
Technological Feasibility

Grace Hsieh, Brett Lewerke, and Chayson Spigarelli

1 April 2022

Project Sponsor: Terry E Baxter

Faculty Mentor: Dr. Michael Leverington

Table of Contents

Table of Contents 1

1.0 Introduction 3

2.0 Technology Challenges 5

3.0 Technology Analysis 6
3.1 Desktop Application 6

3.1.1 Desired Characteristics 6
3.1.2 Alternatives 8
3.1.3 Analysis 8
Figure 1 - Desktop Application Alternatives Comparison 10
3.1.4 Chosen Approach 12
3.1.5 Proving Feasibility 12

3.2 Website Application 12
3.2.1 Desired Characteristics 12
3.2.2 Alternatives 13
3.2.3 Analysis 13
Figure 2 - Website Application Comparison 15
3.2.4 Chosen Approach 17
3.2.5 Proving Feasibility 17

3.3 Database 17
3.3.1 Desired Characteristics 17
3.3.2 Alternatives 18
3.3.3 Analysis 19
Figure 3 - Database Alternatives Comparison 21
3.3.4 Chosen Approach 23
3.3.5 Proving Feasibility 23

3.4 API 23
3.4.1 Desired Characteristics 23
3.4.2 Alternatives 24
3.4.3 Analysis 25
Figure 4 - API Alternatives Comparison 27
3.4.4 Chosen Approach 29
3.4.5 Proving Feasibility 29

4.0 Technology Integration 30

1

4.1 Where is the code? 30
4.2 How it works together 31
Figure 5: Diagram of the working application 32

5.0 Conclusion 33

6.0 References 34

2

1.0 Introduction
Many students are required to submit work, track course progress, and view grades through an
online tool provided by the university, called a learning management system (LMS). A LMS is a
piece of software used for the administration, documentation, reporting, automation, and delivery
of educational courses, training programs, or learning & development programs. Common
features of a LMS include: a gradebook, calendar, class material, user account info, and their
school information. Most learning management systems are outdated because they do not
implement enough functionality. For example, the Blackboard Learning Management System
(BbLearn) does not allow teachers to customize a course in a way it could be gamified without
introducing extra maintenance. Moodle is another example of a LMS but one of the main
disadvantages is that it’s very difficult to set up and fine tune. We are looking to build a
cost-effective solution for an LMS that is not difficult to set up and easily customizable.

Our client's name is Professor Terry E Baxter who studies Civil and Environmental Engineering
at Northern Arizona University (NAU). BbLearn is the LMS at NAU which has much distaste
throughout NAUs students and faculty members. Courses cannot be gamified without causing
extra work for a faculty member. The current workflow of our client is tedious because he has a
currency he needs to keep track of manually with a Microsoft Excel spreadsheet. BbLearn cannot
track the currency on its own. We plan to build tools on our own LMS that help prevent valuable
time being spent on keeping the gamified course up to date by our client.

Students today have a variety of distractions at their disposal making it more important than ever
to keep students engaged. Gamifying a course could help students become more engaged
because most people enjoy playing games rather than doing schoolwork. Engaged students will
perform at a higher level in the class because they will spend more time on their studies. The
goal of Team GamingEd is to increase student engagement with a LMS by designing an
interactive platform that is enjoyable to use. The team wants to allow our sponsor to gamify their
course with ease using a desktop application that our team will design. The team also wants to
allow for students to take the course on a website application. The team's product will be better
than our clients current gamified solution because it will automate currency exchanges and allow
students (players) to choose avatars. The solution we have is to create a new LMS that allows for
teachers to easily gamify any course and free up the restrictions of BbLearn. The technologies
the team will use in order to develop the software are discussed in the different sections below.

In order to create a gamified LMS, Team GamingEd has identified the key design challenges,
assessed potential technologies using our desired characteristics and custom rubric, before
deciding on the technologies that will be used and integrating these into an architecture. In the
Technological Challenges we identified the desktop application, website application, database,
and API as the main design challenges. In the Technological Analysis section the team assessed

3

solutions such as Unity, Unreal Engine, and CryEngine in order to make a fantastic looking
desktop application. The team also addressed solutions for designing the website application
such as: .NET Frameworks, React, and not using a framework. The Technology Integration
section discusses how the team chose solutions to different problems and how those chosen
solutions will come together in order to create a gamified LMS. This section also introduces a
system diagram of our envisioned architecture which shows how the major elements relate to
each other.

4

2.0 Technology Challenges
There are four main design challenges that need to be considered for the successful development
of the new gamified LMS which are outlined in this section. The chosen solutions provided to
each challenge are the backbone and starting point for future development.

- Desktop Application: The desktop application allows the administrator to easily create,
manage, and plan class content even while offline. These courses will then be uploaded
for student use on the website application. Along with offline capabilities, the chosen
solution needs to have built in interactivity and rendering functionality to create an
interactive and intuitive GUI.

- Website Application: Students, or players, will be able to access and complete courses
created and saved from the desktop application. The structure of the class and its contents
will be determined by how the administrator designed it. The players will view and
interact with the finished class to be able to submit assignments and exams. The
administrator will choose to either manually grade assignments or create predetermined
correct answers to be compared against.

- Database: All interactions recorded on the desktop and the website application will be
stored to the database. Data will include course content, such as the structure of the class
and all material needed to pass the levels, and individual user information, such as
encrypted log-in credentials, any grades, and personal progress. The key features that
need to be focused on is speed of allocation, security of the data, and upholding ACID
industry standards. ACID stands for atomicity, consistency, isolation, and durability.

- API: The API will manage interactions and data between the database and both the
desktop application and the website application. The API needs to be able to actively
create new tables for information such as student grades, test information, and log-in
information. The content of the data is based upon the structure of the class that the
teacher builds.

5

3.0 Technology Analysis
Each design challenge will be detailed in a separate technology analysis. After understanding the
necessary key characteristics of a challenge, several alternatives will be researched and scored
based on those characteristics. A final decision will be determined on the score and plans will be
made to create working proof of concepts to be used in a requirements specification document.

3.1 Desktop Application
The desktop application’s main function is to allow administrators to create classes to their own
specifications. Making the classes will also be gamified to provide clarity as to what a student
can be expected to go through and ensure that the class creator understands the idea of
gamifying. While looking for solutions, the team started with the theme of gaming and began
looking into video game engines that satisfied the basic requirements for the project. The core
characteristics of the engine are being interactive, having rendering capabilities, and being able
to be used offline. Online functionality will be discussed in the API section of this document.

3.1.1 Desired Characteristics

Due to the nature of gaming engines, there are a lot of extra features with AAA games in mind.
In other words, the main target audience for these products is large high-budget and high-profile
companies with team sizes spanning from a dozen to several hundred. Therefore, when scoring
each characteristic for a three person team it is easier to start at a number of points and give
reductions for complications, or inconveniences that would cause the team to pursue additional
hours of production, predominantly a lack of built-in systems (A) or overly complex built-in
systems (B). Each category will start at five points and each reduction will remove a set number
of points outlined in each characteristic of this section. With a total of five characteristics, the
maximum possible score an alternative could achieve is 25.

- Interactive: There must be tools or scripts that allow for features such as buttons and
other manipulatable objects for administrators to interact with in order to create and
modify class designs as well as navigate through the program and all of its possible
features, such as accessing grades and student information. Other actions that need to be
functional include but are not limited to text input, drag-and-drop, and scrolling.
Possible Complications:

A) Interactive objects need to be made from scratch or are not built-in (-2)
B) A learning curve that would take longer than two hours (-2)
C) Text based technology (-5)

6

- Rendering: Viewing the content of the class requires 2D rendering in order to display the
relative position of images that would represent levels in the class. For example, popular
video games such as Candy Crush are designed with the intent of having users navigate
and complete levels to unlock more levels of the game. For the LMS, each level will
contain study material and exams that must be completed to progress through the class.
Several interactable menus in the form of stages is ideal to manage the player’s current
view of the program.
Possible Complications:

A) Cannot display basic geometric shapes without additional work (-2)
B) A learning curve that would take longer than two hours (-2)
C) Not possible to display any geometric shape whatsoever (-5)

- Offline Functionality: Administrators must be able to build, save, and modify existing
courses that have been locally saved to their computer. All necessary assets for doing so
would also be available to them during this process. Any classes made in this way would
be saved locally to be uploaded at a later time when internet access is available.
Possible Complications:

A) Requires additional setup to interact with a possible API (-2)
B) A learning curve that would take longer than two hours (-2)
C) Does not have offline capabilities (-5)

- Programmer Ease of Use: Due to the time constraints of the Capstone class, the team’s
current skill set and amount of available documentation are being factored as a necessary
characteristic. The team wants to work with a program that is in a language that the team
can easily learn or already understands. Detailed documentation will assist any learning
curve necessary and save time when trying to find a solution to technical challenges
found while developing the application.
Possible Complications:

A) i) One team member does not know the language (-1)
ii) Two or three members do not know the language (-2)

B) Documentation is limited, determined by the census of the internet (-2)

- Cost: Generally, game engines are marketed in two ways. Firstly, subscription services
have different tiers ranging from free to several hundred dollars a month. Each increasing
tier gives the buyer more features associated with the engine such as third-party support
and built-in tools. Secondly, published projects that generate revenue may have to give
some percentage of gross profit to the developers of the engine, but the amount and
conditions that payment starts vary too wildly from company to company and need to be
evaluated on a case by case basis. The team wants to avoid needing to ask for financial
assistance as much as possible and would prefer a free version that does not require

7

immediate costs. Royalties have been considered a future problem at this time due to
being unsure if the product will be sold for individual use or use by institutions as a
whole, such as universities or educational platforms, and will be noted for future use.
Possible Complications:

A) Subscription required to fulfill other desired characteristics (-4)
B) Additional one time purchases required to fulfill other desired characteristics (-1)

3.1.2 Alternatives

- Unity: Created by Unity Technologies. The latest version of this gaming engine was
created in 2017 and includes purchasable upgrade plans that include features such as
source code access, additional technical support, and real time diagnostics. Indie games
are predominantly created using this software. Some recent notable games include
Hollow Knight, Cuphead, and Escape from Tarkov.

- Unreal Engine: Developed by Epic Games and Digital Extremes. Unreal 4, made in
2014, is the current usable version the team would have access to as of March 7th., 2022,
Unreal 5 is projected to be released some time in 2022. A few games that use the engine
include Unreal Tournament, Life is Strange, the Borderlands series, and Mass Effect.

- CryEngine 3: Created by Crytek. CryEngine 3 was released in 2018 with the most recent
stable release being July 2020. Some more notable games made with this engine are
Sniper Ghost Warrior 3, Hunt Showdown, and Warface.

3.1.3 Analysis

All alternatives met basic requirements listed in the desired characteristics section. Consequently,
a choice was made based on the current skill set of the team and how difficult it would be to
implement our solution using each software. If the engine is overly complex it would cost the
team time to understand the basics of the program before beginning work. Similarly, if the
engine is too simple then the team would have to invest time to implement more complicated
functionality in order to meet the project requirements. Therefore, points were reduced in
accordance with section 3.1.1. See Figure 1 for a full breakdown of the scores.

- Unity: The only reduction given to Unity was that one of the team members are not
currently fluent in C#.
Total Score: 24

- Unreal Engine: Unreal Engine has a mandatory learning curve due to the BluePrint
Engine. The BluePrint Engine is a custom UI engine made to operate and navigate Unreal

8

Engine’s large number of features. Although it is very detailed, the node based structure
is confusing and foriegn to the team. To learn how to use it would be the same as learning
an entirely new programming language which would take a tremendous amount of time.
Total Score: 18

- CryEngine 3: The CryEngine has the reverse issue that Unreal Engine has. There is so
little foundation and documentation that additional work would be needed to meet basic
requirements. Furthermore, no one on the team currently knows how to use LUA.
Total Score: 17

9

Figure 1 - Desktop Application Alternatives Comparison
Characteristics Score Unity Unreal Engine 4 CryEngine 5

Interactive Score: 5
Very basic developer UI allows
for everything we need.

Complications:
N/A

Score: 3
The Blueprint Engine is not easy
to learn or interact with, but
Unreal does have all necessary
abilities.

Complications:
B : A learning curve that would
take longer than two hours(-2)

Score: 3
The developer UI makes things
really easy to make, arguably
easier than Unity but everything
has to be made from scratch to
use as templates later.

Complications:
A : Interactive objects need to be
made from scratch or are not
built-in(-2)

Rendering Score: 5
Out of all the options, it has the
slowest rendering and most
limited capabilities, but it is the
easiest to design graphics for.

Complications:
N/A

Score: 3
The learning curve of using
graphics options was made
difficult because of the Blueprint
Engine. Also the capabilities are
way above and beyond what we
need.

Complications:
B : A learning curve that would
take longer than two hours(-2)

Score: 3
CryEngine uses Lua which no
one on the team has ever used
before. Furthermore, creating
content for visual display is
notoriously difficult in LUA
according to the community.

Complications:
A : Cannot display basic
geometric shapes without
additional work(-2)

Offline Functionality Score: 5
Capable of doing all functions
listed.

Score: 3
The Blueprint Engine is not easy
to learn or interact with, but
Unreal does have all necessary
abilities.

Score: 5
Capable of doing all functions
listed.

10

Characteristics Score Unity Unreal Engine 4 CryEngine 5

Complications:
N/A

Complications:
B : A learning curve that would
take longer than two hours(-2)

Complications:
N/A

Programmer Ease of
Use

Score: 4
Language: C#
This is one of the smaller
programs, but has a large amount
of documentation in proportion to
its capabilities.

Complications:
A.i : One team member does not
know the language(-1)

Score: 4
Language: C++
Only option out of the three that
has a mandatory engine, but has
documentation to compensate.

Complications:
A.i : One team member does not
know the language(-1)

Score: 1
Language: LUA
Third party and community
support and documentation for
the engine is limited.

Complications:
A.ii : Two or three members do
not know the language(-2)

B : Documentation is limited,
determined by the census of the
internet(-2)

Cost Score: 5
A free license applies as long as
less than $100 thousand per year
has not been made on the
product.

Complications:
N/A

Score: 5
Royalty fee on all game sales and
usage. Additional charges can be
made for more content such as
3D models and 2D images.

Complications:
N/A

Score: 5
5% royalty fee per sale after the
first $5000 is made.

Complications:
N/A

Total Score: 24 18 17

11

3.1.4 Chosen Approach

For the desktop application, Team Gaming Ed selected Unity as its chosen solution due to
being simple enough to understand and strong enough to meet project requirements. Both Unreal
Engine and CryEngine have too many complications that would create additional work when
compared to Unity. Unreal Engine’s Blueprint engine creates a large learning curve that the team
is not willing to invest time into. On the other hand, CryEngine is so simple that the framework it
is built on is not friendly to new programmers due to needing programmer-built systems for
functions that are readily available in Unity.

3.1.5 Proving Feasibility

The team has successfully created a basic menu and login and generally understands how to
change scenes. The team will create a demo to highlight the drag-and-drop functionality. This
will be completed for the requirements specification document by April 15th.

3.2 Website Application
The website application is a key design decision because it will serve as the core piece of
software for all course material provided to the students. Databases for all these applications will
be manipulated using Microsoft's .NET framework which is discussed in more detail in section
3.4.

3.2.1 Desired Characteristics

An ideal solution would be a technology that helps us complete the project but does not
compromise our understanding of the code. The team also needs a technology that is free and
easy to install on all operating systems. Each category will start at five points and each reduction
will remove a set number of points outlined in each characteristic of this section. With a total of
three characteristics, the maximum possible score an alternative could achieve is 15.

- Ease of Use: A well thought out and easy to read structure will be maintained on the
website application to preserve ease-of-access and stability. Technologies are needed that
the whole team can use and operate to create a fantastic looking piece of software.
Possible Complications:

A) Costs money (-2)
B) Not open source (-2)
C) Difficult to install (-1)

12

D) Team member does not know the language (-2)

- Shared Code Libraries: The team does not want to write everything from scratch. It
would be more efficient to use existing libraries. Using shared code can create
consistency across teams and projects because the team has a unified way to build
projects.
Possible Complications:

A) Code libraries are not extensive enough for application (-3)

- High Security: High security is important because the team does not want users'
credentials to be stolen. It already has built-in Windows authentication, which can be
used to make secure and safe applications. Frameworks are great at establishing a secure,
reliable connection between host and client while providing excellent cryptography.

A) Non-consistent security functions across all pages (-2)
B) Security requires lots of maintenance (-2)

3.2.2 Alternatives

- .NET frameworks: A developer platform made up of tools, programming languages, and
libraries for building software. First developed by Microsoft in 2002 and primarily runs
on Microsoft Windows. This framework is also open source which is important because
the team can manipulate the software to change its functionality.

- React: React is one of Facebook’s first open source projects. React was developed in
order to create components for web applications. React is open source and first designed
by Jordan Walke who was a software engineer at Facebook at the time. It was first
released to the public in 2013 and their latest release came out in March 2021.

- HTML/CSS: HTML is a language for describing the structure of Web pages. CSS is the
language for describing the presentation of Web pages, including colors, layout, and
fonts. HTML is easy to use and very popular for beginner programmers.

3.2.3 Analysis

.NET frameworks and React JS are very similar. CSS/HTML definitely does not provide us with
enough power in order to efficiently store data. The team definitely needs a framework otherwise
it would take too much time to start from scratch. React JS uses JavaScript which is a challenge
for our particular group because we are not very familiar with JavaScript. .NET Frameworks
uses the programming language C# which we are all familiar with. .NET frameworks also have a
ton of code libraries which provide advanced security. .NET frameworks are easy to set up and

13

also provide enhanced security features which are important to the project because it does not
allow credentials to be compromised.

- .NET Frameworks: Provides enhanced security and extensive code libraries. Also open
source and free to use. Developed and maintained by Microsoft.
Total Score: 15

- React JS: Free and easy to use but requires extensive knowledge of JavaScript which the
team is not familiar with. Does provide extensive security features and has code libraries
available for use.
Total Score: 13

- No Framework: After researching the team discovered that a framework is required in
order to successfully secure and manage our website application. Without a framework
the team would need to start from scratch.
Total Score: 8

14

Figure 2 - Website Application Comparison
Characteristics Score .NET framework React HTML/CSS

Ease of Use Score: 5
Easy installation
Used by many companies
Maintained by Microsoft
Free and Open Source

Complications:
N/A

Score: 3
Also easy to implement and used
by many companies
Free and open Source

Complications:
D: One team member does not
know the language(-2)

Score: 5
Very customizable and creates
easy to read code, but it is very
difficult to maintain

Complications:
N/A

Code Libraries Score: 5
Extensive set of class libraries.
Provides consistency across all
web pages

Complications:
N/A

Score: 5
Creates functional and
impressive-looking applications
using the code libraries.

Complications:
N/A

Score: 2
Has limited code libraries
Without a framework you have
limited interactivity, functionality,
and maintainability

Complications:
A: Code libraries are not
extensive enough for the teams
website application(-3)

Security Score: 5
Provides developers with an
easy-to-use toolset to implement
powerful authentication,
authorization, and cryptographic
routines.

Complications:
N/A

Score: 5
Does not have strong default
security setting and becomes
vulnerable to security slips, but is
more secure than most
frameworks

Complications:
N/A

Score: 1
Does not allow for best practices
to manage risks that may arise.

Complications:

15

Characteristics Score .NET framework React HTML/CSS

A: Non-consistent security
functions across all pages(-2)

B: Security requires lots of
maintenance(-2)

Total Score: 15 13 8

16

3.2.4 Chosen Approach

The team has chosen to use the .NET framework for storing and manipulating data. This
framework is popular amongst many enterprises in industry today. This framework has numerous
libraries that can handle the technical bits so the team can stay focused on more important tasks.
.NET framework is free to use, easy to install, and is also open source. React had a great set of
libraries to choose from but the team was not familiar with React compared to .NET frameworks.
The third option of not using a framework would have been too time consuming without the
support of extensive code libraries.

3.2.5 Proving Feasibility

The team will create a demo showing various assignments being submitted and updated in the
grade book for the Technical Prototype Demos assignment due at the end of April. The team also
plans on having an example demo of a login by a student.

3.3 Database
A database's main functionality is to hold information about some application that’s running in
an environment on a server. The types of information held in a database consist of strings (which
are just sentences or words), integers, doubles, and float values. These values are used to hold
information about a user, the data for the website, and other things that vary from application to
application. In some cases, this information is held in large tables with rows and columns. Other
databases use more sophisticated measures (non-relational database) to hold information not in
tables.

3.3.1 Desired Characteristics
The database that we need for this project could mostly be any type of database. It just has to
hold information in a way that is accessible to the website/desktop application and the user. A
non-relational database, or relational database could be used in our application to store
information. However, these databases are not always the same because some cost more to use.
Also, the complexity of moving information around in some databases is harder to learn than
others. When scoring our choices of databases, it is easier to start by giving a total number of
points (5) to each characteristic and then reducing points as problems and inconveniences arise.
We will be taking away points from each desired characteristic (listed below).With a total of 4
characteristics, the maximum possible score an alternative could achieve is 20.

17

- Fast allocation of memory: Our database will need to iterate through tables in an
efficient manner. Slow databases are inconvenient for the client because of long wait
times.
Possible Complications:

A) Requires additional payment to increase read/write speeds (-3)

- Concurrent Use of Database: In some cases, users will be accessing data at the same
time. If the teacher wants to edit the course, they would need to update the database. It is
important to make sure that the database is concurrent so other active users will not be
affected. In our code, we need to make sure that it is not possible for the teacher to edit a
table in the database while a student is uploading information to it.
Possible Complications:

A) Database has read/write errors due to two people updating the database (- 5)

- Flexibility: In some cases, databases are only available for their one company’s services.
Companies like AWS and Microsoft have their own databases and some are faster than
others. This narrow window lowers the amount of options available to just a handful of
companies. There are some databases, however, that can work on any system. For the
type of information being uploaded, we need to ensure that every database has a table for
each type of information.
Possible Complications:

A) This database is only available by the company who provides it (-2)
B) Ability to create, change, and delete databases (-4)

- Pricing: The database we are going to use cannot be too expensive but the more users
that our database serves the more it will put pressure on the system. We need to find a
good balance between price and performance for our database.
Possible Complications:

A) This database is expensive to use (- points depending on price range)

3.3.2 Alternatives

- CosmosDb: Azure Cosmos DB is a fully managed NoSQL database service for modern
app development. This technology is solely for Microsoft Azure. This database does offer
super fast and reliable information, more than a traditional database. This is because each
piece of data is broken down into logical partitions and each partition is given a certain
amount of R/U’s (Request Units that determine speed).

18

- Amazon RDS: Amazon's version of mySQL database is called Amazon RDS. Amazon
RDS comes with tools like the AWS Management Console, Amazon RDS API calls, and
the AWS Command Line Interface. It also supports a wide variety of different SQL
databases and they include: PostgreSQL, MySQL, Maria DB, Oracle, SQL Server, and
Amazon Aurora.

- Microsoft SQL Server: Microsoft’s version of a relational SQL database. This database
was first released in 1989 but is still functional to this day. It is constantly updated and is
one of the most used databases in the world.

3.3.3 Analysis

All of these databases meet the requirements listed in the characteristics section. Some of these
databases require some knowledge to use the main portal that controls the services. This is just
the website from the Amazon portal that controls your whole system. Once understood, all of
these databases are viable options. A custom server could be set up for Microsoft SQL Server in
order for it to work. Amazon RDS and CosmosDb would have to be set up on either Azure or
AWS. Points were reduced in accordance with section 3.3.1.

- CosmosDb: CosmosDb is one of the newest databases to come into existence. It is
arguably faster than SQL because it allows you to purchase more (R/Us) to make your
database faster. While it does meet all of our requirements for our database this database
is only available for Microsoft Azure and our team would have to be using Azure. This is
a very expensive service and is mostly used by large companies with a big wallet, but that
is not us.
Total Score: 12

- Amazon RDS: This database fits all of the criteria that we are looking for, mentioned
above in 3.3.1. This database uses SQL to hold all of its information which is a big plus
since SQL is the most commonly used database in the world. This service was offered to
us to use for our Capstone project with NAU paying for it. Amazon’s web services are
very secure and widely used in the world as well. Since this database is offered to us for
free to use, it is a good chance we will be using it.
Total Score: 17

- Microsoft SQL Server: This database fits all of the requirements that we are looking for.
This is a very viable alternative as it is available in every operating system. The pricing
for this database would depend on the server that we are running our database on.

19

However, this database is very old and there are newer industry tools and services that we
could be using.
Total Score: 19

20

Figure 3 - Database Alternatives Comparison
Characteristics Score CosmosDb Amazon RDS Microsoft SQL Server

Fast allocation of
memory

Score: 2

Has a latency of less than 10
milliseconds when reading data
and less than 15 milliseconds
when writing data

Complications:
B) Requires additional payment
to increase read/write speeds(-3)

Score: 5

The efficiency of SQL depends
on the CPU processing power, so
if you pay for more then you get a
faster DB

Complications: N/A

Score: 5

The efficiency of this database
would depend on the system you
run it on

Complications: N/A

Concurrent Use of
Database

Score: 5

As concurrency depends on the
code written and not the database,
this is unable to be scored. We
need to ensure, in our code, that
our database is concurrent

Complications: N/A

Score: 5

As concurrency depends on the
code written and not the database,
this is unable to be scored. We
need to ensure, in our code, that
our database is concurrent

Complications: N/A

Score: 5

As concurrency depends on the
code written and not the database,
this is unable to be scored. We
need to ensure, in our code, that
our database is concurrent

Complications: N/A

Flexibility Score: 3
This is only available through
Microsoft Azure and the services
it provides. This is a very popular
service

Complications:

Score: 3
This is only available through
Amazon AWS and the services it
provides. However, Amazon
AWS is a very popular service

Complications:

Score: 5
Microsoft SQL Server can be put
on almost any server with any
operating system. It has been
around the longest

Complications: N/A

21

Characteristics Score CosmosDb Amazon RDS Microsoft SQL Server

A : This database is only
available by the company who
provides it (-2)

A : This database is only
available by the company who
provides it (-2)

Pricing Score: 2
CosmosDb is a very expensive
database to use because Microsoft
Azure is expensive.

Complications:
A : This database is expensive to
use (- points depending on price
range)

Score: 4
This service is less expensive
than Azure. Depending on your
usage it can be cheaper

Complications:
A : This database is expensive to
use (- points depending on price
range)

Score: 4
The pricing on this varies
depending on what server you are
using this database on.

Complications: N/A (depends on
what system you run it on)

Total Score 12 17 19

22

3.3.4 Chosen Approach

The choice of database that we went with was Amazon RDS for mySQL. The reason that we
chose this database was because it was given to us by our university to use for this capstone
project. However, it is important to note that all of these databases are viable for this project.
The team was given a SQL database to put all of our tables in so we can store information. In
order to allow this system to create multiple courses, a desktop application is needed to allow the
creation of a brand new database for us and all of its tables each time a new course is made.
Once created, the database will then be able to accept information from Unity. SQL should not
pose a problem for data storage to use for this project, but there are alternatives to choose from.

3.3.5 Proving Feasibility

The team will be using phpMyAdmin on local machines to run and test the application while it is
being built. Using a software called Xampp, the team is able to simulate a server running on
local machines. Once activated, it takes over a local port and runs mySQL through
phpMyAdmin, which allows simulating updating a database. The team has used this already in
their local machines and set up a local database. For Amazon RDS, the only learning curve
would be to use the control portal from the website.

3.4 API
The database will need a set of code that tells it where to put information and how to access it.
The database will have to have two separate components that add information to it and therefore
two separate API’s are needed. One API will be needed for the website and another API will be
needed for the desktop application. The API puts information into a database by receiving GET
and POST requests from the website/desktop application. It then makes a query string,
specifying where it should be placed in the database.

3.4.1 Desired Characteristics

When making a website application, we need to ensure that our requests from the student are
properly handled. For the desktop application, our API does not need to return any html back to
the teacher, so options are widely available. When scoring our choices of API, it is easier to start
by giving a total number of points (5) to each characteristic and then reducing points as problems
and inconveniences arise. The maximum possible score an alternative could achieve is 15.

23

- Requests: The API needs to be able to take in URL requests from the website or the
desktop application and allocate data based on the type of request. This is also the part of
the system that also handles any type of error in a request.
Possible Complications:

A) Each request from the API needs to be a separate file (-1)
B) Ability to handle objects coming in (-3)

- Non-static html: Some of these API’s listed are able to dynamically make html pages by
using objects in the html. A static website with hard coded values would not allow the
team to create multiple courses.
Possible Complications:

A) Not returning a moldable html page (-5)
B) Not returning objects in html (-3)

- Ease of use: Some of these APIs require knowledge of scripting languages that are
specific to each type. As a student, we are unfamiliar with some of these languages and
they need to be learned. The architecture of each API would also fall into this category
because when you have a working system with multiple parts, it makes it easier to have
some sort of structure.
Possible Complications:

A) Not being able to see every request being handled on one screen (-2)
B) Amount of effort to learn (-1)

- Other notable differences: Some of these API’s are drastically different from one
another and the functionalities of them vary. Some of these API’s are written in different
languages making some easier to understand than others.
Possible Complications:

A) i) One team member does not know the language (-1)
ii) Two or three members do not know the language (-2)

3.4.2 Alternatives
- .NET framework: This is an open source, cross platform, implementation for running

websites, services, desktop apps, and more on Windows, macOS, and Linux. It holds a
multitude of libraries that work for building web applications. This language is written in
C# in Visual Studio. Versions of this library can only be run on windows so we will be
choosing one that fits our needs.

- PHP: Hypertext Preprocessor (PHP) is a widely used, open source scripting language.
These scripts are held server-side and as a result, returns information to the browser as

24

plain HTML. PHP can create, open, read, write, delete, and close tables for mySQL on
the server. This has no libraries or framework, so making sure that each PHP file executes
with a certain request is important.

3.4.3 Analysis

All of the API’s listed above meet the requirements for the characteristics we are looking for.
Although it may be challenging to use PHP for the API to our website because we would need to
use other tools for our html file like React. (See in 3.2 Website Application above). The ability to
have our html files as well as our C# files in the same place is a great advantage that .NET gives
us and may be a controlling factor in our decision. Some of the desired characteristics are able to
be put in multiple fields (requests and non-static html) and there are other notable differences to
be scored.

- .NET(website): .NET uses a set of controllers that take in different URL requests and
then takes that request and returns a View() of that controller function. For an example: if
someone were to send a POST request to www.test.com/account with login information
they just typed, an AccountController class with the method GetAccount() would
recognize that URL with the POST request, do some processing to make sure your
username and password were correct, and then return a View() of that page. A View() is
simply a .cshtml file that holds objects in html. .NET calls this ability to use objects in an
HTML file, Razor Pages. This allows for the ability to dynamically add html lines to a
html file. If the information from one course to another course is different. Also, this
framework is what is called a “coupled” website application which means that the
backend and front end are very interconnected. So interconnected in fact, that the C#
code will be in the same folder as the HTML code.
Total Score: 13

- PHP (desktop application): The language PHP is used to communicate between the
database and the Unity app. There is really no set framework for this side of the API,
because every request made to the server will be the exact PHP file it needs to execute.
This differs from .NET because in .NET the url is relative and not the actual location of
the file. PHP is unlike any other language and can easily talk to the database. For
example: once a submit button is hit in Unity, the C# code will send a GET/POST request
to the URL which holds the location of the PHP file (ie. www.test.com/account.php). The
PHP code that is located in that file will then allocate that request, put all the variables
where it needs to go, and send it to the database in the form of a string. “SELECT
username FROM users WHERE username = $username”.

25

http://www.test.com/account
http://www.test.com/account.php

Total Score: 11

- PHP (website): For the website, using PHP for the API might be a viable option. One of
the advantages of doing this is the team would already be writing an API in PHP for the
desktop application. The team is learning how to master PHP for the desktop application.
Therefore, it could also be possible to learn more about how to use it for the website.
Total Score: 5

26

Figure 4 - API Alternatives Comparison
Characteristics Score .NET PHP (desktop) PHP (website)

Flexibility (requests
and non-static html)

Score: 5
Capable of making Razor pages,
passing objects to html pages

Complications: N/A

Score: 5
Meets all the requirements to
successfully update DB

Complications: N/A

Score: 0
Very hard to not make hard coded
values. Without help from other
dev tools. Structure of files being
harder to understand when the
project gets complex

Complications:
B) Ability to handle objects
coming in(-3)
B) Not returning a moldable html
page(-5)

Ease of Use Score: 4
.NET does take some getting used
to, and the learning curve is steep

Complications:
B : Amount of effort to learn(-1)

Score: 3
There are plenty of videos online
to help developers write in PHP

Complications:
A : Not being able to see every
request being handled on one
screen(-2)
B : Amount of effort to learn(-1)

Score: 2
There are plenty of videos online
to help developers write in PHP

Complications:
A : Not being able to see every
request being handled on one
screen(-2)
B : Amount of effort to learn(-1)

Other Notable
Differences

Score: 4
● C#
● Visual Studio gives

template to start

Score: 3
● Used very often in

industry
● PHP scripting language

Score: 3
● Used very often in

industry
● PHP scripting language

27

Characteristics Score .NET PHP (desktop) PHP (website)

Complications:
C.i) One team member does not
know the language (-1)

Complications:
C.ii) Two or three members do
not know the language (-2)

Complications:
C.ii) Two or three members do
not know the language (-2)

Total Score 13 11 5

28

3.4.4 Chosen Approach

Our application will be using .NET and all of its tools in order to communicate with our
website. This is the best solution because it is a very efficient and reliable application. This type
of framework is used by companies today and is constantly evolving. Since it is so fast and new,
it would be our best favor to learn this for experience after college. PHP will be our API for
communicating with our Unity application. This is a simple and easy solution because there
are many videos online showing how to do this.

3.4.5 Proving Feasibility

The team has already created a basic menu and login screen in Unity which uses PHP files to
update the information on our local database (See 3.3 Database, Proving Feasibility). Using PHP
is very simple and the requests to make it are simple since it is just the location of the file. Using
.NET will prove a challenge to master in order to get this application off the ground. There are
lots of videos online to help with developing .NET applications in AWS and we will be
referencing those very often. Also, the team already has simple structures and skeleton’s from
other team members' previous website’s to look at for inspiration.

29

4.0 Technology Integration
With all of these pieces put together, this will become a fully functional program that will allow
students to take a course built by their teacher. Once completed, this program will be very
efficient and will allow for the creation of any course at NAU through teachers building the
course in Unity and students taking it through a website. Now that we have talked about every
individual aspect of the application, let’s take a look at it as a whole.

4.1 Where is the code?

- Unity- Unity uses its own library in C# for sending and receiving requests. The C# code
to send and receive requests will be on the machine you download the application on.
When unity sends a request to the server, it is actually looking for the location of the PHP
file on AWS. If we were to update account information from Unity, we would connect to
a URL similar to this name, “https://whateverURL.com/Unity/updateAccount.php”.
Unity then sends information through a POST request to this URL. The PHP file is
actually in charge of seeing whether or not the request is valid and/or if it can do anything
with it.

- PHP- The PHP code is held and stored in the server. The code is in charge of telling
whether or not a request is valid through this code: $_POST[] or $_GET[]. The actual
location of the file in the server is what our Unity application is looking for.

- .NET- The C#, CSS, and CSHTML files will be stored on the server. The C# files are in
charge of being hooked to a URL link and a type of request. For example, a method
GetAccount() would be linked to a GET request and the URL “/account/getAccount”.
When our website has a clickable link to get account information they will click on it and
it will lead them to that link. Which will then hit that GetAccount() method linked to that
URL and the GET request. Once inside the method, the C# code will access the DB and
get any information about it and return a View(). A View() is simply a cshtml file with
the same name as the method that is calling it. So the html for the account that the user
sees would be called GetAccount.cshtml. A View(result) can also be returned with an
object in it and this is how you dynamically print items in the html file.

30

https://whateverurl.com/Unity/updateAccount.php

4.2 How it works together

Please reference Figure 5: Diagram of the working application

The teacher will use the Unity Application to first create a course locally. There will be a main
line going through the screen to indicate how the flow of the course will work. They can drag
and drop icons to determine the next phase for a student to complete. These icons would consist
of tests/quizzes and from there they can edit the questions, weight, and total score of the
assignment. After the course is completely built on Unity, the teacher will have to connect to wifi
and submit the course with a button. (6) We will write code in Unity to allocate which
information needs to go to which PHP file to upload to the database. Lets say, for example, that
we are updating the quiz count. There needs to be a PHP file that would be available to update
said table on the server so Unity can connect to it. Once the request is sent, PHP will put the
information into each appropriate table for it to be used by the website. (5)

Once the data for the course is in the database the website can now be used. The student then
loads the website through a GET request, (1) which will include information about the website,
the website will be loaded with quizzes, tests, the marketplace settings, and how courses are
unlocked. (2) Our cshtml file will dynamically add more or less information depending on it
existing in the database. If the course were to only have 4 quizzes, then the table displaying them
would only have four rows. The student then clicks on the link for the quiz, makes another GET
request to the .NET API, and the API responds by sending the quiz data. After completing the
quiz, the website then sends a POST request to our server telling it that it needs to update
information. (4) The API will have a method linked to some URL for this request and will update
the information in the database. (3)

The teacher is also able to see student scores from the application. This is the only GET request
that our desktop application will be using.(7) Our application will make a request to our server,
find the php file location, and will display the scores of each student to the teacher. (8)

31

Figure 5: Diagram of the working application

32

5.0 Conclusion
Many different LMS’s are used all over the globe for educational purposes. The main issue with
the BbLearn LMS at NAU is that it is not very interactive. Gamifying a course would be a great
way to increase student engagement and this requires the LMS to be interactive for the teachers.
The problems our client is having with BbLearn is that it requires too much manual labor and
doesn’t allow for much customization of a course. Without the proper customization tools a
course is much more difficult to gamify. The purpose of the desktop application is so that the
teachers can easily customize their course. While the students on the other hand will be using the
website application to take the course. All data within the database will be shared between both
the desktop application and the website application. The API will help manage the interactions
between the database, desktop application, and website application.

The framework for the website application will be .NET Frameworks. This is a free and easy to
use software which has extensive code libraries to make coding more manageable and consistent.
The team will be using Unity engine to develop the desktop application. Unity is a
cross-platform game engine developed by Unity Technologies which facilitates the creation of
stunning looking games. PHP will be used to save and update information to our database.

Our Tech Demo assignment due at the end of April will be displaying some functionally of our
project. Both the desktop application and the website application will both have their own
demos.

A new LMS is required to make a gamified course because our client spends way too much time
trying to manage his gamified course using BbLearn. Our new application will be easily
customizable and be able to be used for a variety of different courses. The team hopes to
revolutionize the way future LMS’s are developed in the future.

33

6.0 References
[1] Arora, Simran Kaur. “Unity vs Unreal Engine: Which Game Engine Should You Choose?”

Hackr.io, 18 Nov. 2021, https://hackr.io/blog/unity-vs-unreal-engine.

[2] Dealessandri, Marie. “What Is the Best Game Engine: Is Cryengine Right for You?”
GamesIndustry.biz, GamesIndustry.biz, 5 Jan. 2021,
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-crye
ngine-the-right-game-engine-for-you.

[3] “Introduction to .NET Framework.” GeeksforGeeks, 21 Feb. 2022,
https://www.geeksforgeeks.org/introduction-to-net-framework.

[4] “Introduction to Azure Cosmos DB.” Introduction to Azure Cosmos DB | Microsoft Docs,
Microsoft, 30 Mar. 2022, https://docs.microsoft.com/en-us/azure/cosmos-db/introduction.

[5] “The Good and the Bad of .NET Framework Programming.” AltexSoft, AltexSoft, 28 Feb.
2020,
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-net-framework-pro
gramming.

[6] “What Is .NET Framework? A Software Development Framework.” Microsoft,
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework.

34

https://hackr.io/blog/unity-vs-unreal-engine
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-cryengine-the-right-game-engine-for-you
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-cryengine-the-right-game-engine-for-you
https://www.geeksforgeeks.org/introduction-to-net-framework
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-net-framework-programming
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-net-framework-programming
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework

