Implementation Overview

The Client wants to make their library of STAC data on extraterrestrial bodies
available through an easy to use graphical interface. With the application, users must
be able to navigate through planetary maps to find STAC images of interest. The first
part of the project, navigation through planetary maps, is a continuation of a previous
capstone project. Therefore, the Team GeoSTAC will continue to build on the
technologies used by the previous team, CartoCosmos by integrating the CartoCosmos
planetary mapping application with the client's STAC API.

The map portion of the interface will be developed in Leaflet (a Javascript library
for interactive maps), using the CartoCosmos teams’ plugin to render extraterrestrial
bodies. The Leaflet community has a variety of plugins which allow easy integration
into Leaflet. For user interface elements with pre-existing plugins, the elements can
simply be added into the app’s Leaflet instance. The team’s custom additions to the
user interface will be written in React JS with components from Material Ul, continuing
the theme designed by team CartoCosmos. The backend (“Astro”) will be expanded by
Team GeoSTAC using Leaflet and Javascript, and calls to the client's STAC API will be
integrated.

Node.js will be used to manage the environment for the web app. The team will
install any needed dependencies with Node, which ensures that anyone who wishes to
host a copy of the app will also be able to easily install its dependencies. The web app
will be compiled with Babel JS. The Babel compiler allows the app to be written in
modern Javascript, but outputs an app in Javascript with better backwards and
cross-browser compatibility. The output will be a web app that anyone can open and
use instantly in their browser, without any need for setup on the user’s end.

3 Architectural Overview

Designing this application requires a comprehensive overview of how the existing
CartoCosmos system is built and what the system supports. With this in depth
knowledge of the existing system, the team is able to design an architecture that will
surround the existing project and build upon it to provide a concrete architectural design
of the application.

To provide a high level overview of the software’s architecture, the following two
high level diagrams will be used to depict both the original CartoCosmos architectural
design in Figure 1, and team GeoSTAC's architectural design in Figure 2.

Existing CartoCosmos Architecture

Jupyter Notebook App AutoComplete

Astro GUI

Figure 1: CartoCosmos Architecture

Updated GeoSTAC Architecture

>(App 14
L)
Astro 4—|— ©—|—> GUI

s ™ e N
STAC Catalog

Feature Integration Feature Integration

(G J - J

A N~ A

p
[Individual image viewability] Individual footprint polygon selection]

Figure 2: GeoSTAC Architecture

3.1 Astro

As seen from the diagrams above, GeoSTAC is taking the existing architecture
from CartoCosmos and building upon the Astro module. The Astro module will be
primarily responsible for handling all of the back end interaction. This encompasses API
calls, Leaflet map control, catalog selections, and footprint rendering. This module will
contain collections of code structured purely around Leaflet as well as vanilla Javascript
along with following an OPP approach.

The functionality of using a STAC Catalog has been added into the Astro module
as well as added support for interacting with individual footprints. With the additions to
CartoCosmos’ Astro module, this will provide the architectural framework needed to
support the use of STAC Catalog’s in interactive Spatial Body Leaflet maps.

3.2 GUI

The existing GUI module has been modified in order to support the functionality
of selecting individual footprints that have been rendered on the map. The changes to
this module help support map selection of footprints and allow filtering and sorting of
footprints. The filters will be based on querying the API on various features that pertain

to the footprints; such as bounding box (bbox) values, time, pages, and other queries
that the API supports.

4 Module and Interface Descriptions

The following sections go into details regarding what functions and classes have
been added to the existing Astro and GUI modules. Figure 3 displays what existing
functions/classes that exist in CartCosmos alongside newly added functions/classes
added by GeoSTAC. These new additions are highlighted in blue to provide a visual as
to what is being added to existing classes and what new classes are being created in
the Astro module.

AstroDrawControl GeollFFMap
+ onAdd (map: AstroMap) + Constructor (mapDiv:
+ shapesTOWKT (e: AstroMap String)
DomEvent) + addGeoTiff
+ shapesToFootprint + mapDiv: String + options: (url_to_geotiff_file: String,
(coords: String) Object geoTiffCoordinates: Array)
+ target: String - astroProj: + closeGeoTiffMap()
AstroProj + clearGeoTiffMap()
- layers: Object
- footprintCollection: Object
. . - footprintControl: Object
ApiJsonCollection _ geoLayer: Object
+ initalize (mapDiv: String,
+ callAPI () target: String, options:
+ getltemCollection (name: Dictionary)
String page: Int, queryStr: + loadLayerCollection
String) (name:String)
+ changeProjection (name:
String, center: List)
+ loadFootprintLayer (name:
String, page: Int, queryStr: Kay
String) , BeoSTAC Additions
+ addFootprintLegend
(name: String, page: Int)
. Driginal to CartoCosmos

Figure 3: Astro UML Diagram

4.1 AstroMap

The existing AstroMap class is the main class in CartoCosmos. It inherits from
the L.Map Leaflet class. In order to add additional layers to the Leaflet web map, having
access to the L.Map class is required. AstroMap has a unique feature that separates it
from the original L.Map, which is the use of a target parameter. This parameter is
needed to determine which basemap to render. This target name is also needed to
determine what collections to obtain within the STAC API.

4.1.1 ApidsonCollection

ApidsonCollection consists of two helper functions used in AstroMap for handling
API fetch requests. These functions are used to return an object of JSON results or
STAC items associated with the selected target body.

e callAPI() callAPI returns the initial fetch of the Astrogeology STAC collections.
This function is called by getltemCollection(). The output of the JSON object will
consist of all the possible collections within the Astrogeology STAC API. For
instance, currently the STAC catalog has one collection for Mars called
“ctx_dtms” and multiple collections for Europa including
‘usgs_controlled_images_voy1 _voy2_ galileo”. As more collections are added to
the STAC API, this function will dynamically collect the information in this
function.

Returns:
- (Object) - results of stac.astrogeology.usgs.gov/api/collections

e getltemCollection() This function calls callAPI() and waits for the fetch request
to complete. Once completed, the function uses the JSON object to find all
collections pertaining to the inputted target name. Since there may be multiple
collections for one target, the function will store the associated link of the
collection into an array. getltemCollection also takes in the current selected page
number. When the links are obtained, the page query parameter is included in
the link based on the inputted page number when getltemCollection was called.
getltemCollection then fetches each link in the array and maps all results into a
JSON object of individual items.

Parameters:
- name (String) - The name of the selected target on the Leaflet web map.
- page (Int) - The selected page number of pagination.
- queryStr (String) - String of the query parameters.

Returns:
- (Object) - results of the mapping of all collection items associated with the
selected target.

4.1.2 loadFootprintLayer and addFootprintLegend

loadFootprintLayer and addFootprintLegend are two functions added within the

existing AstroMap class. In order to have access to the map’s target instance variable
as well as add layers, these functions needed to reside within the AstroMap class.

loadFootprintLayer() loadFootprintLayer is called by the initialize constructor
function of AstroMap when a target is selected in the GUI. This function takes in
the target name as well as the page number of pagination. When initialized, this
page number is always once. This function calls the getltemCollection from
ApidsonCollection and waits for the results to be loaded. Once loaded, it iterates
through each item in the object and adds it to a geoJSON layer. Once all layers
are added to the layer, a control is added to the map’s GUI. This allows the user
to toggle the footprint layer on and off. Then this function calls
addFootprintLegend to add a layer legend to the maps GUI.

Parameters:
- name (String) - The name of the selected target on the Leaflet web map.
- page (Int) - The selected page number of pagination.
- queryStr (String) - String of the query parameters.

addFootprintLegend() addFootprintLegend adds a legend for the geoJSON
layer of the map. This function utilizes the “leaflet-html-legend” plugin to
accomplish this. This legend also allows for the option to include html segments.
This function adds in a pagination component within the html segment. This will
allow the user to sift through pages of footprints. In order to detect a user clicking
the html components, two internal event handlers detect which buttons are
selected. If these buttons are selected, addFoorprintLegend will call
loadFoorprintLayer with the new page number to render the new selection of
items.

Parameters:

- name (String) - The name of the selected target on the Leaflet web map.
- page (Int) - The selected page number of pagination.

4.2 GeoTIlFFViewer

The GeoTiffViewer class is the class that contains all the functions for displaying
a given geoTiff thumbnail from a footprints assets onto a simple viewer. This class will
need to be called inside of the main AstroMap driver class, in order to have access to
one instance of the GeoTiffViewer. The GeoTiffViewer class consists of three functions,
a constructor function, displayGeoTiff function, and toggleViewer function. These three
functions will take care of all the necessary functionality for the GeoTiffViewer inside of
the CartoCosmos app.

e Constructor() The constructor function for the class GeoTiffViewer takes in the
div id that the viewer will reside in. An empty array called imageArrays will be
created as a global variable to have multiple assets being able to toggle between
them. The function uses the passed div name to initialize the viewer and create
the array that will track the download link of the displayed geoTiff thumbnail.
Parameters:

- imageDiv (String) - The name of the div ID where the Leaflet map will be
displayed.

o displayGeoTiff() Takes in a url for the assets file and changes the contents of
the div to display the asset to the given user. This function fetches the assets
from the USGS STAC server and creates a new image asset with a set size
inside of the imageDiv. The thumbnail is then displayed next to the CartoCosmos
leaflet map.

Parameters:
- imageURL (String) - The url link that contains the asset to be displayed to
the user

e toggleViewer() this function is used to close and open the GeoTiffViewer that
contains the thumbnails, the viewer will be cleared of all thumbnails when it is
closed.

4.3 GUI

A large part of the GeoSTAC project requires interaction between the user and
the interface. This includes having click footprints, visualize metadata, and sortffilter this
data. This means implementing additional React components into the existing GUI
structure of CartoCosmos. Figure 4 provides this visualization of the added components
to the GUI. These added components are highlighted in blue.

GUI

ConsoleAppBar MapContainer

s

Key

@ Geostac Additions
[} original to CartoCosmos

Figure 4: GUI UML Diagram

4.3.1 SortAndFilterinput

The Sort and Filter component is a sidebar that allows the user to narrow down
the results according to their specified input values. It is written in HTML and CSS, with
components from Google’s Material Ul. At the top is a dropdown list that allows the
user to set a method of sorting, and sort in ascending or descending order. Underneath
is a series of filters, which allow the user to narrow their STAC footprint results by
keyword and/or date range, as well as spatially limit the search to an area drawn in the
map section of the application. Each field has a unique HTML id so other parts of the
application can access its values.

4.3.2 SearchResultContainer

The SearchResultContainer component is the sidebar that is built on top of the
existing CartoCosmos Leaflet to display the metadata from a geoJson when a footprint
is clicked on the map. The SearchResultContainer will also contain a button allowing the
user to open up the cloud optimized geoTIFF map and add the associated COG to the
map.

4.3.3 GeoTiffContainer

10

The GeoTiffContainer component is the base element for the GeoTiff asset
viewer. It imports functionality from GeoTIFFAppBar and other modules to display the
asset viewer inside of the div tag with ‘id = “geoTiffimageDiv”, inside of the HTML page.

4.4 AstroDrawControl

AstroDrawControl is another existing module of CartoCosmos. This class adds
drawing controls to the Leaflet map. The drawing tools are what is used to select
multiple footprints on a Leaflet layer. In order to utilize the drawing tools for footprint
searching, an additional function was added to the AstroDrawControl class.

4.4.1 shapesToFootprint

The function shapesToFootprint was added within the AstroDrawControl class in
order to have access to the maps drawing controls. This will allow the various drawing
tools that currently exist to be used as a selection filter for footprints on the map. This
function utilizes the existing function shapesToWKT in order to retrieve the coordinates
of the drawn shapes perimeter. Once the coordinates are retrieved they are passed in to
a queryString which is used to query the API selection and filter down the results to
features that reside or intersect within the drawn area. This function calls
loadFootprintLayer from AstroMap in order to do so.

shapesToFootprint()
Parameters:
- coords (String)- A string containing the coordinates of the given shapes
perimeter.

5 Implementation Plan

In order to develop the four different modules explained, the development plan
has been split into three different sections: Displaying footprints on AstroMap, collecting
metadata, sort and querying searching the API and lastly displaying cloud optimized
geoTIFFs next to the existing CartoCosmo’s Leaflet map. The development process has
been divided into three sections as detailed in the Gantt Chart below (fig. 6): planning,
development, and testing phases.

The planning phase has been mostly completed and now the development phase
has become the main focus. The development phase can be divided into multiple
different benchmarks to stay on track for development. The development stage started
with building on top of the existing AstroMap to fetch data from the STAC catalog and

11

display the footprints on CartoCosmo’s Leaflet map and then add a process of
pagination for the footprints in Leaflet. Creating an asset viewer for displaying cloud
optimized geoTIFFs thumbnails in the app next to the CartoCosmo’s Leaflet, a filter and
query search functionality, and lastly abstracting, displaying footprints metadata to the
user and lastly polishing up the GUI for the new app. These sections are all being
developed at the same time because the different functionalities intersect with each
other. In order to display COGs and metadata, the corresponding footprints on the
Leaflet map are needed.

During the development process, every class must be documented as it is
implemented. Documentation is a key part to the GeoSTAC project in order to deliver a
fully developed app to USGS. Documenting during the development process will allow
for the most accurate representation of each class and function.

The end goal of the development phase is to create an alpha demo application.
The alpha demo will continue to look like CartoCosmo's application, but with some new
GUI and abilities for the STAC integration. The different benchmarks can be split into 4
different sections with a main person in charge of the section. Figure 5 specifies how
the sections have been broken up.

Footprint and Cloud Optimized Fetching and Filter and Search
Pagination GeoTIFF Viewer Displaying MetaData Functionality
Amy Stamile Zachary Kaufman Gavin Nelson Jacob Cain

Figure 5: Distribution of Labor

After completion of the development process, the testing phase will begin. Since
the application will be used by researchers and academic professionals, the testing
phase will be split into two different phases: integrated testing and user testing. The
Integrated testing will ensure that the new functions and class are working and
interacting with each other properly. The integrated testing will test the output of certain
functionality to ensure the correct things are displayed and given to the user. The client
side testing will ensure that the new GUI is easy to use and is what is needed by
researchers and academic professionals. The client side testing will be conducted by
people that will be mainly using the app at USGS to ensure that the GUI is up to the
standards they require for their research.

12

GeoSTAC Development Schedule

Alpha Demo
Mar 7, 2022

Design Review 3 presentations ’ Final Project Delivery

> Project Kickoff
Apr 8, 2022 May 2, 2022

Sep 10, 2021

Today
A4

2022

Technological Feasibility
Design Review 1
[R

Requirements Acquisation
Design Review 2

Design Review 3
Jan 13-Feb 7 _ Design Documentation
Nov1-Dec 10 | Tech Demo

Dec 3 - Jan 6
_ Display Footprints
Jan 10- Jan 20 - Add Pagenation fo FaotPrints
Develop san 3 - Feb 18 ([oispiey cOGs
Jan 20 - Feb 17 — Filter and Search Integration
Jan 13 - eb 24 [isplay Metadata
Feb 15- Mar 11 ([N GU!

Mar 21 -Apr 18 Testing

Test

Apr 19 - May 1 Bug Fixes

Figure 6: Gantt chart

6 Conclusion

As the need for accurate planetary data and images increases for the scientific
and academic community, it is more important than ever that there is software to easily
access this data. The USGS Astrogeology Science Center in Flagstaff Arizona provides
the international planetary science community with new knowledge of our solar system.
Without this data, new planetary exploration missions would be nearly impossible. The
USGS Astrogeology Science Center needs a way for the planetary science community
to interact with the analysis ready data from their STAC API.

The module architectures provided above provide a design a product that will
ensure that interactivity of analysis ready data within CartoCosmos Leaflet web map.
The architecture is split into two main modules that already exist in CartoCosmos: Astro
and GUI. Astro is the structured back-end javascript code that includes the AstroMap
class and the AstroDrawControl class. These two classes have added functions to
enhance the functionality of the existing CartoCosmos web map. There is also an added
GeoTIFFMap class to provide visualization of geoTIFF images to the user. The GUI is
composed of React components that provide a front-end interface. Sorting and filter

13

tools are added to the existing GUI module to provide interactivity for the user to search
footprints for a particular planetary target. As well as components to visualize the
metadata associated with each footprint.

The implementation plan in this document outlines how the design will be broken
up in smaller tasks. These tasks are assigned and scheduled for each member of
GeoSTAC. This plan will set up the team with success in providing USGS with an
enhanced web map that provides the user the ability to interact with analysis ready
data.

14

