
PROJECT

SILVAFLUX
Capstone Project
Big Data Computing and Interface for

Tropical Forest Regeneration

By Team Clean Carbon

1

Meet the Team

Frontend team:
Curtis McHone - Team Lead
Justin Stouffer
Jonathan Bloom

Backend team:
Richard McCue
Shayne Sellner

Team Sponsor:
Allie (Alexander) Shenkin

Team Mentor:
Vahid Nikoonejad Fard

2

What are carbon credits?

3

● Carbon credits are purchasable credits that landowners and
project developers can sell

● These carbon credits are directly correlated to the amount of
carbon dioxide a certain plot of land takes in

● Developers and landowners can then sell these credits to
help businesses or corporations offset their CO2 emissions

● The value of the carbon market has seen an exponential
increase as climate change continues to become more of a
pressing issue for our society
○ Value of carbon market in 2021

 ~ 2 billion dollars
○ Expected value of carbon market in 2030

 ~ 50 billion dollars

Project Introduction

4

● Our sponsor Allie (Alexander) Shenkin and his team
have discovered a new climate cooling process that
allows for 30% more carbon credits to be sold for a
designated plot of land

● We have been asked to create an application that is
able to calculate the amount of carbon dioxide a
certain area will uptake, using this new discovery

● As a team we hope that our final application makes
buying and selling carbon credits more profitable
and accessible to the average person as well as
revolutionize the way carbon credits are sold and
predicted

Problem Statement

5

● There is not currently a way to accurately predict the
amount of CO2 uptake for a plot of land.

● Because of this land developers cannot predict how much
money they are going to make or if the project is even
going to be worth their time

● Allie’s discovery makes investing in reforestation projects
much more profitable, helping not only the investor but
the planet, but what is the best way to implement this

● The current software prototype that is used to calculate
the CO2 prediction is simply too slow, inefficient, and not
user friendly

Solution Overview

6

Front End
● Web interface

○ Django Web Framework
○ Utilizes the OpenLayers javascript

library
○ Easy to use map interface

■ Bing Maps API base maps
■ Ability to Zoom, Pan, Scale

● User friendly and responsive
● Ability to draw a polygon
● Measure area
● Sends the polygon to the prediction script

Solution Overview

7

Back End
● High performance linux based server
● Python based prediction system

○ Static raster simulation
● Raster layer storage
● Send results to front end

Database
● PostgreSQL database
● Stores user login information
● User access control
● Expandability for user query storage

Requirement/Architecture Overview

8

Requirements
● Simple web interface with an

interactable map
● Send polygon to backend
● Computationally efficient

backend that computes
carbon uptake

● Database with encryption to
store user account
information

Requirements Acquisition
● Weekly client meetings
● Initial project description and

overview
● External research & sponsor

recommendations

Architecture/Implementation Overview

9

Front End
● Django Framework
● OpenLayers map using bing maps

baselayers
● Communicates with Django Postgres

database to verify login information
● Polygon tool on map built into OpenLayers
● Calls backend script with polygon

coordinates and year selected

What are rasters?

10

● Rasters are digital images made up of a grid of pixels, representing a unit of space
What they represent
● Geospatial data: Elevation, land cover, temperature, precipitation, and etc

Why are they useful?
● They can be used for mapping, land use planning, environmental monitoring, and natural

resource management
● Geographic Information System (GIS) software can manipulate rasters to analyse and visualize

geospatial data
● Due to their format they can be easily shared with others and manipulated for your specific

purpose

Architecture/Implementation Overview

11

Backend
● Precomputed rasters for years 2014-2021 for global

prediction
● Python script to compute the carbon uptake on the

polygons plot of land
● Return carbon uptake back to front end

Database
● Stores user login information utilizing encryption

Prototype

12

Prototype

13

Challenges

14

Backend
Raster storage:

- Our rasters are up to ~45GB in size, up to 21 rasters
- 45GB x 21 rasters = ~945GB total storage needed

Runtime:
- Takes very long to read the raster into memory

Frontend
Local CSS:

- CSS for OpenLayers is not working locally
Django:

- Could not start up the web server

Resolutions

15

Backend
Storage Solutions:

- Increase our AWS storage size
- Support less rasters

Runtime Solutions:
- Reading only sections of the raster into

memory
Frontend
CSS and Django Solutions:

- More research
- On static CSS files and linking
- On Django file architecture

and server startup

Future Work

16

Version 2.0 would include:
- More carbon uptake visualizations / future predictions
- ArcGIS plugin, Monsoon module
- Usage based billing
- Ability to change forest baselayers / real time raster computation
- More feedback to the user regarding the results
- Support for all of the available years
- Further performance upgrades

Example of a carbon uptake graph:

Source: carbonbreif.org

Testing Plan

17

Unit testing Integration testing Usability testing

Initial value Software
Unit

Given to

computes

OutputUnit Test
Value

Compares
with

Success

correct
incorrect

Failure

Client
Sends data

Server

Integration
test

Sends data

Initial
Data

Compares
with

Experienced
User

Non-
Experienced

User

Explain
initial

mental
model

Asked
to

Detailed
overview

Given Given

General
Overview

Think-aloud
method

Begin

Answer
questions

User
will

Begin

Feedback
recorded

18

Ensures our software and code is
accurate and reliable
Tested Units:
● Correct coordinates
● Map projection
● CO2 uptake amount
● Year of prediction

selection

Once Unit testing is complete,
our team will know exactly
which functions/isolated pieces
of software work correctly

Four different tests:
● Query results are correctly

sent over to postgres from
Django

● Logout function restricts
access to home page

● Prediction page
vulnerabilities

● Frontend coordinates
correctly sent and match
to backend coordinates

Once Integration testing is
complete, our team will know
exactly which software systems
are correctly communicating with
one another

Testing Plan

Unit testing Integration testing Usability testing

Users will provide feedback on:
● Initial Impressions
● Ease of use, navigation

around interface
● Expected functionality of

features
● Interpretation of results,

useful or redundant data

Once Usability testing is
complete, our team will have a
better understanding of what
users are thinking when using
our system, and the different
functionalities that they find
important

Schedule

19

Now

Conclusion

Our current implemented solution includes:

● A responsive and convenient web interface front-end with authenticated user access control system (Django)
● Fast and secure data transmission between our web interface and backend (Django)
● Secure database that holds all of the user access information (PostgreSQL)
● Correct data sent back to the user with additional useful information

Functional Requirements:

Simple web interface with a interactable
map, with fast communication with
backend

Computationally efficient backend
that will run the prediction on a
specified plot of land

Database with encryption to
store user account
information

20

Conclusion

21

● Computational performance was
accelerated to meet runtime requirements

● AWS storage was upgraded to hold a larger
amount of rasters

● Django and Web front end are up and
running with working CSS

● Instantaneous Login/Logout connection with
database

● Under 10 sec runtime for a polygon of 1000
hectares

System Performance

Architecture Implementation

● Prediction computation located on the
backend, implemented in Django framework

● High performance AWS backend server
● PostgreSQL database used to store

authenticated user informationChallenges/Resolutions:

OpenLayers

