
Technological Feasibility

November 03, 2021

Fossilized Containers

Team Members:

Jadon Fowler

Jeremy Klein

Emily Ramirez

Mumbi Macheho-Mbuthia

Sponsor:

Dr. Nicholas McKay

Mentor:

Melissa D. Rose

1

Table of Contents 1

1 Introduction 2

2 Technological Challenges 3

3 Technological Analysis 5

3.1 Connection between Fossilized Controller and PReSto Containers 5

3.2 Command Line Interface for Fossilized Controller 7

3.3 Python Adapter HTTP Server Choice 10

3.4 R Adapter HTTP Server Choice 11

4 Technological Integration 13

5 Conclusion 14

2

1 Introduction
Climate change is a loaded word. It is fantastical that the world may no longer be a

home, but yet it remains, constantly worsening, constantly present. From the 19th

century to now, the global average temperature has risen 1.18 degrees celsius [1].

While it appears to be negligible, this small change in temperature contributes to

increased droughts, heatwaves, wildfires, and more extreme weather conditions. When

the public discusses climate change, the focus stays on the present and the looming

future. Paleoclimatology, the study of past climates, takes a different approach. By

understanding how Earth’s climate has changed over the past several thousand years,

scientists can predict and prepare for changes in the future.

Creating climate reconstructions is an important facet of studying climate change.

Reconstructions are maps that show different metrics, one being temperature, of a

region across different points in history. Dr. Nicholas McKay is a researcher in the

Paleoclimate Dynamics Laboratory (PDL) at Northern Arizona University working to

keep reconstructions updated with new datasets and techniques. PDL, along with

collaborators at the University of Southern California, have worked to create a system

that gathers reconstructions and provides constant updates. This is the Paleoclimate

Reconstruction Storehouse, otherwise known as PReSto.

With PReSto, Dr. McKay and collaborators can accept different datasets and models

from different researchers and submit them to their system. With the thousands of types

of datasets, however, it is difficult for researchers to submit their code to PReSto without

an existing standardized way to review them. Scientists use a multitude of programming

languages, libraries, dependencies, and operating systems that are not guaranteed to

work on other systems. Containerization is a way to package software so that it will be

compatible across different host operating systems. It also allows users to test a model

without having to install different libraries or dependencies. They simply need to build a

container and run it to view the model.

3

A current problem within the research community is that not every climate scientist has

the skillset to create their own containers since it is newer technology. Having scientists

who are trying to contribute to PReSto learn the intricacies of containerization is

inefficient. PReSto aims to create a streamlined process so that scientists can

contribute their models in a more efficient manner. This is what the team, Fossilized

Containers, is going to solve. The team will create a command line interface, CLI, for

scientists interacting with PReSto so that they can submit their models in an efficient

manner that is easily accessible and language agnostic. The CLI is bundled within the

Fossilized Controller, the overarching tool that helps scientists build and communicate

with their containers. The tool will guide the user through the container creation process

with prompts for clarification. From there, they can run the models or send files with the

help of adapter libraries. The libraries are added to the model code so that the

Fossilized Controller can adequately communicate with the containers.

The rest of the document will be covering the challenges that arose when designing the

structure and flow of the Fossilized Controller. First, an outline of the four major

challenges that will be faced for the different components of the project. After a short

introduction and description, the challenges are discussed individually and much more

in depth, covering the possible solutions and their benefits and downfalls. Once the

possible solutions have been covered, the chosen solution will be introduced as well as

the reasons behind that choice.The final part of this section of the document will explain

how the different options will be tested and why it is crucial in order to ensure that there

are no major flaws in the structure and plan for the project. It also allows us to give our

client to review what programming languages, data structures, or connections we plan

to use and the thought process behind each of them.

2 Technological Challenges
Part of the PReSto project is defining standards for climate reconstructions to use. Dr.

McKay has standardized the Linked Paleo Data (LiPD) file format containing annotated

paleoclimate data collected from real world samples. This format is used as the input to

4

climate reconstructions. Another file format, the Network Common Data Form

(NetCDF), is used as the output for climate reconstructions. These climate

reconstructions can also take in arbitrary parameters that change the underlying model.

Together, these form the standard input and output for climate models.

In order to standardize the containerized climate models, the team will build a few

components that will facilitate the interactions with PReSto Containers, which are

climate reconstruction programs that have been containerized. These components will

define input LiPD files, climate model parameters, and output NetCDF files to be passed

around using an HTTP connection between the Fossilized Controller and the climate

reconstruction program. These components include the following:

1. The Fossilized Controller will maintain a connection to the PReSto containers

to send & receive files.

2. The Controller will also contain a Command Line Interface (CLI) for managing

the running of the PReSto containers.

3. Python and R versions of an Adapter Library which the climate model program

will use for standardized communication with the Controller from within a Docker

container

The Fossilized Controller (herein referred to as the “Controller”) is a standalone

program that includes a CLI for creating and managing PReSto Containers. PReSto

Containers are Docker Containers that utilize our Adapter Libraries and contain a

climate model. The Controller is responsible for creating this Docker Container by

generating the necessary files, and communicates with the Docker Engine running to

manage the activities of the climate reconstruction within the container. This process is

defined by the technological components we analyze in section 3 and their integrated

whole in section 4.

5

3 Technological Analysis
Each of these components contains several technology choices that can greatly affect

the speed and efficiency of our development process and resulting code. For each of

these choices, we present an in-depth analysis of available options, weighing the pros

and cons for our use case, and argue why our choice is a good fit.

3.1 Connection between Fossilized Controller and PReSto

Containers

For PReSto Containers to be used by external users and services, the Fossilized

Controller will facilitate connections to the containers and control what they are running.

Since PReSto Containers are actually Docker Containers, we can use existing

mechanisms to communicate with the climate model program inside, but a standardized

protocol must be created for the Controller to properly manipulate the containers.

Figure: High level overview of the controller showing the different components within it and the

missing communication protocol.

6

We need this protocol to send and receive files and metadata. This can be done by

Docker Containers in a few different ways. The first approach is using a Docker
Volume which is useful for persisting data generated by the container. Volumes are

stored in a part of the host filesystem that is managed by Docker. It acts as a “filesystem

in a filesystem” for the container to use for storing data between runs. It is not

recommended for other processes to manipulate the files within a Volume. Using

Volumes, climate model programs could store their resulting NetCDF files, but the

Controller wouldn’t (or really, shouldn’t) be able to write the input LiPD files to a PReSto

Container’s Volume.

Another approach would be to use a Bind Mount which mounts a directory in the host

machine to the Docker Container. This makes the files in the directory usable by both

the container and the Controller. Bind Mounts might work well for our usage, but giving

containers the ability to arbitrarily manipulate files in the host system is insecure and

could impact other programs running on the host system. This risk shouldn’t be taken

since we are uploading arbitrary climate model programs that may have bugs or

malicious code inside them.

The chosen approach for communicating between the Controller and PReSto

Containers is to use an HTTP Server & Client for sending LiPD and NetCDF files and

related metadata. The Adapter Libraries will contain an HTTP Server that accepts

LiPD files and returns NetCDF files, and the opposite end will be built into the Controller

using an HTTP Client. This will be how the Controller interacts with the PReSto

Containers. An HTTP Connection also provides much better security than Volumes or

Bind Mounts and doesn’t require the Controller to be running on the same filesystem as

PReSto Containers.

7

Obtain NetCDF

Files

Obtain

Parameters

Security Final

Score

Volumes ✓ ✗ ★★★☆☆ ★★★☆☆

Bind Monuts ✓ ✓ ★☆☆☆☆ ★★☆☆☆

HTTP ✓ ✓ ★★★★★ ★★★★★

Figure: Comparison of Volumes, Bind Mounts, and HTTP Connections in relevant areas of

interest.

To test the feasibility of sending data over HTTP, we will be building an HTTP Server in

the Adapter Libraries that supports accepting LiPD files and returns NetCDF files. We

will use fake data until all of the components are completed and we can run a real

climate model program. Additionally, an HTTP Client will be created in our Controller

program that is capable of sending the proper files to the HTTP Server in PReSto

Containers.

3.2 Command Line Interface for Fossilized Controller

For users and external services to communicate with the Fossilized Controller and the

PReSto containers it owns, the Controller will come bundled with a Command Line

Interface (CLI). The CLI is a multifaceted tool that will utilize the Docker Engine API to

interact with the Docker daemon. It is meant to encompass the different commands of

Docker itself without requiring the user to have extensive knowledge of containerization.

The primary purpose of the CLI is to guide a scientist through the containerization

process through multiple prompts asking about their program. There are also standard

Docker commands integrated into the tool so that scientists do not have to switch

between different tools.

8

Figure: Example usage for the CLI

A programming language is therefore needed that is compatible with the Docker API

and allows for a deeply customizable tool. The first candidate is Go, which is the

language Docker itself is built off of. Go has a strong presence in cloud computing and

is often the language of choice for CLIs. It is usually preferred by companies because it

was initially built with speed and Google’s infrastructure size in mind. Docker has official

software development toolkits (SDKs) for two languages, with Go being one of them.

This allows the CLI to interact with the Docker daemon. While Go is a new language for

most of the team, it is not difficult to pick up and has simple syntax. Despite it being

easy to pick up, there would still be a longer learning curve for the team to get

comfortable with the language. This would result in longer delays when creating the CLI

tool.

Another language of interest is Java, an object oriented language. Its speed is

comparable to Go because they are both compiled languages. The issue with Java that

makes it the least attractive candidate is that it does not have an official Docker SDK or

library. There are many community libraries for Java, however, they are either

incomplete or have no active maintenance. Setting it up properly is also more difficult as

9

you have to add community Docker libraries as dependencies or do extra work as per

the specific client’s requirements. An officially supported and maintained SDK or library

is therefore more preferable.

The chosen language for creating the CLI that users interact with is Python. It also has

an official SDK for Docker. Unlike Go and Java, which are compiled languages, Python

is interpreted. This means that its speed is significantly hindered compared to the other

languages. Despite it’s lowered performance, Python is a language the entire team is

familiar with and would not have a large period for self-training. When comparing the

SDKs of Python and Go, implementation on Python is more efficient for the team.

Starting a container in Python is only 3 lines, compared to the 50+ required for a Go

implementation. Both languages are equal in complexity when it comes to creating a

simple CLI tool, so the team ultimately decided on Python. It is a language the entire

team is familiar with and integrating the Docker API is not difficult.

Docker API

Compatibility

Speed Team

Experience

Overall

Score

Go ✓ ★★★★☆ ★★☆☆☆ ★★★☆☆

Java ✗ ★★★☆☆ ★★★★★ ★★★☆☆

Python ✓ ★★☆☆☆ ★★★★★ ★★★☆☆

Figure: Comparison of different programming languages for the CLI across relevant fields of

interest.

To test the feasibility of using Python to create the CLI, the team will create sample tools

that use basic Docker functionalities and use a containerized PReSto model. The tool

will start by doing basic commands, such as pulling and starting a container. Doing so

10

ensures that Python will meet all of the requirements needed for the CLI in an efficient

manner.

3.3 Python Adapter HTTP Server Choice

Climate model programs within PReSto Containers that are written in Python will be

using our provided Python Adapter Library to communicate with the Fossilized

Controller. Communication will be handled by a Python HTTP Server included in the

Adapter Library that is running within every PReSto Container, and an HTTP Client

embedded into the Controller.

There are a number of libraries that would provide the kind of connection that is

required. The first option is the HTTP server and client included in the Python standard

library. The http.server and http.client modules require a large amount of

syntactic overhead (the amount of code needed to do simple tasks is large). Using the

standard library does not increase container size, but the resulting code’s explicitness

makes the Adapter Library difficult to read and extend. This makes it a poor choice for

our use case.

Another option is Django, a web framework designed for full scale website

development. It provides superb extensibility, offering first and third party modules for

adding database connectivity, templating, and several other useful features for website

development. Django is very large and would increase the container size by a

substantial amount, as well as produce a moderate amount of syntactic overhead when

building the HTTP server. Most of the features it provides are unnecessary for our use

case, making this another poor choice.

The final option and our selected approach is to use Flask, a microframework for

building HTTP servers quickly. Since it is a microframework, its compactness won’t

inflate container sizes and makes it very simple to build an HTTP server that sends and

receives files. Flask doesn’t provide as many features as Django, however the Adaptor

Library’s use of the server is very limited. This makes Flask ideal for us.

11

Library Size Extensibility Syntax

Overhead

Overall Score

Standard HTTP

Libraries
✓ ★☆☆☆☆ ✗ ★★☆☆☆

Flask ✓ ★★★☆☆ ✓ ★★★★★

Django ✗ ★★★★★ ✓ ★★★★☆

Figure: Comparison of different Python libraries for the HTTP server across relevant fields of

interest.

In order to test the functionality of the different HTTP server libraries, we are going to

implement them to mimic what the adaptor library will be doing. The client will send a

POST request to the already running server inside of the container to run the climate

model program. This POST request will contain the LiPD files that will be used in the

computation. Once the computation is complete the server will send a response

message containing the resulting NetCDF file.

3.4 R Adapter HTTP Server Choice

The issue at hand is how a PReSto container will communicate with the controller. We

decided that each PReSto container would run an application that the controller can

communicate with to get and request information. So, the issue has evolved to which R

package to use for R-based PReSto containers to create and maintain this

communication application.

12

The characteristics needed for this feature rely on the ability to receive and react to

HTTP POST requests. The initial search for R packages that handle HTTP led to a web

page maintained by R that lists all packages related to web and server frameworks.

Keeping the goal in mind, we picked three candidates: httpuv, opencpu, and shiny.

From a glance, they all seemed to provide the functionality needed to accept and

handle HTTP requests.

Creates Server Ease of Use Security Overall Score

httpuv ✓ ★★★★★ ★★☆☆☆ ★★★★☆

OpenCPU ✓ ★★★☆☆ ★★☆☆☆ ★☆☆☆☆

Shiny ✓ ★★★★☆ ★★★☆☆ ★★★☆☆

Figure: Comparing httpuv, opencpu, and shiny R packages in regards to characteristics
needed to create an HTTP server in R

To test and compare the packages, a server prototype was created for each one to send

a simple HTTP package to an R client. Each category is ordered top to bottom in order

of importance, with the top category being the most important.

Whether the packages created its own server was a binary choice. Ease of use was

much more subjective: while coding the aforementioned prototypes, we documented the

experience and ranked each package from 1 to 5, with 1 being the worst. Security was

a much harder category to measure. Because of our lack of knowledge with Internet

security, we used documentation provided about the packages to rate each package.

Using these findings, we determined that httpuv was the correct package to

implement our R adapter. While its security was less than adequate, the ease of use

13

was the second most important characteristic to us. This project consists of many parts,

most of them completely new. The easier it is to pick up new dependencies, such as

httpuv, the more effective our team will be.

While security is not an issue now, moving forwards the requirements of each feature

will be fully defined and the amount of security needed will be addressed.

4 Technological Integration
Together, these components form the building blocks of the PReSto containerization

process. This process will be followed by climate scientists in order to properly

containerize their code and make their climate models compatible with the rest of the

PReSto system.

14

In this figure, we describe the components in detail. The Fossilized Controller will

communicate with PReSto Containers over HTTP using an HTTP Client embedded in

the Controller and an HTTP Server in every Adapter Library used by PReSto

Containers. This communication will follow a standardized protocol to ensure the

climate model programs properly receive the required LiPD files and parameters. These

files and parameters are specified by a user or external service and sent to the

Controller through its CLI. They are sent to the container and retrieved from the

container will be a NetCDF file containing the data emitted from the climate model

program.

5 Conclusion
As of now, climatologists can not easily share their models with one another. These

models create a historical overview of climate change. As the subject of climate change

gains more focus, these models give insight to what is entailed for future climates and

what may occur in the present.

Our task is to use containerization to give climatologists the ability to communicate their

models with one another. It appears simple, however creating and managing

language-agnostic, standardized containers for a client base unfamiliar with containers

is an involved project with big challenges.

Using containerization as the foundation, however, we have been able to identify four

key problems and their potential solutions.

1. How will PReSto containers communicate with our newly designed Fossilized

Controllers?

2. What language do we use to build the command line interface tool?

3. For our Python adapter, what will we use to run a server inside PReSto

containers for models written in Python?

15

4. For our R adapter, what will we use to run a server inside PReSto containers for

models written in R?

We have tested these potential solutions against one another using their desired

characteristics to determine the best candidate for each problem. Our next step is to

define the goals of our product, to ensure our client’s vision is understood and to move

forward with the project with the correct destination in mind.

16

References
[1] “Climate change evidence: How do we know?,” NASA, 12-Oct-2021. [Online].

Available: https://climate.nasa.gov/evidence/. (Accessed: 18-Oct-2021).

