
Software Design Document

Grace Hsieh, Brett Lewerke, and Chayson Spigarelli

29 September 2022

Project Sponsor: Terry E Baxter

Faculty Mentor: Dr. Michael Leverington

Mentor: Daniel Kramer

Version: 2.0

1

Table of Contents

1.0 Introduction 3

2.0 Implementation Overview 5
2.1 Big Picture 5
2.2 Technologies 5

3.0 Architectural Overview 7

Figure 3.0 Architecture Diagram 7
3.1 Desktop Application 7
3.2 Website 8
3.3 Database 8

4.0 Module and Interface Descriptions 10
4.1 Desktop Application 10

4.1.1 UML Diagrams 10
Figure 4.A: Super Admin Functions 11
Figure 4.B: Teacher Function 12
4.1.2 Public Interface 13

4.2 Website 13
4.2.1 UML Diagram 13
Figure 4.C: Website UML Diagram 14
4.1.2 Public Interface 15

4.3 Database 15
4.3.1 Database RDS Architecture Diagram 15
Figure 4.D: Database UML Diagram 16
4.3.2 Public Interface 17

5.0 Implementation Plan 18
Figure 5.A: Gantt Chart of Sprints 19

6.0 Conclusion 21

2

1.0 Introduction

Schools are always searching for a learning management system (LMS) to help better the
education for their students. A LMS allows students to work on their studies anytime while they
have access to the internet. This is essential for any college as the internet becomes more popular
and continues to provide additional means for learning all the time. There are many LMS’s out
there but none that make students feel like they are playing a game. That’s where our team steps
in! The goal of the team is to develop and design a “gamified” LMS that makes students feel like
they are playing a game when in fact they are doing school work on our “gamified” learning
management system.

In order to gamify our LMS the team will build some additional features that a typical LMS does
not offer. For example, one of the team's goals is to create and manage a student's currency
(coins) inside the LMS. The students will have the ability to spend their coins on a variety of
different items in order to help them achieve success in their course(s). Students will also have
the ability to select a pre-made avatar so that other students can admire and appreciate their
custom look!

This project is split between three parts: the website application, desktop application, and the
database. The website application is where students will complete their course. The desktop
application will be where the teacher creates a course. Lastly, the database will connect the two
so that data can be shared between the desktop and website applications.

This project idea comes from our sponsor Professor Terry E. Baxter, a Civil and Environmental
Engineer at Northern Arizona University (NAU). NAU currently uses an LMS called the
Blackboard Learning Management System which a number of professors at the university
generally dislike for several reasons. In our sponsor’s case, he dislikes it due to a lack of creative
freedom when creating and running a course. For example, our sponsor wanted to be able to
build an asynchronous class with game-like features such as a marketplace to spend coins earned
by doing well on assignments. These coins could be used to gain new attempts on quizzes or
unlock additional content that can be referenced during exams. The Blackboard Learning
Management System does not support this kind of functionality, so Professor Baxter is using
multiple spreadsheets to track coins and is having students send emails with a receipt of their
transactions. Each of these receipts need to be manually entered into the spreadsheet which
becomes increasingly unsustainable with increasing class sizes. The team hopes to remove his
need for manual labor in order to teach the kind of class he wants.

By the end of this project the team would like to have a fully functional gamified learning
management system that will last for many years to come. One of the team's goals is to allow our

3

sponsor to use this learning management system for any course of his choosing while also
allowing other teachers to use it for their classes.

4

2.0 Implementation Overview

2.1 Big Picture

The project will be divided into three main parts: a desktop application, a website application,
and the database. The desktop application is being created using Unity Game Engine. Inside the
desktop application is where a teacher will be able to create, manage, and publish a course. The
website application is being developed using .NET Framework’s Razor Pages, a platform built to
integrate C# functionality into HTML and CSS. The website application is where students will
be able to interact and participate in their courses. A student will only be able to take a course on
the website application after it has been created by a teacher on the desktop application. Lastly,
the team is using a relational database (RDS) to store information created by both the students
and the teachers. This will serve as an intermediary between the website and desktop
applications allowing them to share and manipulate the same data.

The goal of Team Gaming Ed. is to have a fully functional gamified learning management
system that makes students feel like they are playing a game. If students feel like they are
playing a game students might be more interested in completing their school work.

2.2 Technologies

The team has researched many technologies since the start of last semester. The main
technologies the team will be using include Unity, .NET Framework, and MySQL.

- Unity: In order to make a gamified LMS, the team chose to include a game engine for
one of its core technologies. The team is using Unity, a cross-platform game engine
developed by Unity Technologies, for the desktop application. Unity is easy for the team
to learn due to being object oriented with a user interface that allows the programmer to
create objects using a drag and drop interface. These objects can have scripts which tell
the objects what actions to perform during a certain event. Furthermore, Unity allows the
desktop application to be downloaded onto a computer and be able to be worked on in an
offline mode that can later be updated once an internet connection has been established
which was requested by the sponsor.

- .NET Framework: The team has chosen to use .NET Framework for the website
application because it allows C# code to be written in the same file as HTML code. This
is done by using the framework’s Razor Pages which is a programming model developed

5

by Microsoft. .NET Frameworks also includes a large number of libraries and
documentation. This allows for the team to choose between a large number of options in
order to quickly find a desirable solution to any given problem posed by the project.

- MySQL: The team has decided to move forward with MySQL for the RDS as it is very
popular and there is a large amount of documentation on the internet if needed by the
team. Both the desktop application and the website application are able to access the
database at the same time without compromising data integrity. This also means that the
team can use the same set of data while working on different sections of the project
without causing problems for the other members.

6

3.0 Architectural Overview

To reiterate, there are three major components of our project, the relational database (RDS) using
MySQL query language [A], the Unity based desktop application [B], and the .NET Framework
website [C]. Figure 3.0 shows how they work together as a whole. This section will go into the
primary functions of the three major components, how information travels between them, and the
architectural influences behind development decisions.

Figure 3.0 Architecture Diagram

3.1 Desktop Application

- Primary Functions: The desktop application is made for teacher access to sections of
the database. The primary functions can be put into two categories: teacher course
controls and super administrator management tools. The teacher will have full control
over their assigned courses which includes adding, modifying, or deleting content in the

7

course and adjusting student progress or grades. The super administrator is the team’s
current solution to managing teacher accounts. It is the account with the most power
made primarily to delete and create teacher accounts as well as any courses associated
with them.

- Information Pipeline: A series of files written in PHP have been made to allow for SQL
queries to pass to the RDS. These statements will be able to request and modify relevant
information from the RDS.

- Architectural Influence: One architectural influence style the team used for the desktop
application is the component-based architectural pattern. This emphasizes the separation
of concerns with respect to the wide-ranging functionality available throughout a given
software system. This also allows the team to work on different components at the same
time where they can be later linked and work together.

3.2 Website

- Primary Functions: The LMS itself will be accessed through the website. Students will
be able to log into the website and access courses and the course content that they are
enrolled in. Furthermore, teachers will be able to use their own login credentials to
interact with their own courses as if they were a student.

- Information Controls: The website is made with .NET Frameworks’ Razor Pages.
Razor Pages is a programming model that enables the team to create the website
application using C# and HTML in the same file. SQL statements can be passed through
as strings to the RDS which will in turn interact with the RDS.

- Architectural Influence: The course content is primarily in a tree structure. In other
words, the idea is that a parent node will connect to some number of child nodes. Those
child nodes will have their own child nodes and those nodes will continue to repeat this
pattern for many levels. This creates a contained structure that is easily
compartmentalized and easy to recreate. Another architectural influence would be the
model-view-controller architectural pattern. The model-view-controller is commonly
used to divide a program into three parts: model, view, and controller. This is done to
separate information that is presented and accepted to and from the user which promotes
security and modularity.

3.3 Database

8

- Primary Functions: To reiterate, the RDS is where the project stores all of its long-term
data, such as profile information, courses, grades, etc. All of it needs to be able to relate
with each other which is why the team chose to use a relational database instead of any
other model. An RDS uses a system of primary and foreign keys when grabbing
associated information from multiple data tables.

- Information Controls: The data itself is stored in tables with rows and columns. Each
row is one object while each column is a data variable that the object is associated with.
Using SQL query statements, it is possible to combine multiple tables using a system of
comparing primary and foreign keys, also known as joins.

- Architectural Influence: The team is not knowledgeable about the specifics behind how
MySQL computes its relations. The way the team interfaces with it is using MySQL
query language and we follow the syntax of the language in order to achieve our desired
results.

9

4.0 Module and Interface Descriptions

Various modules were developed in order for there to be different subparts to the project that
each perform a specific task or function. Modularity is important so that a set of tasks can be
worked on at different times without conflicts and if something breaks in a module of code it
does not affect the entire project. Without modularity, code would be difficult to understand and
difficult to work on at the same time by various team members.

The UML diagrams may not be at the highest resolution possible. The team has determined that
this is the fault of how Google Documents processes images.

4.1 Desktop Application

To reiterate from section 3.1, the desktop application is built using Unity Game Engine and its
primary function is to allow teachers to manage courses and the super admin to manage the
teachers. Students will only be able to access classes on the website after a teacher publishes a
course from the desktop application.

4.1.1 UML Diagrams

10

Figure 4.A: Super Admin Functions

11

Figure 4.B: Teacher Function

12

The diagram has been split into two for space. Figure 4.A shows the different classes that the
super administrator will have access to inside the desktop application while figure 4.B shows the
different classes the teachers will have access to. The left of the Login() box in figure 4.A
connects to the homeAdmin() box in figure 4.B. Each box represents a scene that a user can
navigate to. A scene is something that the user sees with 2D/3D objects on screen. Scenes will
have user inputs, drag and drop, and clickable functionalities. The arrows represent the steps on
how a super admin or teacher will be able to access different scenes. The number after each
scene name is the scene order in Unity. Each scene has a C# class associated with it and each
class name is related to the scene name.

4.1.2 Public Interface

The services provided are split into two different parts depending on who is logging in or what
role they have been assigned. A role dictates what privileges to give to individual users.

If a user logs in as a teacher, then that user will have access to all the material in the classes they
specifically teach. This information includes a list of all the students in a particular class. Each
student will have information viewable by the teacher such as but not limited to their username,
what class they are in, as well as their grade.

If a user logs in as the super-administrator role, that user will have access to information on all
the individual teachers. Such information on the teachers could include, but is not limited to: the
classes they teach, their username, and their role. The special permissions given to the
super-administrator allows them to register a new teacher or delete an existing teacher.

4.2 Website

To reiterate from section 3.2, the website application will be where students take a course. The
core functions that students will have is viewing their profiles, complete course material, access
the course’s marketplace, and access to the course’s discussion board. Buttons will be provided
to navigate to different sections of the website, but it is possible to type in the correct URL of the
subdirectory to access them as well.

4.2.1 UML Diagram

13

Figure 4.C: Website UML Diagram

14

The different parts of the website that hold the data from the database are called classes. The
variables in these classes are directly related to the variable names in the database. In order for
the user interface to display properly, we must request data and store it in the class variable.
From there, we can start manipulating the website to display dynamically.

This diagram displays the different classes inside the website application. IDatabaseAccess is
accessible by the entire website and is the main connection between the website and the
database. Since a lot of requests to the database use the same method, only different SQL strings,
we are able to only use the one class. The only two methods(ValidateAccount() and
ValidateAnswer()) that are unique to a specific model in the website are designated by the syntax

4.1.2 Public Interface

Some of the methods created use the async method declaration. An async method allows the
program to move on and execute other functions/methods. You then end the async method with
an await() operation to synchronize the data with the program. We use this operation a lot when
doing any request to the database. For example: displaying the discussion board to a user will
display “Loading..” until it gets the discussion board information from the database.

4.3 Database

To repeat from section 3.3, the database is how the program systematically stores and organizes
data from both the website and the desktop application. The database allows the programmer to
create views that can be manipulated and filtered to allow for select information to be returned to
the website and desktop application.

4.3.1 Database RDS Architecture Diagram

15

Figure 4.D: Database UML Diagram

16

Figure 4.D is the current UML of the RDS. The format of all the variables start with the keyword
of the table followed by an underscore and ends with a camel-case of the variable name. All of
the primary keys have a variable name of ID. The foreign keys are slightly different in that the
variable name is the keyword of the linked table with ID on the end.

The two main features of the database are the keys and the relations. The database currently uses
one-to-many and many-to-many relationships, represented by combinations of “1” and “n”.
One-to-many relationships mean that one copy of a table relates to multiple copies of the other
table. Many-to-many relationships mean that several copies of a table relate to several copies of
another table.

4.3.2 Public Interface

By nature the database does not have a public interface. In order for a program to access the
database, it must have the username and password associated with the schema. Furthermore, the
database does not have set functions in the same way that other coding languages might have
libraries. SQL queries must all be custom created and are not reusable for a majority of the
project.

17

5.0 Implementation Plan

Scheduling the implementation of various components described in section 4.0 will be completed
using sprints. Sprints are components that will be individually assigned to different team
members. Sprints will be assigned on a weekly basis. Once a week the team will get together and
show the other team members what they have been working on for their individual sprint. During
this meeting each team member's sprint will be evaluated by the other team members to ensure
adequate quality. After each team member's sprint has been evaluated then all team members will
agree on assigning new sprints to each team member. If a sprint is not completed on time tasks
should be strategically allocated to the next sprint in order to stay on track.

18

Figure 5.A: Gantt Chart of Sprints

19

The Gantt chart shown in figure 5.A shows the sprints the team is currently working on. The
sprints are divided into two different categories based on what part of the program the sprints are
related to which includes Unity (desktop application) and the website (website application). The
dates are shown on top of the Gantt chart. The tasks and who they are assigned to are described
on the left side of the Gantt chart as well as in the middle of the Gantt chart. The team is
planning on having all of our sprints completed by October 31st.

20

6.0 Conclusion

Many design decisions were made by the team over the course of this project. This team is
excited to begin implementing the technologies researched during the previous semester. The
three main parts of the project include the database, the desktop application, and the website
application. The database will connect the desktop application and the website application so that
they can both manipulate the same data. The desktop application will be completed using Unity
Game Engine. The website application will be completed using .NET Frameworks. While the
database will be completed using the MySQL RDS.

The main goal of this project is to have students enjoy doing their school work more. In order to
do that the team's sponsor has given us the idea to make a gamified LMS. Our idea of a gamified
LMS is to create a LMS from scratch and then add additional features to make students using the
LMS feel like they are playing a video game instead of working on school work. Gamified
features brought to us by our sponsor Professor Terry E Baxter include but are not limited to an
in-course currency, custom avatars, and much more.

The team is progressing through the project quickly thanks to the teams planning from last
semester. All of our technologies have done the jobs we have expected them to do including
being able to create a desktop application using Unity and being able to access the website
application using any internet browser. The desktop application currently allows
super-administrators to register, delete or view teacher information such as their name, username
and class they teach. A teacher can view the classes they teach as well as the students in each
class they teach. The website application has a quiz, account, discussion board, logout, and
marketplace pages and is currently working on creating the test, assignment pages, and profile
pages.

The team hopes this document serves as a valuable insight into our project for any future
developers. The UML diagrams allow us to visualize in the natural language about how our
program will function. By splitting our program up into various modules the team is well
equipped to complete the project successfully and on time to the team's sponsor.

21

