Team Agone

Technological Feasibility Analysis

October 20, 2021

Team Members:

Rylee Mitchell , Kaila Iglesias, Samantha Rodriguez ,
Jonathan White Velasco

Sponsor:
Adam Stepanovic
Mentor:

Volodymyr Saruta

mailto:rkm224@nau.edu
mailto:kei23@nau.edu
mailto:sr2354@nau.edu
mailto:jaw645@nau.edu

Table of Contents

1 Introduction

2 Technological Challenges

3 Technological Analysis
3.1 Database Management System
3.2 Hosting Services
3.3 Framework for a Web Portal Interface
3.4 Data Visualization

3.5 Secure Authentication

4 Technology Integration

5 Conclusion

6 References

11

13

17

20

22

23

1 Introduction

A study from Yale found that 50% of regular runners get injured every year, primarily from
overuse. That is one in every two people who run regularly that will suffer from an injury
just this year. Insane! For an activity that is so common among people of every age around
the world, it is quite a shame that this statistic is so high.

For almost any athlete or any individual that participates in sports, whether it be
competitively or as a hobby, injuries are among the worst culprits for impeding progress.
While some preventative measures can be taken, such as using proper form, stretching, and
taking time off from activity, it is virtually impossible to prevent injury let alone predict
when it will happen. As a result, injury is something that can only be responded to after the
injury has already occurred.

However, PWR Labs has a better solution - to predict and prevent injury rather than
treating injury after the fact. Reading through various statistics on athlete performance and
seeking out the minor indicative details of change in an athlete’s body is a process that can
be time consuming, but incredibly revealing for coaches. These details can influence the
development of dynamic training regimens for each athlete in an effort to protect their
bodies, thereby reducing injuries. PWR Lab’s vision to help facilitate this process, is to take
the biometric data that can be tracked from wearable devices (such as Apple Watches and
Fitbits) and make it easily accessible to be viewed and analyzed by coaches.

Problem

Currently, PWR Lab has a system to take in continuous streams of data such as heart rate,
elevation gain and loss, and other categories and process it into a textual format. Although
they have developed a way to collect these data streams, reading through text alone and
searching for changes across large amounts of data can be a time consuming and inefficient
task. That is why PWR Lab wants to find a way of displaying data and making it easy to
interpret for both athletes and coaches. The objective of Team Agone’s capstone project is
to use the API developed by PWR Lab for data collection and then further process that data
into a visualized format, such as graphs and charts.

Solution
Our goal is to build a wellness platform that serves as a one-stop-shop for coaches and
athletes alike. This wellness platform will include:
e A customizable environment that allows coaches to select specific data to view and
analyze accompanied with a visually appealing GUI.
e Asecure and scalable database system to create and store user information.
e A messaging system that allows athletes and coaches to communicate within the
portal, sending notifications when a new message is received.

Being able to predict and prevent running injuries is extremely valuable. However, this can
go far beyond only runners; this wellness portal could be used in several different
professional fields. For example, physical therapists play an integral role in helping athletes

and others recover from varying types and severities of injury. Consider a therapist that is
trying to determine whether their suggested exercises and activities have been successful
in treating an individual. Our wellness portal, used alongside devices that track the
necessary biometric information related to that individual’s injury, could provide the
physical therapist with visual information that would allow them to more easily see
whether progress is being made. They could even fine tune their treatment plan and make
adjustments that could rapidly improve the healing process, allowing people to recover
from injuries faster.

This is why our wellness platform is so vital to not only runners, but to anyone that could
benefit from visualizing data relating to and produced by the human body. Now that we
have established the problem and suggested a general solution, we can dive deeper into a
careful analysis of the requirements for building such a platform. At this early stage of
development, we are in the process of analyzing the key components of the platform
including the technological challenges, the potential solutions and various technological
routes along with their alternatives, as well as the integration aspect of it all.

2 Technological Challenges

The main task of the web application is to collect the data from the athletes in a more
efficient fashion. This will be efficient for the athlete to get a geared training plan for them
as well as the coach to make that training plan. Having a web application will also allow for
the athlete and coach to remain in contact about this training plan and how well it works
for them.

5. Gives Workout Plan

¥

1. Asks for Data
Coach Athlete

A

2. Gives Data

Google Sheets

Figure 1. The current system that the coach is working with. Depending on the number of athletes, analyzing
each one of their data and giving a specified workout plan can take 8-9 hours.

Considering these key goals and the downfalls of the current system (Figure 2), we have
identified the following challenges that we will be facing during development:

e Flexibility in data analysis - Ideally, the web application will have access to
different forms of data personalized to what the coach specifically wants.

e Secure coach and athlete portal - In theory, the only person allowed to see all the
athlete’s data is the coach, therefore the athletes data needs to be secured.

e Mobile-friendly web application - Nowadays mobile devices act as a main avenue
of communication. Providing easy access to web portals from such devices will add
convenience for the athletes and the coach. We want to have our web application
easily accessible through a mobile device.

These are the most crucial technological challenges for the development process. The core
technologies of our system must address these issues in an effective manner. In the next
section, we will first analyze each challenge and propose a solution as it pertains to that
problem.

3 Technological Analysis

On the basis of our technological challenges, we have identified the major design decisions
that are critical to this project's success. Our goal is to develop a product that best fits our
client’s needs. The primary criterion of analysis is how well each tool will help contribute to
the value and functionality of the final product. In each of the following subsections, we will
discuss the issues, introduce key characteristics of an ideal solution, and analyze various
alternatives before coming to a decision on a technology.

3.1 Database Management System
3.1.1 The need for a Database System

The database serves as the backbone for our module. It stores the data that will help the
coach and athletes. Without the data, none of the other components of our system will be
effective in assisting our client. Therefore, choosing an appropriate database is vital to our
project.

3.1.2 Desired Characteristics

e Performance- A database that can handle the large amount of data that is being
entered every day.

e Scalability- Scalable to extend to other coaches and athletes of other institutions
other than NAU.

e Security- A secure database that handles athletes' sensitive information as well as
the team.

e Cost- A database that is not only effective in storing data but effective in price as
well.

3.1.3 Alternatives
MySQL

MySQL, being one of the more popular database systems and therefore the first database
we are going to investigate. Currently owned by Oracle Corporation, MySQL is an
open-source relational database management system (RDMS). It is well known for its
robustness and performance. There are built-in security features that the system has to
offer. For example, there are secure connections, authorization, authentication, privileges,
and data encryption.

MariaDB

MariaDB is a branch of MySQL built under different visions of performance, reliability, as
well as openness. Similar to MySQL, MariaDB is an RDBMS also, but it has better speed and
scalability. It is also under the GNU General Public License because it is open-source
software.

PostgreSQL

After MySQL, PostgreSQL is the second most used database management system. It is
available for free and expandable. Also, supporting JSON and working well with different
analysis programs, such as MATLAB, R, and Python. Python being a programming language
that our client is using for his database analysis. PostgreSQL works well with different
frameworks, Django, Ruby on Rails and others that we could also use for this project.

Redis

Redis is an open-source software. It has a BSD license; unlike the other systems we are
investigating. Giving no limitations to what features we can use. Also, unlike our other
options, Redis is an in-memory data structure store, making it one of the quickest database
systems on the list. A downside of Redis is that there is no direct querying. While,
sometimes Redis can be used as an add-on for other databases, it can also be used as its
own. Instead of being known as a database server, it is known as a data structure server.

MongoDB

To widen our search, we looked at a database that is non-relational. MongoDB is a NoSQL
document-oriented database. It is mostly used for data storage of high amounts. A downfall
is that MongoDB doesn’t work well with complicated table structures and instead is on a
single document. While the system does have some security features it does not have the
major ones, such as automatic encryption or authentication.

3.1.4 Analysis

On the basis of the criteria above (3.1.2), we will analyze five options: MySQL, MariaDB,
PostgreSQL, Redis, and MongoDB. To investigate each system, we will be running a dataset
(of 500KB) with arbitrary data and test it against the above criteria. Also, reading through

the documentation to get a better understanding of how each database management
system works.

MySQL

MySQL is not recommended for a database that is going to grow because it was not built
with scalability in mind. For our project, the database will grow. Furthermore, some
features and plugins are only available on exclusive editions. The system is under a dual
license, which means you can use the GNU General Public License or a standard commercial
license purchased from Oracle. The price for the editions start at $2,000 annually and rise
from there up to $10,000 annually. The price would lead us to default to the standard
edition. While none of the features on the commercial version would be essential, having
them unavailable would limit any optimization in the future. In testing of MySQL, it
performed poorly in speed. In query functionality, it returned the results in 2.2 seconds.
While this is under a different edition than the one we may use in our project, we feel that it
is a good indicator of what MySQL is capable of. In conducting a load/stress test on the
database, for security, MySQL was able to upkeep its services and stay operational.

MariaDB

In testing the same data, MariaDB did not perform highly in query parallelism. It took 1.3
seconds to output the results. While right now that is not a high number, in order to output
results along with visuals of the results, we need a much quicker system. For the
load/stress test of the data, MariaDB was able to stay operational for most of the test. The
test was conducted a total of five separate times and did not crash for three of those five
tests. From the lack of features such as query parallelism and partial indexing, it takes away
from the overall potential of the database.

PostgreSQL

In testing, PostgreSQL performed as one of the quicker databases we will be investigating.
For query functionality, it returned the results in 0.8 seconds. PostgreSQL also offers high
scalability and high performance. For security testing, it performed equally with MySQL. It
offers features such as authentication management and data encryption for security.

Redis

The query functionality test was not able to be done, but instead comparing the read/write
speeds to the others, Redis completed the task the quickest. Redis does have a built-in
encryption for the data but would need add-ons to have authentication and authorization
security.

MongoDB

In query functionality, MongoDB tested faster than MySQL but slower than PostgreSQL at
1.4 seconds. For security, it did not test highly compared to the other tested systems. The
load/stress test showed it was not as reliable with a two of five-success rate. However,
MongoDB was able to recover faster (0.5 seconds faster) than MariaDB was.

3.1.5 Chosen Approach

In general, all database systems have their strengths and weaknesses of their own. In our
analysis, MongoDB and Redis did not have very well implemented security fixtures. While
MongoDB did recover from crashes, it suffered in being non-relational. MariaDB was
quicker than MySQL was but since our client is currently using MySQL, we have MySQL and
PostgreSQL as our top two.

Performance | Scalability Security Cost Total
MySQL 2 2 4 4 12
MariaDB 3 4 3 5 15
PostgreSQL 4 4 4 5 17
Redis 5 5 3 2 15
MongoDB 4 5 2 3 14

Table 1. Evaluation of criteria for database management systems. The scale is 1-5, where 5 represents the best.
The total score is out of 20 points.

As shown from Figure 1, PostgreSQL has the highest score overall. MySQL has the second
lowest score. PostgreSQL does score higher in every criterion we are looking at, for our
client it would be an easy transition to stay with MySQL. Looking further into other
features, PostgreSQL will be able to work better with other data visualization languages.
For that reason, we will be using PostgreSQL for our database management system.

3.1.6 Proving Feasibility

Moving forward, we will want to test our database system more. Getting data from our
client will assist us in testing against data that will be more similar to what the system will
be receiving. Using the demo data, we will be able to see the storing system, the security of
specific information, and the speed of the query functionality.

3.2 Hosting Services
3.2.1 The Need for a Hosting Service

As discussed previously, we need a database system to hold all the data. We also need a
service that holds such databases to be accessed on any computer. For this reason, we need
a database hosting service that can manage the database environment. Some of the criteria
from the previous section will be similar to that of this section.

3.2.2 Desired Characteristics

e Scalability- A highly scalable database that can adapt for future growth of our
product.

e Reliability- Reliable storage of the data over a long period of time, as it will be used
year-round by athletes and coaches.

e Cost- An inexpensive system that won’t become a burden financially for our client.

Security- Holds specific information about the athletes securely.

e Compatibility- Compatible with our technologies chosen, specifically the database
management system.

3.2.3 Alternatives

AWS

AWS is the most popular cloud computing service provider. It offers a wide range of options
for different types of projects, which is why it has popularity in the field. It was developed
by Amazon as a cloud computing software. Our client is currently using AWS to store their
other data.

VMware

VMware is a software company that provides virtual software as well as cloud computing.
VMware has similar security features as AWS does. VMware can also act as an addon for
AWS. While this feature may go beyond the scope of the project it can be helpful for future
iterations.

Digital Ocean

Digital Ocean allows for applications to run on multiple computers on a cloud framework.
The company worked to make reliability their number one priority. To help with security,
each server is being run on their own private network. Similar to AWS and VMware, the
data is encrypted in transit and at rest.

3.2.4 Analysis

Based on the desired criteria above we will investigate three options: Amazon Web Services
(AWS), VMware, and Digital Ocean. We will be looking over the documentation and the
descriptions of each product. We will also be testing them each with the arbitrary dataset
from the previous section.

AWS

Since AWS has such a large base of customers, they have proven to be very reliable. This is
being upheld by an abundance of servers that hold the backup data to keep a constant live
connection. With AWS, how much space you use is how much the service is going to cost. It
is unlike other services that have a monthly or annual subscription. As we are collecting
sensitive individual data, we not only need a reliable platform but a secure one as well.
Though the more expensive services that AWS have more security features to offer, those

10

provided are able to provide basic security encryption. AWS is also compatible with
PostgreSQL. During the test, the upload of the dataset was almost instantaneous at 0.3
seconds. Because of the compatibility with PostgreSQL, it was an easy system to use as well
as provide information.

VMware

VMware is subscription-based software with either a one or three year licensing purchase.
Since there is subscription based licensing, you only get the space you pay for and it is not
scalable. You would need to increase your subscription. Even though you would have paid
for a year and needed to upgrade, you would need to pay an additional year or three. There
are backups of the given data to keep a reliable connection. Unlike AWS, this software
doesn’t have a specific service for PostgreSQL databases, but it is still compatible. The
upload of the dataset was also quick with a similar time to AWS (0.4 seconds).

Digital Ocean

Having backups of data does not come at an extra charge, unlike AWS. For cost, there is no
scaling compared to the data size but there also isn’t a yearly subscription. It is more of a
manual operation on a monthly basis to determine what amount of space we would need.
Digital Ocean is also compatible with PostgreSQL, while this is an upside to the software it
is not compatible with the other database systems we investigated. In the case of needing to
switch systems this would become a very large hurdle to overcome. Digital Ocean was also
very quick in uploading the testing dataset.

3.2.5 Chosen Approach

All of these technologies can be very helpful, our primary concern is reliability. There needs
to be a constant input or output from our product, or it will be of no use to our client. It was
a very even score for reliability with AWS and Digital Ocean scoring the same. AWS ended
up scoring the highest overall, as shown below.

Scalability | Reliability | Cost | Security | Compatibility | Total
AWS 5 5 4 4 5 23
VMware - 4 3 4 4 16
Digital Ocean 3 5 5 4 3 20

Table 2. Evaluation of criteria for database management systems. The scale is 1-5, where 5 represents the best.
The total score is out of 25 points.

Based on what was discussed and investigated, we will be using AWS as our database
hosting service. It fits our criteria the best of the three technologies. A great advantage is
our client's company is currently using AWS to hold their data from their other projects.

3.2.6 Proving Feasibility

11

In the future when we have our database system up and running, we will be testing how
AWS holds the abundant amount of data. This data will be the same as mentioned in 3.1.7.
Once they are conjoined, our team can test the security and reliability of the hosting
service.

3.3 Framework for a Web Portal Interface
3.3.1 The need for a Framework

The framework serves as the glue that will hold all other technologies together. Choosing
the best framework will be vital to the success of our project. Our framework will be the
base that receives data from the API and database while also allowing coaching staff to
access the visualized data, communicate with student athletes and secure users and their
data.

3.3.2 Desired Characteristics

e Development Process- While some of us on our team might have experience
building web portals and manipulating data, not all of us do. We need a framework
that is easy to pick up and learn. We do not have the time to learn one of the more
complex frameworks in depth so we will need something with a low skill level while
also giving us the proper tools to accomplish our goals.

e Performance- A Framework that is fast is always ideal. We will be dealing with
large amounts of student data. The API will constantly be updating data to the site
and we will be serving over 120 athletes plus their coaches. Not only do we need
speed but also a framework that can handle such a large amount of users reliably.

e Maintenance- While we may never work on this web portal again after we graduate,
that does not mean that PWR Labs will stop supporting the portal after it has been
developed. As a result, we need a framework that allows for long term maintenance.
We do not want to end up with the PWR Lab team scrapping this product. Future
planning is essential for our project.

e Scalability-We need a framework that allows for flexibility in terms of scale. If other
teams decide to use our portal

3.3.3 Alternatives

React

React is “A JavaScript library for building user interfaces”. React is component-based and
declarative making it the favorite of many website developers and website builders
including Facebook, Instagram, Netflix, uber, etc. In fact, React was created by Facebook and
released in 2013.

Angular

12

Angular is a framework created in 2009. It is now maintained by a team working for Google.
Angular is a TypeScript based framework and prides itself on performance and speed. Just
like React it has declarative templates. Additionally, Angular has been built to be viable for
mobile web browsers as well as regular desktop web browsers.

Vue

Vue is the last framework we will be looking at. Vue is an open-source front end framework
that was created by Evan You in 2014. Evan and his team still maintain and update the site
to this day. View is very similar to React and Angular in terms of features it offers.

3.3.4 Analysis

React
Advantages

While React may be known for its steep learning curve, Reactjs.org has a plethora of
documentation, tutorials and other training resources that will make learning hopefully not
too difficult. Additionally, React uses virtual DOM which allows for the DOM to exist entirely
in memory. This speeds up performance immensely compared to other frameworks using
DOM. Lastly, the JS library provided by React is enormous. On top of that it's very flexible
and has been the main choice for many developers still today.

Disadvantages

React is developed constantly and at a very quick pace. This causes issues in terms of new
documentation not being readily available until later and less predictability of the
framework's direction. Additionally, React is not object oriented, which can be very
confusing for some developers. React is also known to have a bit of a steep learning curve.

Angular
Advantages

Most notable of Angular is its two-way data binding which allows for view changes to be
displayed instantaneously in the model. This also works the other way around. Angular has
found a way to reduce CPU strain by exclusively serving static files which is great for
performance. Angular also has a form of DOM manipulation which involves its two-way
binding. The binding method removes the need to manually translate and update the DOM
elements.

Disadvantages

Angular has tools that can be very difficult to pick up and use. The learning curve for
angular requires a lot of time and effort to learn. Additionally, this framework can be slow
and require a lot of time for browsers to load the site. On top of its learning curve it
requires developers to be very familiar with Model-View-Controller patterns.

13

Vue
Advantages

Vue is a lot like React in terms of its use of Virtual DOM, ease of use and large amount of
documentation that contributes to its easy learning curve. Vue can be used for many more
challenging web interfaces as well as single page applications. The many tools offered by
Vue make it almost trivial to start sites and up the scale. Like Angular, Vue also has two way
data binding making it almost the best of both worlds involving the previous two
frameworks. Vue is extremely flexible in terms of transferring from React or Angular to
view. However, this will not be necessary as our client is already using Vue.

Disadvantages

One of the biggest disadvantages to Vue would be its scalability. While not terrible it can be
hard to adopt it for large scale projects. Vue is a more recent framework, so it hasn't been
adopted into the market like React or Angular.

3.3.5 Chosen Approach

To better show our choice the graph below shows a side-by-side comparison of the few
frameworks we chose to review. It includes all the desirable characteristics we require and
gives each framework a score.

Performance | Maintenance | Scalability | Development Process | Total

React 5 4 4 3 16
Angular 3 4 5 2 14
Vue 5 3 3 5 16

Table 3. Evaluation of criteria for site framework. The scale is 1-5, where 5 represents the best. The total score is
out of 20 points.

As you can see Vue and React are both on equal footing. The deciding factor for us is that
our client already uses Vue as stated before. We believe with Vue's ease of use, and excellent
performance it will be the most fitting software for our wellness portal. Additionally, the
fact that our client uses Vue will make integration a seamless process.

3.3.6 Proving Feasibility

Testing the feasibility of our framework will require us to build a skeleton framework for
our site. This may prove to be a difficult task as we will need to read up on documentation
of our said framework before we can even begin. Additionally, we will need to test our back
end to make sure we will be able to communicate with the database. Feasibility will be
crucial for this aspect of our project since the front-end framework will be communicating
with every other technology in the project.

14

3.4 Data Visualization
3.4.1 The Need for Data Visualization Capabilities

Data visualization is one of the most important aspects of our web portal. It is the solution
to both the client’s and the user’s problem of not being able to visualize the data they are
interested in and already have access to. Thus, our goal is to implement a data visualization
aspect that is not only presented in a clean, user-friendly format, but one that will also be
customizable to a user’s needs.

3.4.2 Desired Characteristics

e Customizable - The data visualization portion of this web portal is one of the most
important and will be one of the most dynamic parts to program. The client has
noted that their customers require a portal that can include a wide range of data
visualization details and columnal information. Since users of the portal vary highly
in what information they want to see and the orders in which it appears, the best
approach to the user dashboard would be to allow the user to edit a primary
dashboard template to include all of the information they are consistently interested
in. Afterward the user can save the template and have that set of information
available in their dashboard along with the ability to reorder it when needed.
Columns of data would best be represented in a drag and drop format to further
increase the customizability of a user’s data dashboard, but if this is not possible, a
selection / checkbox format would be equally applicable.

e (learly Depicted - Regardless of the biometric data types that are being collected,
they should be easy to differentiate. Since the data changes across time by either
increasing or decreasing in value (i.e., VO: max, elevation gain, heart rate, etc.), it
seems most obvious to represent this data in line charts. Therefore, these charts
should be represented in such a way that the data selection and viewing process is
easy to navigate. The data charting characteristic should be clear and adjustable, in
order to significantly facilitate the work of interpreting data by the individuals using
the portal.

e Performance - Since there is an abundance of data being processed and we intend
to make the web portal accessible on mobile devices, the data visualization should
be consistent and fast. That means that graphs and their respective figure
descriptions should look the same regardless of the device they are being viewed on.
The same functionalities of being able to manually select which data streams to view
should also be available in web and mobile formats. In a mobile scenario, it is
especially vital that graphing remains consistent. If a user wants to quickly pull up
biometric information and provide analysis or insight to an athlete, the graphs
should be as functional as the web format.

e Compatibility - The data visualization software should be compatible with the rest
of the chosen technical solutions and or the materials that our client has already
implemented. Considering that our client has already developed an API for fetching
data from biometric tracking devices and the data is delivered in a JSON blob to the

15

database, it seems most viable to use a data visualization package that works with
JavaScript. This will ensure that if the client decides to continue using the web portal
solution, the data visualization aspect can be maintained alongside the original API
for data collection.

3.4.3 Alternatives

Chart.js

Chart.js is meant to be a lightweight API that is simple to understand. It is a free,
open-source JavaScript library that has the capability of supporting 8 different types of data
visualization. Chart.js can be used with React, Angular, and Vue. Chart.js was developed in
2013 and is one of the most popular charting libraries used in GitHub repositories. Chart
rendering in this software is carried out in conjunction with the HTML5 canvas element.

Plotly.js

It is a standalone Javascript data visualization library that can be used to produce dozens of
chart types and visualizations. Plotly was founded in 2012 and is considered to be one of
the fastest growing chart libraries. It allows for out-of-the-box features as well as
sophisticated visualizations in 2D and 3D. There are open-source interfaces of Plotly.js
available for Python, R, MATLAB, and React.

ApexCharts

ApexCharts is an open-source JavaScript library that allows for developing charts and data
visualizations with a simple API. This library was released in 2018 and is relatively new, but
it has high functionality and is a simpler API than some of the more mature visualization
API’s available in JavaScript (Plotly.js, Highcharts, etc.). ApexCharts’ API is intended to be
used with desktop, mobile, and web applications and can be integrated with Angular, Vue,
and React.

Highcharts

A pure JavaScript data visualization library that is meant to be used with web applications,
mobile apps, and IoT devices. It provides interactive charting capabilities, a wide array of
chart types and designs and is compatible with Angular, React, PHP, .Net, and Vue. This
software library was released in 2009 and is free for personal use but not for commercial
use.

3.4.4 Analysis

Chart.js
Advantages

Some of the most obvious advantages to implementing the chart.js library is that it is free,
interactive, and offers a variety of charts. Another benefit is that this library is easy to use
because it has lower functionality than some of the other charting libraries. Furthermore,

16

even though chart.js offers only 8 chart types, they are all responsive, which means they
will render appropriately on different types of devices. Using Chart.js would be a good
route if we are looking for a very lightweight graph rendering library.

Disadvantages

One of the main disadvantages to Chart.js is that it has slow rendering. Rendering abilities
will also be impacted depending on the browser that users try to use the mobile application
in. Since Chart.js relies on the HTML5 canvas element for depicting charts, which means
that we would also need to develop Polyfill code to allow for Chart.js charts to be rendered
in web browsers that do not support HTML5 features. Lastly, this library has a low-quality
zoom element and exporting capabilities. This might be problematic for users if they want
to view smaller sections of data and or export the data for viewing later.

Plotly.js
Advantages

The primary advantage of Plotly,js is that it is highly customizable and interactive. Plotly.js
has integrated zoom capabilities as well as data filtering tools. Plotly can also be used with
highly complex graphs including 3D graph rendering and graphs with complex axes or
combinations of information. Data visualization also looks simple, yet sophisticated thanks
to rendering through WebGL. Charts can also be edited online, they are responsive, and can
be easily exported in high quality images. This library is also free and open source.

Disadvantages

The main disadvantage of Plotly,js is that it is not explicitly integratable with Vue. However,
David Desmaisons made a wrapper for plotly.js that can be used with Vue (Vue-plotly) and
it is endorsed by Vue. Furthermore, Plotly.js has been noted for its poor documentation. If
we are to move forward using a Vue framework, we may find it difficult to not only integrate
the wrapper for plotly.js in our application, which might take time away from ensuring
customizable data functionality.

ApexCharts
Advantages

ApexCharts is a free and open-source library for beautiful and simple graph visualization. It
is compatible with React and Vue which are two frameworks we are considering using.
Charts developed using this API are responsive and the API is relatively simple. Other
functionalities include zoom and SVG rendering.

Disadvantages

The main disadvantage of ApexCharts is that graphs and charts are slow rendering.
Furthermore, the capabilities that it does offer, such as zoom and interactivity, are not as
sophisticated as the other libraries. Lastly, it does not appear that ApexCharts allows for
exporting of data in the form of images or XML files.

17

Highcharts
Advantages

There are many advantages to Highcharts. It is responsive, well documented, handles a
variety of data types and amounts, and is extremely easy to customize. Highcharts is
reported to have a relatively low learning curve, which is good since we aim to add a lot of
customization functionalities for the users to interact with. There is also built-in
functionality for exporting charts to image files.

Disadvantages

The main disadvantage of this data visualization library is that it is the only paid service.
Although Highcharts is free for personal use in website or school projects, if we intend to
hand this product over to the client Highcharts will then be used in a commercial fashion
and will need to be paid for.

3.4.5 Chosen Approach

The table below shows a breakdown of the details on the characteristics of a data
visualization library that will be useful to our web portal and solving the client’s problem.

Cost Functionality | Development Process | Aesthetic Total
Chart.js 5 2 5 3 15
Plotly.js 5 4 2 4 16
ApexCharts 5 3 4 4 16
Highcharts 3 5 5 5 18

Table 4. Evaluation of criteria for database management systems. The scale is 1-5, where 5 represents the best.
The total score is out of 20 points.

3.4.6 Proving Feasibility

Overall, Highcharts appears to be the most useful data visualization tool as it provides the
most functionality with the easiest implementation. Among other charting libraries, it is
consistently rated as one of the easiest to use due to its low learning curve. Considering the
sheer number of advantages and ease of usability that this library provides, it may be worth
implementing this over other libraries using the free version and then considering the paid
version with the client if they determine that they like this tool. However, if we do decide to
use this software we need to get it approved with PWR Labs due to it being a paid service.
Otherwise, the next best option we would be using is ApexCharts because of its high
functionality and the fact that it is free even for commercial use that can accomplish what
Highcharts can while at a different degree. Implementing Highcharts into Vue is simple as
there is already a wrapper for Highcharts in Vue, which allows for generating interactive
charts.

18

3.5 Secure Authentication
3.5.1 The Need for Secure Authentication

An essential part of this portal is making it secure. Each athlete should only be able to
access their individual data while coaches should be able to see their entire team'’s data. To
do so, we need a way of creating some sort of log-in or unique identifier, such as an ID, to
authenticate users and keep data confidential. We want to create a cohesive and consistent
wellness platform, so the security aspect must contain all of the desired characteristics
listed below.

3.5.2 Desired Characteristics

e Implementation- Recognize and securely store existing users’ information while
also being able to create new users and add them to the system.

e Confidentiality- Restrict athletes to only their own data entries and allow coaches
access to all of their athletes’ data, but not their log-in credentials.

e Security- Keep data private and therefore protect against potential vulnerabilities
and attacks.

e Scalability- Scalable to beyond the NAU Cross Country team and easily maintainable
for our client and future potential users

There are a couple of ways this can be done. In any case, we must have a way to store all of
the log-in credentials securely, and this is where we bring in a database for support. The
question is not if we will use a database- because without a doubt we are. The question is
how we can best implement the authentication system and how we can best ensure its
security. A couple of our options are mentioned below, along with a description/analysis of
their respective pros and cons.

3.5.3 Alternatives
Django

Django is a high-level Python web framework that essentially takes care of all the details of
web development for you. It assists in creating software that is complete, versatile, secure,
scalable, maintainable, and portable- all attributes that we want for our system. It is free,
open sourced, and is well documented in an effort to make implementation as easy and
cohesive as possible.

Create Our Own Database

While a heavy task, it is an option for us to create our own database and tailor it to our
specific needs. Databases are good because multiple users can read and modify the data at
the same time. Creating our own database allows for customizability; it would be extremely
scalable and easily modified as requirements change.

Firebase Authentication

19

Firebase Authentication is a backend service that securely saves and stores user data in the
cloud. It supports authentication via passwords, phone numbers, and even popular
federated identity providers like Google and Facebook. It stands on its own as a complete
user interface or can be manually integrated into our own mobile application.

3.5.4 Analysis
Django

Mainly, Django provides a secure way to manage user accounts and passwords by default.
Instead of creating our wellness platform from scratch, we could use the existing source
Django and properly configure these components into our own website/application. It uses
a database-based scheme to store authentication information or is customizable to where
we could add in our own existing system (say, if we wanted to partner with NAU to use the
Cross-Country team’s NAU log-in information for our platform). Not only that, but it uses a
hash function to encrypt passwords and protect them from attacks; it also prevents other
common vulnerabilities including cross-site scripting and forgery. Django is Python-based,
and our client did mention that they would prefer to use Python for the data science aspect
of the platform; this is an extra benefit and allows for easy implementation.

Create Our Own Database

The benefit of creating our own database is that we’ve all had experience doing so through
MySQL. Of all the options, it is the most familiar, but also the hardest to implement; we
leave a lot of room for error and potential security bugs. We could create a database that
contains a single table with each user having their own row that would include their user
ID, password, name, etc. However, creating our own database leaves the question regarding
versatility, maintainability, and portability. We would have to be sure to provide extreme
documentation, which provides a completely additional workload. Another major
drawback of creating our own database is that users would directly enter their information,
and therefore pose a potentially significant security risk. We are not familiarized enough
with the ways in which to protect a system from errant users, and although an option, [do
not believe it is our best option.

Firebase Authentication

Firebase Authentication is a great option for our portal. The Firebase Authentication SDK
automatically provides methods to create and manage users while also handling the task of
resetting forgotten passwords (which will inevitably occur). It also, like Django, is already
pre-built for us and we simply would only need to integrate it into our system. This allows
for easy implementation as well as saves us and our client a ton of time and resources.
Firebase is compatible with Python which is a crucial necessity as our client did mention
they would prefer to use Python for the data-science aspect of the portal. However, one
drawback is that by default, authenticated users can read and write data to the real time
Database cloud storage. This makes the system slightly less secure and allows much easier
access for potential attackers. This setting can be toggled, but overall leads to more work
and more room for error.

20

3.5.5 Chosen Approach

The table below rates the two options above on four key components of a secure
authentication method: the ability to easily implement it, the ability to maintain the system,
the portability and finally, the scalability.

Implementation | Confidentiality | Security | Scalability Total

Django 5 4 5 4 18
Database 2 3 - 4 9
Firebase 5 4 4 4 17

Table 5. Evaluation of various authentication methods and security systems. The scale is 1-5, where 5 represents
the best. The total score is out of 20 points.

Based on the analysis above, it seems that the best option for our client and our project
would be to use Django, however, Firebase is an extremely viable alternative and we would
be able to use either if need be. Referencing the table, the scores clearly indicate that
Django is much more advantageous and practical for our wellness platform than creating
our own database. It is a major benefit to have a framework provided to us that does
everything we want it to; this saves time, resources, and energy by not starting from
scratch.

3.5.6 Proving Feasibility

Because Django is specifically designed with the thought of easy implementation, it is
exciting to know that we will be able to use this framework. The components are already
built for us, and we essentially just need to choose and manipulate these modules to fit our
specific needs. It is open-source and free to use, and we can create a development
environment further down the line in which to test it out before implementing it into our
final product. Because it is built to be implemented into other systems, it allows us the most
customization and personalization as well.

4 Technology Integration

Now that we have discussed the details of our technology plans, we must find a way to
merge all of these solutions into a single, functioning wellness platform. We want to make
the interface as easy to navigate as possible for the user, as well as keep our platform
secure, organized, and efficient. Our ideal solution incorporates a secure authentication
system, a powerful AP], an easily managed database system, and a visually appealing and
easy to navigate GUI to most effectively accomplish data analysis and visualization.

We believe that the technologies we have chosen will provide us with the tools necessary to
feasibly accomplish our goals for this project. Below we have created a diagram of how our
technologies will work together and solve our clients' problems.

21

Project System

Authentication = Wellness Portal

Receives and Visualizes
Data
Secures User Login Infa

Communication between
Stores User Login Info coaches and athletes

F
v

= PWR Lab APl

Data Stream to Wellness
Partal from Database

Database = Wearable Devices

Receives Biometric Data

*
h

Stores Biometric Data Sends Biometric Data

Figure 2. The Project System connects technologies and displays how they’ll interact with each other.

As shown from the visual above our plan consists of creating a wellness portal run on AWS
that uses our proposed framework . Data will be collected through wearable devices sent to
the AWS database and then relocated to our wellness portal through PWR Labs API. The
wellness portal will then use Highcharts to visualize the data and display it on the website
for the coaches and serve as a communication platform between the coaching staff and
their respective athletes. Additionally coaching staff will be able to organize and prioritize
data that they feel will be most relevant to a specific athlete. On top of that coaches will be
able to comment on certain data or diet updates from the athletes. Site Users will be
required to create accounts to view their specific information using Django. This will create
a secure environment for staff and athletes alike. We will be using the likes of PostgreSQL to
hold and distribute biometrics data in an organized manner. Overall, we believe the
framework and data visualization will provide the best flexibility in terms of data
representation, our authentication and database system choices will keep our users
information and biometrics secure, and our framework will also provide us with a web
portal that is mobile browser friendly.

22

5 Conclusion

Biometric data offers a lot of potential in both an athletic sense and for professional use in a
number of different fields. For athletes and coaches, biometric data can give insight into
performance and health in a much more detailed sense. Compared to simply observing and
reacting to changes in health, PWR Lab helps coaches develop dynamic training plans to
help prevent athlete injury by consistently collecting data that can be used to assist in
making decisions regarding changes in workout routines. Through an API they developed,
PWR Lab successfully captures anything from changes in heart rate, V02 max, pace
differences, or any other measurements that are tracked using biometric devices.
Implemented alongside the web portal outlined in this feasibility document, our client’s API
would be capable of further facilitating the interpretation of biometric data and the
promotion of wellness for users. Overall, the primary purpose for developing this web
portal is to provide ease of access in visualizing data that can be tracked by wearable
technology. Specifically, this portal is to be developed with the intention that it can be used
by anyone that requires, or is interested in, visualizing biometric measurements in an easily
understandable format.

This technical feasibility document lays out a framework for how we intend to develop such
a web portal. Through creating and implementing the aforementioned functionalities, it is
the team’s goal to produce a final product that overall can: easily display biometric data,
provide a wellness communication platform, and be highly customizable to suit user’s
needs. In summary, we believe that implementing an AWS with a Vue framework will allow
for easy and highly functional development. For security purposes, we intend to implement
a Django to configure user access and viewing of the information in the database. Lastly, we
believe that the most functional data visualization API would be highcharts.js. The details
on our decisions for each of the major components of the web portal are outlined above and
were determined through a careful analysis of the key characteristics in the functionality of
each component (i.e. speed of rendering for data, security aspect for user information, etc.).
Overall, we have considered a number of potential tools to use in each portion of the
development process and believe that the solution provided in this document is both viable
and will be functional alongside the technologies already used by the client.

6 References

[1] Yale Medicine - Running Injuries
https://www.valemedicine.org/conditions/running-injury

[2] MySql

https://www.mysgl.com/

https://www.yalemedicine.org/conditions/running-injury
https://www.mysql.com/

[3] MariaDB
https://mariadb.or

[4] PostgreSQL

https://www.postgresal.or

[5 Redis
|https://redis.io/

[6] MongoDB

https://www.mongodb.com

[7] AWS

https://aws.amazon.com/

[8] VMware
https://www.vmware.com/

[9] DigitalOcean
https://www.digitalocean.com/

[10] React.js
https://reactjs.org/

[11] Angular.js
https://angular.io

[12] Vue.js
https://vuejs.or

[13] Python - Create a Dashboard
https: thon.plainenglish.io/create-a-simple-covid-19-dashboard-with-flask-

23

altair

-chart-js-and-adminlte-a92ef86a3ca8

[14] Chart.js

https://www.chartjs.or

[15] Plotly.js

https: lotly.com/javascript

[16] ApexCharts.js

https://apexcharts.com

[17] HighCharts.js
https://www.highcharts.com/

[18]Django- Django Authentication
https://docs.djangoproject.com/en/3.2/topics/auth/

https://mariadb.org/
https://www.postgresql.org/
https://redis.io/
https://www.mongodb.com/
https://aws.amazon.com/
https://www.vmware.com/
https://www.digitalocean.com/
https://reactjs.org/
https://angular.io/
https://vuejs.org/
https://python.plainenglish.io/create-a-simple-covid-19-dashboard-with-flask-plotly-altair-chart-js-and-adminlte-a92ef86a3ca8
https://python.plainenglish.io/create-a-simple-covid-19-dashboard-with-flask-plotly-altair-chart-js-and-adminlte-a92ef86a3ca8
https://www.chartjs.org/
https://plotly.com/javascript/
https://apexcharts.com/
https://www.highcharts.com/
https://docs.djangoproject.com/en/3.2/topics/auth/

[19]Firebase - Firebase Authentication
https://firebase.google.com/docs/auth

24

https://firebase.google.com/docs/auth

