
User Manual
2023-04-26

Project Sponsor: Joe Llama, Lowell Observatory

Faculty Mentor: Rudhira Talla, Northern Arizona University

Team: Empyrean- Henry Fye, Nhat Linh Nguyen, Jakob Pirkl, Jacob Penney, Kadan Seward

Overview

This document should act as a guide to the user concerning all matters related to our software
product. It should effectively educate the client on how to install, operate, and maintain the

product.

Table of Contents
1.0 Introduction 3
2.0 Installation 4
3.0 Configuration and Daily Operation 8
4.0 Maintenance 10
5.0 Troubleshooting 12
6.0 Conclusion 14

1.0 Introduction
Team Empyrean is pleased that you have chosen the Spectrograph Control System. The

Spectrograph Control System is a powerful system for working with a real spectrograph
remotely that has been designed to meet your needs. Some of the key features include: request
the observation, status of the system updated and log sheet of observations. The purpose of
this user manual is to help you, the client, successfully install, administer, and maintain the
Spectrograph Control System in your actual business context going forward. Our aim is to bring
advantages to your work and make sure that you are able to profit from our product for many
years to come!

2.0 Installation
As part of this delivery, we have already deployed this application at Lowell, on a mac

connected to a camera and spectrograph. Over time however, you may want to reinstall the
project on a new machine. The following directions will take a device from fresh install to a
production machine, ready to serve.

1. Download Code:
We recommend creating a new repository for this code. Then run the following inside
that directory:

$ git clone https://github.com/Empyrean-Capstone/Empyrean.git
$ cd Empyrean

2. Install npm, postgres:
Ensure that the following are installed:

$ brew install npm
$ brew install postgresql

3. Make a python virtual environment
We need a virtual environment so that we can install packages without version
management. This is so the installation does not ruin other packages that have been
installed. The environment can be created and activated with the following:

$ conda create --name {name of environment, i.e. empyrean} python=3.9
$ conda activate {name chosen earlier}

4. Install python requirements:
We need to move into the directory in which the file requirements.txt is, then we can
install the requirements with the following:

$ pip install -r requirements.txt

5. Configure python variables:
In the directory main, there is a .env file. Move into this directory, and open this file,
changing the variable for DATA_FILEPATH to the location where FITS file should be
saved. The default is the directory created in step one. Remember this file, as we will be
coming back to make one more change to this file.

6. Install npm requirements:
Move back to the root directory of the project and install the node packages needed for
react by running:

$ cd ../../
$ npm install

https://github.com/Empyrean-Capstone/Empyrean.git

7. Configure database:
To get data, we will need to set up postgresql so that our app can access a database.
Open postgresql, create a new user with the ability to create databases, and create a
database with:

$ psql -U postgres
> CREATE USER empyrean WITH PASSWORD '{chosen password}' CREATEDB;

> CREATE DATABASE {name of database};

> \q

Next we need to edit the .env file from before, changing the line
SQLALCHEMY_DATABASE_URI=”postgresql://{chosen_username}:{chosen_password}
@localhost/{created_database}

8. Migrate database:
We have an empty database, but we still need to generate a schema for this database.
Move to the api directory, then upgrade the database with the following:

$ cd /path/to/project/root/Empyrean/api
$ flask db upgrade head

Then, a default database can be migrated from the root directory with:

$ psql {created database} < ../documentation/base_database.sql

9. Run the project:
The project can now be run. Two terminals will be needed as one server will serve
React, while one will serve the Flask application. These can be run with:

The python project can be run with:
$ python api/wsgi.py

// The React project can be run with:
$ npm start

10. Installation of Instruments:
The instruments are run using the same environment as the main application. The
prerequisite is that the camera is able to be used already with the device being
developed on, and that the camera works with ZWOasi.

a. Install the code for the instruments in the root directory of the project:

$ git clone https://github.com/Empyrean-Capstone/shelyak_control.git

b. Each of the instruments can be run in separate terminals with:

$ python spectrograph.py
$ python camera.py

11. Follow the steps from A.3 to install the application in a development environment.
12. Install nginx:

Install with:

$ brew install nginx

13. Configure nginx:
This will make sure we can serve our files from React to a user. We first need to build
our project with:

$ npm run build

Make note of the absolute path of the build path (path/to/project/Empyrean/build). Make
sure that this location is accessible to any user. Find the location of the configuration files
for nginx with:

$ nginx -t

Open this file in a text editor, and add the configuration found in Appendix B, making
sure to change the location of the ‘root’.
After this, we will start nginx as a service with:

$ sudo brew services start nginx

14. Start Flask server as a service:
We already were able to run the flask server, but the server will stop whenever the
computer loses power. Starting it as a service means that the server will start back up
after power is lost.
We need to add this process to the service list. First, make not of where the python we
are running is located, then get to the directory where these services are stored, where
we can then create our service with:

$ which python
$ cd /Library/LaunchDaemons/
$ touch com.empyrean.plist

The services for each of the instruments can also be made with:

$ touch com.empyrean.camera.plist
$ touch com.empyrean.spectrograph.plist

Copy into each of these files the contents of each file found in Appendix C, making sure
to change the two strings inside of the ProgramArguments key, as well as the filepath to
the error and standard output lines to somewhere convenient.

15. Finally, restart the machine, and make sure everything is working. It may be though, that
the camera and spectrograph will need to be reloaded, which can be done with:

$ sudo launchctl unload /System/Library/LaunchDaemons/com.empyrean.plist
$ sudo launchctl load /System/Library/LaunchDaemons/com.empyrean.plist

3.0 Configuration and Daily Operation
After the reboot, the shelyak control should be fully operational, with only a couple of

tasks that need to be performed for continued maintenance.

Set up New User: In this section, we will start with one default user, and switch to a
custom user with greater protection.

1. Log into the system: Use the default login: (username: root, password: password) to
login to the system.

2. On the left bar, click the Manage Users tab.
3. On the user management page, click add new user in the top left of the page.
4. For this user, add a username, password, and name, as well as checking the Is Admin

box. This will allow this user to manage new users.
5. Log into the new user, to make sure that this has worked.
6. Once logged into the new user, delete the previous root user.

Make Observations: In this section, we will look into how we can make observations on
this application.

1. On the main page of the application, after logging in, the top left box outside of the
toolbar is where observations are made.

2. Type in the requested object into the first input box, then click resolve. This first
resolution will take longer than subsequent ones because the SIMBAD database needs
to be downloaded.

3. Click on the number of exposures and length of exposures desired.
4. Click start, and watch the system get to work. You will see that the statuses of the

spectrograph will first change, then the camera will begin to take exposures. You will be
able to see each exposure tick up as it progresses, and be able to see each observation
in the log sheet below. These will both be updated in real time as they progress.

5. Click stop if necessary. This will delete all of the observations made in the batch.

Changing Instruments: Rarely, it may be necessary to change the spectrograph or
camera in use with the system. We cannot guarantee that any spectrograph and camera will be
“plug and play” so here are some pointers on what will need to be changed.

1. Check that the spectrograph.py and/or camera.py files will work with the new instrument.
If the same make, it should, and some cameras of the same model will also work with
the same code. But outside of that, the code will likely need modification.

2. Make sure that new code in these files inherit the Instrument.py class. This class is an
Interface, meaning that any subclass of it must implement the methods it describes as
abstract. For this situation, any subclass must implement: get_instrument_name, which
programmatically get the instrument name of the system, and callbacks, which is where
all socket events are found. More information about these socket events can be found in
the final-as-built Report.

3. Make any necessary modifications to the observation code. This will be in the actual
server, and likely changes will be in the /api/main/observations/views.py file, with some

being in the /api/main/status/views.py file. In particular, attention should be paid to the
“post_observation”, “setup_camera”, and “end_exposure” functions in the observations
file. In the status file, the function “get_current_camera” may need to be changed to
reflect the name of the new camera.

Tips on searching through past observations: This section will have some general
tips for looking through past observations. The main logsheet can be found as its own dedicated
page on the left bar, and at the bottom of the making observations bar.

● If not all columns are necessary, the first button on the toolbar allows a user to select
which columns to look at.

● If a user wishes to sort by, say, what they observed, the second button will open a
popup, allowing a user to select a column to search by as well as the value they want to
compare against.

● To look for observations made between two dates, heading to the main ‘Explore Logs’
page will allow a user to do this. Notice the additional box in the top left. Selecting two
dates will allow a user to look at only logs between these two dates.

4.0 Maintenance
There are several steps that the administrator can take in order to maintain the long-term

health of the system. The primary tasks that the development team sees as necessary concern
the production database and persistent logging outputs (log files). The chosen database
technology can handle very large quantities of data, but, as that data accumulates, it becomes
necessary to monitor for outdated information and make sure that the troves of valuable data
collected are stored elsewhere for easy retrieval in the case of unforeseen catastrophic failure
which results in data loss. Tasks related to protecting one's data and maintaining the health of
the database include

1. Managing the relationships between observation entries in the production database
and the files in the host file system.

The product does not monitor the host filesystem to maintain accuracy in the
database. For example, version 0.1 (the current version) adds log names and
resulting file names to all observation entries in the table of observations made
with our system. If one were to move, rename, delete, or otherwise modify one of
the FITS files that has resulted from or is connected to an entry in the
“observation” table of the database, the database would no longer serve as a
meaningful reference to that item. In order to maintain the accuracy and
legitimacy of the database's tracking efforts, one should do their best not to
modify output names and locations. If one needs to move that data elsewhere,
they should strictly copy the file, leaving the original intact. If a file has been lost,
the system administrator should remove the entry from the database which tracks
it.

2. Making backups of all tables that contain sensitive data, or data that could not be
replaced.

Among the tables in version 0.1’s database, the “observation” table, and “user”
table, assuming one has many users, are those which are most irreplaceable. As
mentioned prior, the “observation” table contains (and references, in the file
system) data which cannot simply be replicated, as is the case with other tables
in the database. Regularly making backups and storing them in a separate place
than the database itself is a wise decision. How regular this operation should be
performed is dependent on how frequently the system is used (and, therefore,
how much output is produced) and how important the observation data in the
database is perceived to be by the administrator or users. Again, observation
outputs are stored in FITS files in the host file system. The observation data held
in the database is essentially metadata that references the true outputs, which
should contextualize how often backups are made.

3. Regularly revoking login credentials that are outdated or no longer used.

If, for some reason, usage of the application has consistent user turnover, the
system administrator should delete those outdated or abandoned credentials
from the “user” table in the database. This can be done very conveniently via the
user management page in version 0.1 of the application.

Besides managing the database, the application’s technologies can produce logs if
configured to do so. As with proper operating system management logs should be investigated
if the disk space of the host device becomes limited or grows short quickly, or if the operations
that append to logs becomes slow (indicating that the log length has become cumbersome).
Logs can be produced by

1. Nginx, the HTTP proxy server that the application uses. This log can be found at
“/var/log/nginx/access.log”

2. Each of the services configured for the application, including
a. the camera
b. the spectrograph
c. the application front-end
d. the application back-end

The logs for each of these items will depend on the inputs given in each service’s
launchctl configuration file. For more information, please see Appendix C of the
team’s “As-Built” Report.

A closing task of the development team will be to transfer ownership of the product over
to the client. This entails transferring the digital ownership of the repository that contains the
source code and its version history and establishing any digital permissions for developers who
will contribute to the product in the future, given that the repository is open-source. This last
point may include establishing permissions in the repository settings on the version control host
(GitHub, per the product’s requirements specification).

5.0 Troubleshooting
Throughout the production and implementation of this project, issues would arise constantly and
there were certain “gotchas” that would appear time and time again. This section aims to help
anyone who is struggling with getting software to run correctly on their machine as these
problems often troubled even the developers.

1. Node Dependency Issues
If the frontend fails to compile it could be issues with the node dependencies used
alongside React. If these dependencies are not installed and updated properly they
could cause issues. To begin, delete the “node_modules” folder. Then, type in the
command “npm install”. This will install all dependencies declared in the package.json
file. If there are errors that occur after these steps check if the error contains missing
node modules. If so, run the command “npm install x” replacing x with the module
declared in the error. If the error does not contain missing modules then the problem is
being caused by something else.

2. Flask Dependency Issues
This step is very similar to the node dependencies step. If backend calls are not working
properly, make sure to check the console to see if any errors occur. If there are errors
surrounding flask dependencies, move into the api directory and type the command “pip
install -r requirements”. If installing all requirements doesn’t work, then use “pip install x”
replacing x with the missing dependency. If the error does not contain missing modules
then the problem is being caused by something else.

3. Tool/Language Related Issues
Often, the team would come across issues when moving the project between machines.
Many of these issues were caused by different versions of python, react, flask, or
postgresql. Ensure that all tools being used are at the same version of the tools used for
the project.

4. Browser-Related Issues
Occasionally, the team would run into issues concerning the login system. Often, these
issues were caused by a browser, in our case Firefox, blocking certain functionalities. If
the web application is not behaving as expected, try using a different browser.

5. Instrument Issues
If the web application loads but the status table is completely empty, that means there is
some issue with the connection to the instruments. Ensure the instruments are correctly
connected to the system and functioning correctly. If it does not seem to be a hardware
issue, check to be sure that the instruments are all still running as services.

6. API Issues
Sometimes, if the API malfunctions for an unforeseen reason it may shut down the
server and calls will no longer work until it is restarted. Ensure that the Flask backend is
running if there are API issues and check the console for more information on what
caused the server to malfunction.

6.0 Conclusion
All of us at Empyrean have enjoyed working on this amazing experience in our final year

at NAU. We all agree that this project has been enjoyable, fulfilling, and interesting. Thank you
for all your support throughout this project, both in the form of virtual communication as well as
the numerous in-person meetings. We hope the solution we have developed for you satisfies all
of your needs, and is easy to maintain and iterate upon. It is our sincere hope that some truly
amazing observations can be made while using our software. While we are all moving on to
professional careers, we would be happy to answer any questions in the coming months to help
you get the product deployed and operating optimally at Lowell.

With best wishes from your Empyrean developers,

Henry Fye (shf26@nau.edu)
Nhat Linh Nguyen (lnn45@nau.edu)
Jakob Pirkl (jap743@nau.edu)
Jacob Penney (jmp458@nau.edu)
Kadan Seward (kos34@nau.edu)

mailto:shf26@nau.edu
mailto:lnn45@nau.edu
mailto:jap743@nau.edu
mailto:jmp458@nau.edu
mailto:kos34@nau.edu

