
Team First Light
Final Report

Version 1.0

5 May 2022

Sponsors
Dr. David Trilling

Dr. Mike Gowanlock

Faculty Mentor
Felicity Escarzaga

The Team
Matt List- mjl79@nau.edu

Carson Pociask - cmp557@nau.edu
Jakob Nelson - jrn235@nau.edu
William Fuertes- wf69@nau.edu

1

mailto:mjl79@nau.edu
mailto:cmp557@nau.edu
mailto:jrn235@nau.edu
mailto:wf69@nau.edu

Table of Contents

1.0 Introduction 4
● Figure 1.1 5

2.0 Process Overview 7

3.0 Requirements 8

● 3.1 Functional Requirements 8
● 3.2 Non-Functional Requirements 11

4.0 Architecture and Implementation 13

● Figure 4.1 13
● Figure 4.2 14
● Figure 4.3 15
● Figure 4.4 16
● Figure 4.5 17

5.0 Testing 18

● 5.1 Unit Testing 18
○ Figure 5.1.1 19

● 5.2 Integration Testing 20
○ Figure 5.2.1 21

● 5.3 Usability Testing 22

6.0 Project Timeline 24

● Figure 6.1 24
● Figure 6.2 25

7.0 Future Work 26

8.0 Conclusion 27

2

https://docs.google.com/document/d/1W78sJI-OywKWL34DWdl5qWK-0lA6EZvdhN28LOqYtHA/edit#heading=h.227eoqxbldzw
https://docs.google.com/document/d/1W78sJI-OywKWL34DWdl5qWK-0lA6EZvdhN28LOqYtHA/edit#heading=h.y9pkmwhs4xhu
https://docs.google.com/document/d/1W78sJI-OywKWL34DWdl5qWK-0lA6EZvdhN28LOqYtHA/edit#heading=h.lzooisvkcnvd
https://docs.google.com/document/d/1W78sJI-OywKWL34DWdl5qWK-0lA6EZvdhN28LOqYtHA/edit#heading=h.s4r5mdx2serq
https://docs.google.com/document/d/1W78sJI-OywKWL34DWdl5qWK-0lA6EZvdhN28LOqYtHA/edit#heading=h.6qd8olyf16qa
https://docs.google.com/document/d/1W78sJI-OywKWL34DWdl5qWK-0lA6EZvdhN28LOqYtHA/edit#heading=h.l7awp7x0zhu6

9.0 Glossary 27

Appendix A: Development Environment and Toolchain 28

● Hardware 28
● Toolchain 28
● Setup 30
● Production Cycle 31

3

1.0 Introduction
Big data is a relatively new field in technology. The process of extracting information

from sets of data too massive to be handled by ordinary technologies can solve difficult business
problems. Solving these problems are at the forefront of many of today’s technological efforts,
and while efficient tools already exist to send, capture, and store large sets of data, the need to
perform analysis on them is growing. Forbes predicts that more than 175 zettabytes will need
analysis by 2025 (Coughlin, 2018). Researchers, businesses, and everyday people are responsible
for today’s massive growth in data creation. In order to fully utilize massive amounts of data, it is
important that the technologies used to support its operations keep up with the demand of today’s
growth in data. While it may seem like most of the world’s big data technologies are cutting
edge, some fields still lack the support needed to draw useful information out of collected data.
One of the fields that experiences drawbacks in workflow due to this lack of support is
astronomy.

The field of astronomy is rapidly expanding and the data pertaining to night sky
observations continues to grow in size, on the scale of terabytes and petabytes. Analyzing
astronomical data is becoming increasingly complex and has become much more involved with
data science as a whole. An example of this growth in today’s world is the Vera C. Rubin
Observatory. Currently being constructed on Cerro Pachón in Chile, this site, when operational,
will produce roughly 20 terabytes of data every night under the 10-year Legacy Survey of Space
and Time (LSST). The telescope will be taking all-sky observations, meaning that astronomical
data will be compiled from all visible parts of the sky on a nightly basis. Different researchers
across the field of astronomy will handle some percentage of this produced data, and Northern
Arizona University (NAU) will be ingesting datasets pertaining to asteroids. The clients that will
support this team are professors at NAU: Dr. David Trilling, Professor of Astronomy and
Planetary Science, and Dr. Mike Gowanlock, Assistant Professor at the School of Informatics,
Computing, and Cyber Systems (SICCS). Both clients perform analysis on the observational data
pertaining to asteroids, or rocky bodies in the solar system that are tracers of the formation and
evolution of the solar system. Since construction in Chile is still underway, a testbed is being
used from the Zwicky Transient Facility (ZTF) located in San Diego, which is currently
operating in a fashion similar to the LSST. Once arrived into NAU’s database, both Dr. Trilling
and Dr. Gowanlock utilize the captured data to draw out further information to perform research
and simple observational work. The tracking of asteroids’ characteristics over time is a common
task for the clients and is useful for learning more about the specifics of the solar system. These
observations and the research conducted on the collected data has the ability to help researchers
further understand the history and current state of the solar system. Tracking asteroids as they
travel across the night sky also helps predict the likelihood of asteroids coming in close contact
with the earth.

4

As previously mentioned, there are already well-built tools in place that are able to
capture and transfer very large sets of data. However, once astronomical data is gathered and
stored, there exists a bottleneck. This restriction in workflow is caused by the need for data to be
analyzed with the use of visualizations to provide more in-depth and easily accessible
information. However, the current solutions are lacking in quantity and quality. The workflow of
the clients deals with various characteristics derived from observed asteroids, such as magnitude
or size. Comparing these characteristics over time using rudimentary graphical tools can prove
difficult and problematic when very large data sets are to be considered, on the order of terabytes
produced on a daily basis. Currently, utilizing this derived data during research is time
consuming to use and difficult to understand due to the lack of graphical support. This greatly
hinders the workflow of the clients and other astronomers; the data is collected yet an efficient
way to utilize it for useful research is lacking. While the tools that the clients currently use do
include visualizations of data, they are lackluster and will not be capable of handling the massive
amounts of data that will eventually be used from the Vera C. Rubin Observatory.

A couple of example sites that the clients have previously dealt with encompass the main
issues just discussed. The sites are ANTARES (antares.noirlab.edu/loci), and MARS
(mars.lco.global/), and they are both centered around collecting and displaying massive
astronomical data sets. The main list on the home page of ANTARES can be observed in Figure
1.1. A massive list of different asteroids can be observed here, where each has its own link to
more in depth information. While the site is organized, the way that the large amount of
information is displayed to the user is very overwhelming and uninviting. It is difficult to spot
outliers or trends among the asteroids listed.

Figure 1.1 - ANTARES Site Home Page

5

To bring all these problematic points together is helpful in defining a set of problems that
the clients sought to have a solution to, and ANTARES acts as a good reference point. In a
concise summary, the problems that the clients and other astronomical researchers are
experiencing are as follows:

● Lack of visual support, i.e plots, charts, and graphs of large data sets
● Lack of interactivity among large data sets
● Uninviting website pages, i.e massive lists of data points that are difficult to navigate
● The clients’ current solution is unusable due to server hosting conflicts.

The solution for this project is a data dashboard capable of supporting visualization and
interactivity among cleanly represented astronomical data sets. This solution will serve as a
simple and easy to use base for astronomical observation and research, specifically on asteroids.
In further detail, the solution encompasses the following features to address the problems at
hand:

● Visualization of large data sets through graphs, charts, plots, etc.
● Interactivity of data points within visualizations
● Simple web interface with easy to navigate web pages that pertain to different modules,

i.e home page with large data summary vs. page with specifics of chosen asteroid

The ability to pull astronomical data from the database at NAU is crucial as said data is
the center point of this project. While the computational operations such as deriving
characteristics from asteroids is already complete, the original data still needs to be retrieved
from the database in order to continue onto visualization and interactivity. Once the data is
retrieved, storing the large sets in memory will need to be considered. One of the most important
aspects of the envisioned solution is creating graphical representations on a web page out of the
large data sets from tabular structures. This operation will address one of the most crucial
problems of the clients, a lack of data visualization. Having data in graphical formats rather than
long lists helps ease the research and observation process for the clients and alike researchers.

6

2.0 Process Overview

From the start of the capstone project back in August of 2021, the team established roles
that each member would take on in order to keep structure throughout the development process.
In specific, Matt List took on the responsibilities of client communication and team organization
as team lead, Carson Pociask as the recorder took responsibility for keeping documentation in
order and up to date, Jakob Nelson kept the team’s GitHub organized as the release manager, and
William Fuertes helped design a high-level view of the product as the architect. The creation and
assignment of these diverse roles helped the team define the different tasks that would arise
throughout the capstone project. An aspect of any team project in software is the upkeep of
communication between all involved parties. From the start, the team established multiple
meetings that occurred on a weekly basis. The three meetings were as follows: mentor meetings
every Tuesday afternoon, client meetings every Friday morning, and team meetings multiple
times per week. This consistent communication helped establish a thorough understanding
between all parties of what was complete and what still needed to be accomplished. As
mentioned previously, this is crucial to ensure success and agreement and to avoid any gaps in
understanding for any part of the project.

Once the team got to the tail end of the Fall 2021 semester, actual development of the
product began. It was at this point that the team established another set of communication
requirements to be followed going into the latter portion of the project. The same mentor and
client meetings were kept in place, however the team agreed to meet more frequently as
development of the project ramped up. These meetings carried into the Spring semester of
capstone and supported the team in keeping an organized structure.

Once development of the web application began, the team became more acquainted with
using GitHub, a version management system that supports software organization. Jakob the
release manager ensured that the team’s repository was clean and up to date on a consistent basis.
Whenever there was a change to the code, GitHub was used to reflect the changes and store an
up-to-date version of the project to continue work off of. GitHub was a key piece in the
development process for keeping the project and team organized. Discord, a chat room software,
served as the main communication point among the team and with the mentor. Discord allows for
quick and convenient messaging, voice chatting, and file sharing. Lastly, Zoom, a virtual meeting
software, was used as a communication point with the clients at every Friday meeting. The
combination of these team standards and technologies were used throughout the entire project
and proved to be successful tools in the development process.

7

3.0 Requirements
Requirements acquisition began at the start of the Fall 2021 semester. Weekly meetings

with the team’s clients allowed for a routine look into what was expected as a final product.
Multiple example dashboards, such as ANTARES (antares.noirlab.edu/loci) and MARS
(mars.lco.global/), were provided by the clients to spur ideas of different modules to be
implemented. To start, the domain-level requirements must be established. This will allow for
more specific and tailored requirements to be explained in subsequent sections to ensure full
coverage and understanding of what the clients and the team envisioned as a final product. The
domain-level requirements defined for this project are as follows:

● Visualizations of large percentages of the observations in the database - A high-level
representation of the database should be readily available to users.

● Interactivity among large data visualizations - Data points should be able to be
selected out of a large representation of data.

● Ease of use - Product should provide ease of use when navigating different data on web
pages. Product needs to be simplistic in nature so as to not overwhelm users.

● Filtering the data - Datasets should be able to be filtered and visualized on the basis of
different characteristics such as magnitude.

● Tracking asteroids over time - Asteroids should have the ability to be saved by a user to
serve as a consistent reference point.

● Widely accessible - Product needs to be web-based to provide access to anyone who
wishes to view and/or interact with the data. This also expands the reach to those who did
not have access to the data beforehand.

● Up-to-date data - Product needs to display the most current observations possible as new
astronomical data is to be generated on a daily basis.

Now that the domain-level requirements have been laid out, each can be further evaluated
and explained. The following subsections entail the functional and non-functional requirements.
Each of which may branch into further requirements.

3.1 Functional Requirements
Some of the most important aspects for a successful delivery of this project revolve

around the functionality the solution will support. The following section will look into the
functional requirements for this project in a hierarchical manner beginning with high level
requirements, thus providing the ability for other, more specific requirements to be branched off
and explained in detail. As an overview, the functional requirements that will be looked into are
as follows:

8

● Simplistic dashboard design to minimize clutter and improve navigation and visualization
● Visualize millions of objects
● Ability to interact with individual asteroids
● Ability to save/track specific asteroids
● Account creation and access in order to store asteroids for users

3.1.1 Simplistic Dashboard
This project operates around a web application shared by potentially hundreds of

astronomical researchers. A dashboard serves as the center point in this web application to
provide functionality among the astronomical data. This requirement was important to complete
successfully as it is an aspect that is commonly done poorly in current solutions used by the
clients and other astronomical researchers. Referring back to Figure 1.1, the overwhelming
amounts of data displayed is not appealing to interact with. The dashboard created needed to be
simplistic in structure and style. The dashboard also had the need to be organized, with links to
other parts of the website available so that the main home page does not get cluttered. The
sub-requirements of a simplistic dashboard include the ability to save and track asteroids through
account creation and modification, access to downloadable data, and access to pages through
links on the home page. These are further described below:

1. Account Creation
An important sub requirement is that users should be able to have an account within the
web application. Users are able to create an account using a chosen username, email, and
password combination. An example of a feature for an account is the ability to link an
email address and receive notifications of changes to the website’s data. Note that this is
an example and was not implemented in the final solution for this project.

2. Saving and Tracking Asteroids
The ability to reference back to asteroids supports ease of use in the clients’ and other
researchers' workflow. A user of the solution is able to save specific asteroids and easily
access them through their account. This acts as a bookmark that the user can use on
asteroids of their choosing. As understood from the clients, research will vary in
astronomy, even among the asteroids that are utilized in this project. This means that
different researchers will want to utilize the solution for their specific purpose(s). This
requirement makes it possible for a user to bypass functionality and web pages that do
not contain what they are looking for.

3. Downloadable Data
The ability to download data in various formats is another sub requirement. The user of
the solution is able to download various file formats pertaining to chosen asteroids. In
example, a user is able to download a PNG file of a scatterplot pertaining to an asteroid.

9

4. Account Login
A user is able to login with their previously created credentials. A sign in page is
available on the home screen of the web application.

5. Links to other Pages
On the homepage of the web application, there are links to other pages. These pages will
host modules such as account information or asteroid information.

3.1.2 Data Visualization
The main aspect of this project’s solution is visualizing large amounts of asteroids. Data

visualizations will change how astronomical researchers view asteroids and support their
research. As mentioned before, astronomical researchers have very few ways to quickly look at
asteroid data and come up with inferences based on that said data without manually checking
each individual asteroid and the data that is associated with it. Without the visualizations,
research surrounding asteroids is slow and tiresome. Various visualizations have been created out
of the astronomical data. Some sub requirements of the data visualization requirement include
interactivity among various visualizations, a heatmap that groups asteroids into regions, as well
as a scatter plot that will then be used to chart each asteroid in a specific region. Below, the sub
requirements of data visualization are described.

1. Interactivity Among Datasets
Visualizations are very important to this project and provide for a great point of data
reference. However, interactivity within the visualizations expands the reach and overall
functionality of the product, so it has also been implemented as a sub requirement of data
visualization. The ability to interact with data points also allows for more effective
in-depth research and observations to take place. Interacting with data points within a
visualization provides for better ease of use.

Scenario in Workflow : User is at the home page of the web application where a snapshot
of the database is displayed in a visual. While observing, the user notices a group of
asteroids that have unusually high magnitude and is interested in learning more. Instead
of digging through thousands of data points in an attempt to locate the particular asteroid,
the user simply creates a scatter plot in the desired range of values in order to see more
about those asteroids. This saves a lot of time in the workflow as less time is spent
manually searching extensive, uninviting lists of asteroids.

Not only does interactivity among visuals improve ease of use in a workflow, it also
creates a welcoming environment for the product. An easy to use solution supported by

10

interactivity among visualizations can help draw in more researchers to NAU who wish
to use the created tools.

2. Heatmap Visualization
A sub requirement of overall data visualization is the creation and use of heatmaps. A
heatmap represents data using color codes and can differentiate asteroid counts quite
easily. For example, a heatmap can serve as a high level view of the database.

3. Scatter Plot Visualization
Another sub requirement of data visualization, similar to the previous, is the creation and
use of scatter plots. Scatter plots are another form of visualization that are used in this
project, serving as a representation of attributes over time.

3.2 Non-functional (Performance) Requirements
In the context of this project, non-functional requirements play an important role in the

overall success and usability of the final product. The amount of data handled during
development is large enough that ordinary data tools are not feasible. When dealing with massive
amounts of data points, performance is often a bottleneck in the workflow of the user. Thus, it is
very important to consider and thoroughly explain the non-functional requirements for this
project. These requirements are listed below and will be evaluated throughout this section.

● Ability to visualize data sets within a reasonable amount of time
● Ability to handle multiple users making visualization requests simultaneously

3.2.1 Efficient Dataset Visualization
The database currently contains gigabytes of data, and the solution will need to create

multiple graphs using this data. A page that loads slowly will frustrate users, which will decrease
the usability and desirability of the solution page. Because presenting plots to the end user will
be dependent on how quickly the application can receive data from the database, the team will
require plots to be built in a reasonable amount of time. Additionally, the application needs to
draw the larger graphs, such as the summary heatmaps.

3.2.2 Ability to Handle Multiple Users
Because this application will be publicly available, it is conceivable that multiple users

will access this site at the same time. While a large number of users at once is not expected, as
this site will be primarily used by a niche audience, the team needs to be aware of the cost of
running multiple users, and to do so without significant loss of performance.

11

4.0 Architecture and Implementation
In order for work to continue on this project, it is important that there is a thorough

description of what has been built. This way, whoever takes on the next steps in development for
this web application will not be confused at any point as to what is happening at any point in the
system. Before diving into the finer details of functionalities built over the last six months, a
higher level view of the application must be presented. Figure 4.1, as seen below, is a high-level
view of the entire system including the different modules implemented and routes that a user can
take throughout the application. Take note of the linking of the different modules to better
understand the flows a user can navigate.

Figure 4.1 - Software Architecture Overview

When the user accesses the web application, they will land on the homepage where static
images of histograms are presented. These histograms provide high level views of the ZTF
database in that scripts were created to handle massive amounts of data. These histograms can be
seen below in Figure 4.2.

12

Figure 4.2 - Application Home Page

The NAU ZTF database holds all of the information of all asteroids, such as their
observations (one asteroid viewed at a given time). From the main page a user will be able to
navigate to plot pages where heatmaps or scatter plots can be built. On both the scatter plot and
heat map pages, a user will have to input what X and Y bounds they want to build a graph from.
Dropdowns are also in place that contain every attribute pertaining to the asteroids. While the
dropdowns default to right ascension (ra) as the X axis and declination (dec) as the Y axis, a user
can select a different combination to use in their plot. Once satisfied with the inputs, a user can
hit the ‘Build Graph’ button that triggers the query and graph building. After a short wait, a user
will be presented with their newly created plot. An example of this scenario can be seen below in
Figure 4.3.

13

Figure 4.3 - Main Asteroid Scatter Plot

Interaction among both the scatter plots and heat maps include the ability to zoom in/out
and pan across the plot. However, far more interaction exists in the scatter plots. Each point
within the scatter plots is clickable in that a link will be generated to a new page. Now to loop
back to the initial scatter plot discussed above. Once built, a user will be presented with their
generated plot where each point within the plot represents an individual asteroid. Once a user
clicks an asteroid point, said link will appear below the plot that will bring a user to a new page
dedicated to that selected asteroid. Once on this newly created page, a user will be presented with
another scatter plot but this time each point represents one observation of that asteroid. The same
dropdowns are present on this page as well if a user wanted to measure observations over
different attributes. Even further interaction exists on this page in that each observation point
within the plot is clickable. The same functionality of a link populating below the graph is in
place for this page as well. Once clicked, this link will take a user to a new page dedicated to that
selected observation. It is here that a datatable is built that contains every single attribute-value
pairing for that observation. This datatable can be exported to a CSV file for later reference. This
observation page can be seen below in Figure 4.4.

14

Figure 4.4 - Observation Page

All heat maps and scatter plots also have the ability to be exported but to PNG files
instead. This is thanks to plotly’s strong functionalities. A search bar is also in place to provide
quick and convenient access to asteroids if a user already knows the ID of an asteroid that they
want to see. To sum up, heat maps and (especially) scatter plots give a user the ability to interact
and explore sets of asteroids from the ZTF database.

Another major component of the application is the account functionality. A user of the
application is able to sign up for an account and login/logout of their account. The main idea
behind this account functionality is to provide a user the ability to save asteroids that they come
across. This way, a user does not have to write down or remember IDs of asteroids that they will
want to revisit. A simple save button is in place on each individual asteroid page. If a user is
logged in, they will be able to save whatever asteroid they come across and have it stored on
their account. To reference back to these saved asteroids, a user can click the direct links that
reside in a datatable on the account page. The account page can be seen in an example below in
Figure 4.5.

15

Figure 4.5 - Account Page

Throughout development, the team and the clients often discussed progress and tasks to
complete regarding the application. At some points throughout the capstone, there were minor
shifts in what was to be implemented for the project. An example of this was the disregarding of
further interactive heatmaps. There was a spur of an idea to allow a user to select a portion of a
heat map that would result in a scatter plot of that region but this was never implemented. On the
flip side, the team provided further interactivity among the scatter plots than what was initially
planned. Now that all the major modules, different functionalities, and navigable routes for the
created application have been explained, the team can now cover what testing measures were
taken during the tail end of the development process.

16

5.0 Testing
Towards the end of the development phase, the team began the process of testing the

product that was built. Three main categories of testing were used in this phase to meet course
requirements. They include unit testing, integration testing, and usability testing. Through this
testing phase, the team was able to ensure a robust product that meets the needs and requirements
of the clients and capstone course.

5.1 Unit Testing
Unit testing is an important part of the software development process that focuses on

separating out functionalities rather than testing the application or product as a whole. Before all
the parts of a system are tested, individual functionalities are tested to ensure that they properly
perform what they are intended to do. This is a key part of the process in software where
multiple modules interact with each other. Below, the team covers the plan for all unit testing of
the astronomical GUI application.

Throughout the development of the team’s application, thorough unit testing was done on
a rolling basis as the different modules’ functionalities would not properly work on their own
without testing various inputs for expected outputs. This testing was done during development
because without ensuring that the individual functionalities work on their own before integrating
to the larger product, such as having a user login to their account, further testing procedures as
described in the rest of this document would be very difficult and time consuming. Since many
of the systems in the team’s application rely on external packages, such as flask_login, it was
important to fully understand the specific functions separate from the entire application. If
implemented and tested within the entire application, development would become difficult and
messy given how much code the team has written. Specifically, the team has conducted manual
unit testing rather than using an automated process that relies on external software packages and
libraries. This is because the team has a thorough understanding of the application needs, which
are small relative to a larger software system, and the tests to be conducted require known input
and output cases. Thus, there will be no mention of any specific testing software packages or
libraries in this document. Below in Figure 5.1 is a table depicting the number of unit tests
performed on each piece of functionality that was separated out during the team’s development
phase of the dashboard. Following this table is a description of the specific functionalities that
the team performed unit testing on.

17

Functionality Number of Tests Type of Input

Create Account 5 Username, Password, eMail

Login to Account 3 Username, Password

Logout of Account 1 Username

Save an Asteroid 2 Username, SSNAMENR (Attribute Value)

Search Bar 3 Search Bar Input Box

Figure 5.1.1 - Unit Testing: Function, Number of Tests, and Type of Input

During the initial development starting at the beginning of the Spring 2022 semester, the
team implemented various functionalities that, when all integrated together, would create an
account system. This account system allows a user to create an account, sign into an account, and
logout of an account, however this is not required for a user when visiting the dashboard. While
it may seem that all of the functions just mentioned live under the same roof, the specifics of
each differ in that various inputs and expected outputs are necessary for a properly working
system. This section will start by looking into the specifics of creating an account. In order to
create an account, a user must specify three parameters: a unique username, a password, and a
unique email address. This set of partitioned inputs have been implemented into functionalities to
ensure the uniqueness of all these parameters, thus making testing each an easy task. During
development, unit tests of these inputs have been conducted and verfired for robustness in
separate files that only involve the use of the flask_login and SQLite libraries. For creating an
account, unit tests verified that the username does not already exist in the database, password and
confirm password fields matched, email address is a valid address, e.g. input has a ‘@’ symbol
and a domain name, email address does not already exist in the database, and that a username
does not already exist under the inputted email. All of these checks have the ability to trigger
different outputs including error messages and success. So, it was easy to conduct unit tests for
each combination of inputs and confirm that the application writes the newly created user into
the SQLite database. Similar types of tests have also been applied to login functionality as they
both share the same inputs. Input parameters for login are partitioned out to username and
password. So, unit tests have been conducted to ensure both fields have been filled out, that the
username exists in the database, and that the password and username input pairing is a valid
entry pair in the database. Logout functionality is relatively simple in that it only takes the
username of the currently logged-in user and executes the logout_user function from the
flask_login package. The boundaries in this case only include the username of a logged-in user.
The unit test for this functionality is just ensuring that the logout_user function gets called
followed by a re-route to the home page.

18

Saving an asteroid is another feature of the application that is applicable for unit testing.
This is a specific functionality that can be tested given that a user is logged in, thus it is a gray
area between unit and integration testing. Required input for saving an asteroid includes the
username of a logged-in user and the ssnamenr of the selected asteroid, which will be used as a
unique identifier when stored in the database. For conducting unit tests on this functionality, the
team ensured that the selected asteroid does not already exist under the user’s account in which
an error will be thrown and no save will occur. Thus the boundary values for this test are that a
user is logged in and that the asteroid is not already saved under their account.

The search bar is a key feature of the application in that it provides the user the ability to
search for an asteroid by its ssnamenr, the unique identifier for each asteroid in the database. The
search bar takes in typed input, so the equivalence partition can be broken down into whatever
the user types in, on the ends of incorrect input like a string or list of strings to a correct input of
an integer. From these partitions, boundaries for valid and invalid input can be established as
integers that represent ssnamenrs in the range of asteroids that exist in the database. There is
really only one pair for right and wrong for this search bar: either the input is an integer that
corresponds to an asteroid in the database or is of an improper type that yields an incorrect
search. Any input that does not yield results from the database query by ssnamenr will default to
an error message that tells the user that the asteroid they are searching for does not exist in the
database and to attempt another search. The team conducted unit tests on the search bar during
development by providing these types of inputs. Whether it be a random string, a negative
integer, or an integer in the range of ssnamenrs that exist, the team verified that the search bar
properly does what it is intended to do.

5.2 Integration Testing
As mentioned before, there are many types of testing in software development. While

unit testing separates out functionalities at the low level to ensure a function does what it is
supposed to do, testing the entire application where many modules interact with each other is
crucial for turning over a working product to the team’s clients. Integration tests ensure that all
the different modules of a software system are properly working while integrated together.
Without performing integration testing, a system can easily be broken in various ways as there is
a lot of interaction between different functionalities.

The application that the team is building is comprised of many modules that integrate
together to create the working dashboard. Many of the modules rely on each other in that
different forms of output act as input to other functionalities. Similar to unit testing, the team
conducted integration testing throughout the stages of development. Since there is not too much
going on within the team’s application in terms of the number of modules, integration testing was
relatively easy, although the most important in the testing phases for the team’s dashboard. The
team’s plan for integration testing is to manually walk through the entire application. Taking all
the possible routes into account will ensure that the modules are integrated properly and neatly.
For example, a user can take the route of getting to an observation of an asteroid by clicking

19

through two scatter plots. Below in Figure 5.2.1 is a high-level diagram of the application being
built. Following this is a description of the different interactions taking place throughout the
application.

Figure 5.2.1 - Application Flow Overview

When a user first visits the team’s site, they will land on the homepage where static
histograms and an introduction of the application are displayed. A top and side navigation bar are
a part of all pages, so it is expected that these will also render properly on the home page. When
the application is run, both locally and on the production server at Northern Arizona University
(NAU), the home page is properly loaded with all elements (home page information and
navigation bars). The second integration test will cover the account functionality where a user
can create an account, login, and logout. This account functionality as a whole is a key piece to
the application that allows users to save asteroid data for future reference. The functionalities just
described do not necessarily interact directly with each other, but do follow a common path that
must be tested for proper working. During the development of the account system, thorough
testing was conducted on a rolling basis to ensure that the flow of creating an account, logging
in, and logging out was intuitive and properly working. The account system makes use of two
separate SQLite files; one to store created users and another to store saved asteroids referenced
by an account username. Integration testing for the storing of this data centers around ensuring

20

that many conditional checks are properly tested. These cases have been thoroughly tested to
ensure proper function and include:

1) Email address for an account should be uniquely stored
2) Username for an account should be uniquely stored
3) Only one username per email address
4) At account creation, password and password confirmation should match

Another major piece of the team’s application is the ability to navigate to a specific
asteroid. This can be accomplished in two ways: via the search bar or by selecting a point out of
the main scatter plot. Either way, the user will be brought to a scatter plot of observations for the
desired asteroid. Similar to the majority of the application, this functionality and integration was
verified for robustness during development. For integration testing, the team ensured that both of
the paths are still properly working. The search bar will return error messages such as “asteroid
not found” when invalid input is given via the search bar. This is a simplistic implementation and
is tested by typing invalid inputs such as negative numbers or words, instead of an integer that is
in the valid range of the database’s ssnamenrs.

Branching off of the asteroid scatter page just covered, a user will then be able to interact
with the scatter points that represent all the observations for the selected asteroid. When clicked,
a user will be able to click a generated link that navigates to an observation page. This
observation page displays a table of all attributes for an observation, such as magnitude and
julian date. To ensure proper integration of this linking, the asteroid path mentioned above will
be used again. Integration testing of this module that provides interactivity among scatter plots
has been conducted through numerous run-throughs of the application.

While the use of specific testing frameworks or tools is lackluster in this document and
specific section, the team can confidently say that the application modules are integrated well.
Throughout development, thorough testing has been conducted as each new module and specific
functionality were introduced. Without properly testing the modules as a whole, e.g creating an
account then logging in and out, the team would not have completed development to the
specified requirements.

5.3 Usability Testing
The end-users of the site are people that would be interested in finding interesting data

about asteroids in the solar system. While the site features a more research-targeted design, any
user who might be interested in astronomy should be targeted. The team does not believe that a
user needs to be well versed in using technology, so only a basic understanding of how to use a
computer and a browser to navigate a site should be expected of the users. This will mean that
the team will have a wide base of potential users to draw from.
The team wants a user to:

1) Create an account
2) Find an interesting asteroid, either through search or by using a plot
3) Save the asteroid

21

4) Download either a plot or csv of the data for future use

From the home page, the user will be tasked to create an account in order to use the site’s
save asteroid function. Once the user creates an account, the ability to save an asteroid page is
now available. The user will then be asked to look through the sidebar and select the scatter plot
link or search for an asteroid using the search bar. The scatter plot link will lead the user to a
scatter plot page with drop down menus so that the user can select the attributes they want to see.
If what the user sees is interesting, the user can save the plot to their account for future reference.
The user can also download the plot or the datatable using the download function that the team
has implemented. If the user just wants to observe a certain point, the user can click on a data
point and a link will pop up leading them to an individual asteroid page with the data pertaining
to the asteroid they selected. This data can also be downloaded for future use. This is one route
the user can take. If the user decides to use the sidebar after creating an account to search for
asteroids, the user will be asked to enter a ssnamenr number with the length of 1 to 6 numbers or
a preselected object from the database. If the user decides to enter a number, then the user will be
routed to an asteroid list page that contains every asteroid that has the same ssnamenr that the
user imputed. The user will then select an asteroid from the list which will then route them to the
individual asteroid page that contains a data table pertaining to the asteroid the user selected.
However, if the user selects to use a predetermined ssnamenr object, the user will be directly
routed to the individual asteroid page.

22

6.0 Project Timeline
Below in Figure 6.1 and Figure 6.2 are gantt charts that depict the team’s progress

throughout the entirety of the capstone experience. This progress is measured over both
academic semesters, spanning from August 2021 to May 2022.

Figure 6.1 Gantt Chart Fall 2021

For the Fall 2021 semester, there were twelve major milestones. Each milestone took the
expected amount of time to complete. The only milestone that took longer to complete than the
others was the Requirements Acquisition as this went on a rolling basis throughout the semester.
Through multiple meetings with the clients over the span of about two and a half months, the
team acquired the requirements necessary to complete this project. The team also began to think
about the technological feasibility of the project and which technologies could be used to
successfully build the desired product. Design Review 1 was presented to update the other teams
and mentors on how the project had been going thus far. The First Application Build was then
completed to be used at the Technical Prototype Demo, which was then built off of for the Alpha

23

Demo the next semester (Spring 2022). Upon the conclusion of the semester, the team website
was cleaned up and updated. A mini video was also created as a sort of sales pitch to anyone who
might be interested in learning more about the project.

Figure 6.2 Gantt Chart Spring 2022

Figure 6.2, as shown above, is the gantt chart for the Spring 2022 semester where the
team had fifteen major milestones; starting with the Software Design Document at the beginning
of the semester. This document was where the team outlined the development of the product and
went into detail about the overview of the implementation, overview of the architecture, module
and interface descriptions, and the implementation plan. After the Software Design Document,
there were seven major implementation modules to work on. The account feature, dropdown
menu / graph building, save asteroids, and search bar modules each took the expected amount of
time for the team to implement.

Three of the milestones took longer than expected. First, hosting the web application at
NAU took far longer than expected. This is because the team had to containerize the project with
Podman and NAU ITS had no information on containerizing and supporting a Python-based

24

application, only an HTML and PHP application. There was little information on the internet
either about why the container was not fully working. After weeks of emails, the team set up a
meeting with Clint Baker from NAU ITS. The meeting lasted about 3 hours and it took four
different people running different container configurations to figure out fixes to the issues that
the team was having. Secondly, connecting to the ZTF database took longer than the team
anticipated due to issues getting the right credentials and connecting using Python and not
through the MongoDB application. Lastly, for the home page graphs, it was just a matter of
knowing which visualizations the clients wanted, so that the team could generate them and
embed them within the team’s application’s home page. Design Review 2 was used to get
feedback from other teams on how the project information was presented and if the product was
coming along smoothly up until that point, according to the team’s sales pitch. The Alpha Demo
was presented to the team’s faculty mentor to show that all or most of the functionality
requirements were complete. Product testing and the Software Testing Plan were then written
and carried out to ensure any errors found within the product were fixed. Testing was also used
to find out if the application was user friendly and simple to use, like was outlined in the
Software Design Document. Design Review 3 was used to present the team’s progress up until
that point and to show how the team used Product Testing and the Software Testing Plan to fix
any errors or usability issues.

Most recently completed was the Capstone Conference where the final product was
showcased and presented to the general public. A poster was created to highlight the main
focuses of the product, like motivation, architecture, a small walkthrough of the functionality,
and challenges that were faced. The last two major milestones are the Product Acceptance Demo
and the Final Report, which were completed at the end of the capstone experience.

7.0 Future Work
The team is confident that the product developed is well suited for another development

team to branch off of. The current dashboard works well and meets the original requirements
however, like most software projects, there is room for improvement. To start, one of the key
future work goals the team envisions is giving a user the ability to share data between other
colleagues within the dashboard. While the current dashboard supports downloading data to
PNG and CSV formats, there is not a way to share this information within the dashboard. This
would cut out an external step of emailing the downloaded data to whomever the user chooses.
Another key development step for future work has to do with the speed of the dashboard,
specifically the queries to the ZTF database. At the moment, the team is experiencing less than
desirable results for larger queries. Although steps were taken during development to curb this,
the team sees this as a key focus for future work. Speed is a key focus for this project, thus the
team envisions future work to speed up the database queries in order to have the graphs be
presented to the user in less time. The team also took the time to document the entirety of the
project so that each line in each function is thoroughly described. This is to help whoever picks

25

up the code next so they are not confused as to what is happening at any point in the code.
Another piece of future work that the team sees as fit is the addition of a datatable or something
similar that contains the numerical ranges of all the asteroid attributes. At the moment, a user has
to know the valid numerical bounds of their selected asteroid attributes in order to build a
working plot. With more information about the attributes, a user might have a better
understanding of what they are when interacting with the plot pages.

8.0 Conclusion
The visualization of astronomical data is a crucial component to analyzing asteroids,

stars, and other objects. Without visualization tools for analysis, researchers need to comb
through thousands of data points using manual methods, making the ability to see patterns and
develop trends complicated. This project is intended to help researchers visualize and analyze the
large amounts of asteroid data hosted on NAU’s servers. The current methodology researchers
use involves time intensive analysis that focuses on individual data points rather than larger
trends and outliers. The solution of a web application developed during the capstone experience
that is able to pull large amounts of data and visualize it in graphs, heat maps, and other
visualizations is to help researchers understand the data they are looking at. The web application
gives insight to outliers, trends, and distributions that will provide a better understanding of what
the data means. This final report highlights the motivations, design process, implementation
details, testing procedures, and roadmap for team First Light’s capstone experience. The team
enjoyed developing the asteroid data dashboard and gained many valuable insights and skills
from development to client communication. The team is also excited to see where this project
heads and what kind of future developments will take place.

9.0 Glossary
Although most requirements for running this project are described in the following

appendix, there is a key piece of information that must be mentioned here. Throughout this
document, the ZTF database was mentioned quite often. In order for this project to serve any use
at all, a connection to this database must be established. The only hurdle is that this database is
hosted and accessed behind proper authentication. Whenever this project is run to serve the
average user, a connection to this database must be made via the client-provided connection
string.

26

Appendix A: Development Environment and
Toolchain

Hardware
The platforms that the team developed on were Linux, Mac, and Windows operating

systems. For the Mac platforms that the team developed on the following: a Macbook Pro
(13-inch, 2018) with a 2.7 GHz Quad-Core Intel Core i7 processor and 16GB of RAM, a
MacBook Air (13-inch, 2017) with a 1.8 GHz Dual-Core Intel Core i5 processor with 8GB of
RAM, and finally a Macbook Air (13-inch, 2020) with an M1 processor and 8GB of RAM.
There were two Windows platforms developed on: one of them being a Windows 10 build 19044
with a Ryzen 5 2600 processor and 32GB of RAM, and the other being a Windows 10 build
19044 with a 2.56 GHz Intel Xeon processor and 32GB of RAM. The linux platform used to
develop this project is a Red Hat Enterprise Server 7.9 release, which is the NAU linux server.
The only hardware requirements for this project is a machine that can ssh into NAU’s linux
servers to configure and maintain the Podman container from which this project is hosted on.

Toolchain
The development environment(s)/editor(s) that were useful for this project include

Sublime Text, Atom, and VS Code. All are text editors that have easy to use GUIs and powerful
preloaded tools in place like a spell checker and a syntax checker for different programming
languages, like Python.

For the backend databases, this project used MongoDB and SQLite. MongoDB is the
ZTF database that the clients use to store all of the data that is received. There are a few tables
from which this data is put into and organized, but this project only uses the ZTF and Asteroids
tables to gather and visualize the data. The ZTF table is used for the different visualizations and
individual data, while the Asteroids table is used to find out the total count of observations for a
certain SSNAMENR; which is then displayed along with the asteroid scatter plot that is linked
from the main scatter plot page. Two separate SQLite database files were used for storing created
user accounts and storing asteroids associated with each user. The reason the decision was
chosen to use two separate SQLite database files is because it was easier during development to
have both SQLite databases up to look at then switching between them when unit testing and
integration testing. The team and the clients also agreed to not append to the Mongo database
where all the asteroid data is stored so as to not create clutter or confusion.

Python was the programming language of choice for this project due to the fact that the
clients are knowledgeable with its syntax and because of the powerful libraries available. This
project utilized many different Python libraries to aid in development, the first and most
important being Dash, a framework for building data visualization interfaces. There are three

27

main technologies Dash uses for its core: Flask, for the web server functionality. React.js, which
is used by Dash for the rendering of the user interface of the web page; and Plotly.js for
generating the plots used in the application. Version 2.0.0 was used. It was needed to develop the
web-based dashboard from which this project is built off of. It was the main library that all of the
product development was branched off from.

Dash Bootstrap Components is another framework that makes it easier to build
responsive web application layouts, specifically, Version 1.0.2 was used. This package was used
to build the sidebar, where the tabs for the Home page, Scatter Plot page, Heat Map page, and
Account page are located. It was also used to build the top navigation bar where the Search Bar,
Sign Up, Login, and Logout buttons are located. The inputs and respective labels for the Sign Up
and Login pages were also built using this library. The last part of the project that Dash Bootstrap
Components were used for was the alerts for successful account creation, saving of an asteroid,
and the various errors associated with the Sign Up and Login pages; like an account already
registered with the same email and username, if the email entered is invalid, if there was an
empty field, and if the username or password entered is incorrect. It is also used to let the user
know when an asteroid is saved to their account, or if the asteroid has already been saved before.

Dash Core Components, specifically version 2.0.0, was the next library used. This
package provides the core React.js components. This was used to display the plots under
dcc.Graph and the dropdown menus for the X and Y axis attributes. It was also used for the
Linear and Log buttons that, when clicked, switch the plots from linear to logarithmic. The X
and Y bounds for the scatter plots also utilized Dash Core Components. When there was an
instance of a function returning a specific location in the web application; like for example when
a user is logged in, the user is rerouted to the account page; or when a user is logged out, it
reroutes to the home page. This is done through the dcc.Location function, which reroutes the
user to which pathname is specified inside the function.

Dash HTML Components version 2.0.0 was the next library to be used under the Dash
package. This library makes it easy to create or insert HTML elements into the existing Dash
application. For example, the team can use html.H1() to create a heading 1 element and have it
be displayed in the application, which was used for the Solar System Notification Processing
System title. Another use was to insert datatables into the application when it was not already
created, an example of this is when clicking on an individual asteroid observation it links to a
page with a datatable of all of that observation’s attributes and values.

Flask, Flask_SQLAlchemy, and flask-login were all used to interface with the Flask API
for logging in and interacting with the SQLite database. These libraries were used as opposed to
the Dash Authentication as the Dash Authentication libraries were locked behind the licensed
enterprise edition. Flask Version 2.0.2, Flask_SQLAlchemy Version 2.5.1, and flask-login
Version 0.5.0 were used.

Just as Dash is the backbone of the data visualization interface for this project, Plotly is
the generator for the data visualizations. Plotly express is used to create the scatter plots, and the
heatmaps. Plotly is also the default dcc.Graph() core component function to help render and

28

display graphs or plots with ease. Any Plotly version 5.6.0 or above is compatible with this
project. Lenspy’s DynamicPlot(), from Lenspy version 1.1.0, is used to set a maximum size on
the scatter plots. This is to prevent a user’s system from being bogged down with a massive
graph. It should be set to 100,000 or more points to still provide a user with access to a large
query.

Pandas acts as the glue between the database querying libraries and the graphing libraries.
When a query to the ZTF database is made, it is passed into a pymongo object, which is passed
into a pandas dataframe. This dataframe provides an interface to that data that Plotly can read
and build a graph from. For this project, use pandas 1.4.0 or above is compatible with this
project.

Numpy is used to cleanly display the user data when a user is viewing their saved
asteroids. Numpy is also used inside the pandas library to speed up pandas operations. Numpy
Version 1.19.2 was used.

Pymongo is used for python to interface and query with the MongoDB database. The
pymongo queries are then passed to pandas for further operations. Pymongo Version 4.0.2 was
used.

Werkzeug.security is used to manage password hashes, such as checking if the hash is
valid and generating a hash for the chosen password. Werkzeug Version 2.0.3 was used.

Setup
In order to run the team’s web application, versus simply visiting the live website, a few

steps must be taken to ensure proper functionality. To start, the Python programming language
must be installed on the user’s computer due to the fact that it is a Python application. Access to
a terminal/command line is required to run the application. This could be via an integrated
development environment (IDE) or via a normal terminal. There is only one Python file needed
to run this project, named ‘app.py’. Another setup requirement to run this application is that the
histogram PNG files are present in the same directory as the main python file. The last file
requirement is that the user has the ‘assets’ folder in the same directory as the main python file.
This folder doesn’t contain any major requirements to run the project, just a few logos used in
the footer and browser tab.

Moving onto the more important requirements to run the application. The team utilized
many packages during development that are all required for the application to properly work.
The team will not go into detail about each package and version in this section as they were
mentioned previously in the toolchain section. Lastly, a connection to the ZTF database must be
made in order to get all the asteroid data loaded into the application. The clients provided a
connection string that the team wishes not to share publicly, but is required for the application to
run properly. When a developer is ready to run the application, all they need to do is run the
command ‘python3 app.py’ in a terminal. This will result in the application being run on
localhost.

29

In order to work on the application live on the internet, a developer needs to have
Podman installed on their machine. Podman is a containerization software that takes all
necessary components of a project and wraps them into a container that can easily be shared and
run on different machines. Due to the fact that this project requires hosting on NAU servers, the
Podman container lives within the NAU linux server, specifically on two instances, one for
development (webapps-dev.ac.nau.edu) and one for production (webapps.ac.nau.edu). These
instances can only be accessed with valid credentials and authentication. The instances both run
on port 9010 through the username ‘ceias_snaps’. There are two URLs that can be used for this
project, one for development and one for production. The URLs to be used from these containers
are as follows: https://rc.nau.edu/snaps/ and https://rc.nau.edu/snaps-dev/. In order for these
URLs to work, a container needs to be created and running using the following commands:
‘podman build’ and ‘podman run’. The Containerfile will also need to be configured to set up
the container as follows:

FROM python:3
ADD whatever_the_python_file_is_named.py /
ADD constring.py /
ADD assets_folder /
ADD static_histogram_1.png /
ADD static_histogram_2.png /
ADD static_histogram_3.png /
ADD static_histogram_4.png /
COPY requirements.txt ./requirements.txt
RUN pip install -r requirements.txt
CMD [“python3”, “whatever_the_python_file_is_named.py”]

The requirements.txt file will need to include the following libraries and packages:

dash >= 2.0.0
dash_bootstrap_components == 1.0.2
dash_core_components == 2.0.0
dash_html_components == 2.0.0
dash_table == 5.0.0
plotly >= 5.6.0
pandas >= 1.4.0
Flask == 2.0.2
Flask_SQLAlchemy >= 2.5.1
pandas == 1.4.0
numpy >= 1.19.2
lenspy == 1.1.0

30

https://rc.nau.edu/snaps/
https://rc.nau.edu/snaps-dev/

pymongo == 4.0.2
Werkzeug == 2.0.3
SQLAlchemy == 1.4.32
flask-login == 0.5.0

Production Cycle
For a developer new to this project to pick up where this team left off, it is important they

know how to properly make changes and have them reflect on the live production, or
development server. The team encourages new developers to make and test changes locally on
their machines before attempting to run the application live on a Podman container. Once
satisfied with the changes, a developer can move the changed code into a Podman container on
the NAU linux server. When the new code is inside a container, a developer can build and run
the container to see the changes online.

31

