

Technological Feasibility Analysis
October 9, 2020

Team Triaxis

Sponsors:​ Dr. Will Grundy, Dr. Audrey Thirouin

Faculty Mentor:​ Sambashiva Kethireddy

Team Members:​ Eleanor Carlos, Reyna Orendain, Andres Sepulveda, Brandon Visoky

Table of Contents
1 Introduction 4

1.1 Purpose 4

1.2 Problem 4

1.3 Solution 5

2 Technological Challenges 6

2.1 Full Implementation of Triaxial Ellipsoids 6

2.2 Implementation of Fluid Equilibrium 6

2.3 GPU Implementation 6

2.4 GUI Implementation 6

2.5 Understanding Previous Years Implementation 7

3 Technological Analysis 8

3.1 Triaxial Ellipsoids 8

3.1.1 Introduction 8

3.1.2 Desired Characteristics 8

3.1.3 Solutions 8

Debug Current Triaxial Ellipsoid Module 8

Create a New Triaxial Ellipsoid Module from Scratch 9

3.1.4 Analysis 9

Development Effort 9

Ease of Integration 9

3.1.5 Chosen Approach 10

3.1.6 Proving Feasibility 10

3.2 Fluid Equilibrium 11

3.2.1 Introduction 11

3.2.2 Desired Characteristics 11

3.2.3 Solutions 11

1

Adding Another Shape Module for Fluid Bodies 11

Adding a Module for a Generic Shape 12

3.2.4 Analysis 12

Ease of Integration 12

Ease of Use 12

Development Effort 13

3.2.5 Chosen Approach 13

3.2.6 Proving Feasibility 13

3.3 GPU Implementation 14

3.3.1 Introduction 14

3.3.2 Desired Characteristics 14

3.3.3 Solutions 14

CUDA 14

OpenCL 15

3.3.4 Analysis 15

Compatibility 15

Ease of Integration 15

Learning Curve 15

3.3.5 Chosen Approach 15

3.3.6 Proving Feasibility 16

3.4 GUI Implementation 17

3.4.1 Introduction 17

3.4.2 Desired Characteristics 17

3.4.3 Solutions 18

Qt 18

wxWidgets 19

GTK+ 19

Dear ImGui 19

2

3.4.4 Analysis 20

Easy to Merge with Licht 20

Quick Startup 20

Extensive Framework 21

Open Source Licensing 21

3.4.5 Chosen Approach 21

Easy to Merge with Licht 22

3.4.6 Proving Feasibility 22

4 Technological Integration 23

4.2 Current Integration Issues 23

4.2 Future Integration Issues 23

5 Conclusion 24

3

1 Introduction
We are Team Triaxis and we are working with our clients, Dr. Will Grundy and Dr. Audrey Thirouin, on the
project “Complex Asteroid shapes in Modeling of Binary Asteroid Systems.” We are responsible for
delivering the project goals put forth by our clients and Lowell Observatory for this project. Most
importantly, this includes implementing the code to render models of these asteroids observed by Lowell
Observatory, in particular, rendering them as triaxial ellipsoid objects. This is the third year and third
iteration of this project given to us by Lowell Observatory, and Team Triaxis looks forward to continuing the
development of this project as left to us by our former peers.

1.1 Purpose
Knowledge of our surrounding universe and how it functions is crucial not only to scientists, but to humanity
as a whole. Visualizing and studying asteroids and other objects in space is fundamental to understanding
our universe and how it began.

Currently, faraway binary asteroid systems are studied by comparing the light curve graphs of observed light
curve data with predicted light curve data. Our clients are able to tweak parameters in their predicted
lightcurve so that it can better match the observed lightcurve data; if the lightcurves are similar, then they
can guess that the parameters that they tweaked match the characteristics of the actual binary asteroid
system. So, these light curves give our clients plenty of information about the objects to hypothesize about,
but lack any real modeling potential.

1.2 Problem
To address this problem of modelling binary asteroid systems, our clients, Dr. Will Grundy and Dr. Audrey
Thirouin, have worked with students on two previous iterations of this project to build a piece of software
that allows our clients to input lightcurve data. With any large project, certain goals were not met and further
implementation goals have been requested. The requirements for this iteration of the project are as follows:

● More complex shapes:​ Previous iterations of this project were able to implement modeling of basic
shapes such as spheres in this process. Our clients would like the ability to render more complex
objects, such as triaxial ellipsoids, and possibly building in the framework for our clients to render
any object given an arbitrary equation. In the last iteration of this project, the implementation of the
module for implementing the triaxial ellipsoid modeling was introduced, but was unsuccessful in
practice.

● Improve efficiency:​ The more complex shapes this program is given, the more processing power
and time it takes to render the data provided. The given problem to us is finding a way to implement
a solution to improve efficiency of this rendering given more complex shapes.

4

1.3 Solution
Given these problems to solve by our clients, we have come to a generalized feasible solution for how to
approach each problem.

● Fix triaxial ellipsoid implementation:​ We will be looking at the implementation of previous years’
implementations of these modules to discover what issues there were with the triaxial ellipsoid
implementation, and fix it.

● GPU implementation: ​To increase the efficiency of modeling these more complex shapes, a GPU
implementation is the most obvious and immediate solution.

5

2 Technological Challenges
With any large project, it is necessary to look at challenges that will be faced during it. This section will
serve to address each of our initial concerns and challenges we expect to face in this project.

2.1 Full Implementation of Triaxial Ellipsoids

The main goal of this project is implementing a working triaxial ellipsoid shape, namely making sure that the
program properly renders shadows for triaxial ellipsoids. In previous projects, sphere and faceted objects
were used to model the asteroids. Even though they are computationally simple, they are not structurally
accurate; that is to say, asteroids do not look like perfect spheres. Triaxial ellipsoids are closer to how an
asteroid is shaped. Of course, not all asteroids look alike, but adding a module for modelling triaxial
ellipsoids can help our clients study binary asteroids more effectively. We will begin by reviewing last
team’s code to see where they went wrong when trying to implement a triaxial ellipsoid module to model
asteroids.

2.2 Implementation of Fluid Equilibrium
Although triaxial ellipsoids are closer to what asteroids look like than spheres do, we may also want to see
if it is feasible to implement more complex shapes or even more complex behaviors. For example, in our
discussions with our clients at the Lowell Observatory, they mentioned that to get closer to how asteroids
actually behave, we may want to expand the simulation to account for fluid bodies. This is when bodies in
space “reach” for each other as they pass each other in orbit. Although this may be a goal to pursue after
we are able to fully implement triaxial ellipsoids, it is still an important implementation to consider since we
want our clients to be able to simulate asteroids as realistically as possible.

2.3 GPU Implementation
For any software implementation, code can be further optimized for better runtimes and performance. The
previous iterations of this project have managed to parallelize a large amount of the code, accomplishing
this goal for the given objects that are being modeled. Our clients have their eyes set on modeling more
advanced objects than just spheres and triaxial ellipsoids, moving this software to render collections of
triangular facets. These objects require a decent amount of processing power to render, and while this is
possible to do on a CPU, completing these computations on the CPU would take a long amount of time
since they would be competing with other processes on the users’ computers; our users would prefer to
spend less time waiting for computations to complete and more time completing more tests with the
program. A GPU implementation of this module or a GPU reimplementation of the rest of the code is a
solution to this.

6

2.4 GUI Implementation
After consultation with our clients, we determined that the possibility of a GUI implementation for this
program would be extremely useful. Currently, to tweak the parameters in the program, our clients have to
go into a text file and change the values in there. Originally, we had thought that its main benefit would be to
provide an easy entry point for non-technical end users. However, our clients have pointed out the additional
value a GUI would provide; according to them, having a GUI to use would provide an “ease of testing” for our
users. Being able to easily iterate through and modify the parameters associated with a binary asteroid
system would be valuable to the client. The GUI would ease the traversal of the problem space and allow for
less time editing text documents and more time analyzing data.

2.5 Understanding Previous Years Implementation
An inherent, yet equally important, challenge of being the third team to work on this capstone project is the
“start-up” time associated with understanding the project. Many of us on the team are not familiar with C++
enough to begin with and we need some time in order to learn the language. Furthermore, we have to
understand the project itself to be able to effectively develop additional modules. Fixing the triaxial ellipsoid
module, for example, requires us to have more than a cursory understanding of our development
environment. Although this is not a technological challenge, for Team Triaxis to be able to deliver a quality
product for the client, this is the first and foremost challenge for us to overcome.

7

3 Technological Analysis
This section serves as a more in-depth look into each of the technological challenges and the solutions we
have deemed feasible to pursue for each of them. We will break down this analysis by identifying our
desired characteristics for a solution for a particular challenge, descriptions and analysis of possible
approaches that we have considered, and how we chose the solution that we have decided to pursue for our
iteration of the project. We will also provide descriptions on how we will test the solutions that we have
chosen.

3.1 Triaxial Ellipsoids
3.1.1 Introduction
The equation for rendering a triaxial ellipsoid is similar to the calculation for rendering a sphere; the
difference between them is that triaxial ellipsoids have three different radii while a sphere only has one. Our
clients are asking for a functional module for modelling triaxial ellipsoids. The previous team that worked
on this project has tried implementing the triaxial ellipsoid module already. Although they were able to
model the shape of a triaxial ellipsoid, the module could not successfully render shadows. So, the decision
that we face is between trying to debug the existing module for triaxial ellipsoids in the Licht program or
building the module from scratch.

3.1.2 Desired Characteristics
An ideal solution for rendering triaxial ellipsoid shapes would allow our users to model asteroids as triaxial
ellipsoids. The most important characteristics in have in our chosen solutions are as follows:

● Development Effort:​ We want to be able to complete our project by the end of the school year, so
we don’t want to commit to a solution that we’re not going to be able to complete in the time
allotted.

● Ease of Integration: ​The existing modules of the Licht program are written in C++, which means we
should continue to write in C++. We also want to make sure that any changes or additions we make
to the module are able to be integrated with the rest of the existing modules.

3.1.3 Solutions
The shadows that binary asteroids project on each other causes variations in overall brightness over time,
which we call a “lightcurve”. This data carries information about the sizes, shapes, and mutual orbit of the
pair. A solution to better render complex binary asteroids as triaxial ellipsoid shapes is to compare
computed lightcurves to actual observed lightcurves. We could accomplish this by either debugging the
existing module or starting a new one from scratch.

Debug Current Triaxial Ellipsoid Module

As previously mentioned, the team that worked on the previous iteration of our project already has a partial
implementation of a triaxial ellipsoid module. In their tests, the shape of the ellipsoid could be rendered
successfully. However, in the ray tracing process, where light is projected onto objects, the program could

8

not successfully render the shadows that would appear when an object was blocking another object from
the light source. So, as posited by our clients, it would be beneficial for us to look into debugging the current
module since it is already partially built.

Create a New Triaxial Ellipsoid Module from Scratch

On the other hand, our clients have also suggested that we start from scratch if we find debugging the
current implementation of the ellipsoid module unfeasible. This solution would be beneficial if we found the
structure of the current implementation unusable or if we weren’t able to understand the code from last
year’s team successfully.

3.1.4 Analysis
Development Effort

Debug current module:​ The existing module for the triaxial ellipsoid is already partially built and ready for us
to debug. Plus, the previous team’s code is very readable in that it is organized clearly and has extensive
comments. Furthermore, we are in contact with the previous team and it would not be difficult for us to ask
them questions about the current implementation of this module. As a result, the development effort for this
solution would be low because most of the module is already built for us and it would not be difficult to
debug since we have many resources on how to understand the existing code.

Start from scratch: ​Adding a new triaxial ellipsoid module from scratch would take a lot more work and time
to develop since starting from scratch inherently takes a significant amount of development effort. We
would have to go through the design process for this module all over again; we would have to lay out the
structure for the new module and test/debug it again. This would include learning how to ray trace an object
from scratch. Although learning how to ray trace is not impossible, it would take a significant amount of
development effort for all of use to learn how to ray trace. So, the development effort for this solution will
be high.

Ease of Integration

Debug current module: ​Integrating this module into the rest of the program wouldn’t be an issue, since the
module is already written in C++ like the rest of the Licht program. Plus, since most of the module is already
built and integrated with the rest of the program, we would only have to make sure that we stay within the
bounds of what has already been built when we debug the file. So, the ease of integration of this solution
with the rest of the program is high.

Start from scratch: ​Since most modules for this project are written in C++, we would have to write a new
module in C++ as well. We would also be cautious about adding new code to implement the new module
since it has to be compatible with the rest. We would have to make sure that the new module is integrated
with the rest of the program in the same way as the original module. So, the ease of integration for this
solution is moderate.

9

3.1.5 Chosen Approach
Between deciding to debug the current triaxial ellipsoid module or start from scratch, it is clear based on the
analysis which one we lean more towards. In this case, continuing the work on the current module seems
the most feasible.

Analysis of Possible Triaxial Ellipsoid Implementation Methods

Possible solution Development Effort Compatibility Ranking

Debug Current Implementation Low High 1

Start From Scratch High Moderate 2

The development effort and compatibility were the factors we considered when choosing this approach.
Compared to starting from scratch, debugging the current implementation would be far more feasible since
the existing code is readable and the current module is already highly compatible with the rest of the
program.

3.1.6 Proving Feasibility
We believe that implementing a triaxial ellipsoid feature to render complex binary asteroids is feasible. We
would need to provide further demos to prove that it is indeed possible. After we take a computer model of
a binary asteroid and adjust the parameters to the features of interest, we would need to compare the
computed lightcurves to the actual observed ones.

10

3.2 Fluid Equilibrium

3.2.1 Introduction
Implementing fluid equilibrium would be a beneficial addition to the Licht program because our clients
would be able to more accurately predict the behaviors and characteristics of the asteroids that they’re
studying. According to our discussions with our clients, fluid bodies are when the asteroids are reaching for
each other. The question for us is how we would actually implement fluid bodies. Would we make another
shape like triaxial ellipsoids, or would we have to implement another module for modelling
three-dimensional shapes altogether? This section goes into detail our analysis of our possible solutions
and our chosen approach to implementing fluid equilibrium into our project.

3.2.2 Desired Characteristics
An ideal solution would be another option being added to the user input text file that is currently being used
by our clients to tweak different parameters. Currently, only faceted objects and spheres are supported, with
plans to implement triaxial ellipsoids in this iteration of the project. If we implemented another object for
fluid bodies, then we would add another set of parameters to be tweaked inside of the text file like how
spheres or ellipsoids can be tweaked.

In analyzing our possible solutions, we had to consider some key characteristics:

● Ease of Integration:​ Our solution needs to be able to be implemented into existing code structure
so that we do not have to build the entire program from scratch. Part of our overall challenge is to
build off of the work that past teams have already done, so keeping it compatible with existing code
is beneficial.

● Ease of Use:​ In order for our solution to be an effective one, we must make sure that the users that
our solution is intended for are able to use the product fairly easily. In particular, our current user
base is our clients who are familiar with past implementations of our product. So, we want to make
sure that our clients are able to use the module similarly to how they have used other modules in
past iterations of the project or make sure that if they have to learn how to use new software, that
they are able to do so with relative ease.

● Development Effort: ​We want to be able to complete our project by the end of the school year, so
we don’t want to commit to a solution that we’re not going to be able to complete in the time
allotted.

3.2.3 Solutions
Based on our expectations for an ideal solution and our research, we have determined to analyze the
following possible solutions.

Adding Another Shape Module for Fluid Bodies
One possible solution would be to add another shape module like the sphere and ellipsoid classes. These
modules were developed by the past two capstone teams. Each class contains information about how to

11

model each shape, including where they are in virtual space, how big they are, and how to determine where
light from the sun is hitting it. The code found in those files are used in NLM and the parameters are
tweaked in the user input file that our clients use. Then, when the program is executed, a series of renders
are generated based on the information input by the user. Currently, faceted objects and spheres are
supported by the program, with plans for implementing triaxial ellipsoids underway. Based on the existing
class files, we could implement fluid bodies in the same way.

Adding a Module for a Generic Shape
Another possible solution would be to build a new program where users could insert an equation for any
three-dimensional shape and model that shape. We are considering this solution because it was actually
brought up by our clients; similar to how our clients have been tweaking different parameters in a user input
file to change what the modelled asteroid looks like, users could adjust parameters in an arbitrary equation
for modelling a generic three-dimensional shape in this new program. According to a paper from 1995​1​, “a
generic​ shape model being able to represent a class of objects is often more useful in many practical
applications where the objects of the same class are not identical in shape.” Not every asteroid is identical
in shape or size, so a generic shape model may be useful. In the same 1995 paper, generic shape modelling
is used for “recovering 3-D shapes of objects from 2-D images.”

3.2.4 Analysis
Ease of Integration
Adding a module for fluid bodies:​ This solution would have a very high ease of integration because it would
be based on existing code. Since it would be based on the existing Licht program code, integrating this
module to the existing code would not be difficult.

Adding a module for generic shape:​ This solution would also have a high ease of integration because it
would have the same structure of another shape module. However, its contents would be different in that it
would have to be able to take in any equation for a generic shape. Then, it would have to determine how to
appropriately process it for ray tracing.

Ease of Use
Adding a module for fluid bodies: ​Again, since this solution would be based on the existing modules in the
Licht program, this solution would have a high ease of use for our users. Our users are already familiar with
the current version of Licht, so the only challenge for them would be figuring out how to tweak the new
parameters in the fluid bodies module.

Adding a module for generic shape:​ This solution would also have a high ease of use. It would be designed
similarly to the pseudo-GUI platform that our users are familiar to. Similar to the module for fluid bodies, the
only challenge would be for our users to learn how to use the new module.

1 ​(PDF) Generic 3-D Shape Model: Acquisitions and Applications.

12

https://www.researchgate.net/publication/220914089_Generic_3-D_Shape_Model_Acquisitions_and_Applications

Development Effort

Adding a module for fluid bodies: ​In order to develop this module, it would take a moderate amount of
development effort. Fluid bodies have parameters like acceleration and components of attraction according
to a paper​2​ that one of our clients provided. Plus, since fluid bodies reach for each other when they pass
each other, the shape of the model would change. This is different from previously implemented shape
modules because the shapes themselves were always static and didn’t change. However now, the shape
would have to change during the simulation.

Adding a module for generic shape: ​The implementation of a generic shape module would take a high
amount of development because we would have to figure out a function that could render a shape with an
arbitrary equation. Shapes are rendered with ray tracing, where vectors are drawn from the virtual camera,
through a view plane, and then either intersect with an object or don’t intersect with any objects in the virtual
world. There are specific intersection functions for each of the shapes that have been implemented. It
would be a significant challenge to develop an intersection function that can be applied to any generic
shape.

3.2.5 Chosen Approach
Both of the approaches that we have considered for implementing fluid bodies have high compatibility with
the existing structure of the Licht program and would be fairly easy for our users to utilize. However, the
ultimate factor that led us to choose the approach to pursue was development effort; implementing generic
shapes would be a much bigger challenge to implement than implementing another shape file for fluid
bodies.

Analysis of Possible Complex Shapes Implementations

Possible solution Ease of Integration Ease of Use Development Effort Ranking

Only Fluid Equilibrium Very High High Moderate 1

Generic Shapes High High High 2

If we had more time in this iteration of the project, we may have decided to pursue this solution. However,
we have a limited amount of time and it would be more feasible to commit to adding a module for fluid
equilibrium. Perhaps if we are able to implement a module for fluid bodies successfully, we would be able to
tackle a preliminary generic shape implementation.

3.2.6 Proving Feasibility
We would pursue this solution after we are able to successfully implement triaxial ellipsoids. We would test
our choice by creating a new module for fluid bodies and then have our clients try to use it by tweaking the
parameters in the existing user input file. Then, we would get their feedback on whether or not our module
executed what they were looking for in fluid bodies.

2 ​Ellipsoidal Figures of Equilibrium - An Historical Account (S. Chandrasekhar)

13

https://drive.google.com/file/d/19X9wUZNCTRHaukzlJ7VVyWYh_e6H_Tqa/view?usp=sharing

3.3 GPU Implementation

3.3.1 Introduction
Certain kinds of problems require many different kinds of solutions. For standard processing and
computational algorithms, CPU parallelization may be all that is needed for a high level of efficiency within
the codebase. This is not true for many kinds of graphical implementations, including the ray tracing
algorithms and systems that are being implemented inside of this project. The GPU offers a much larger
amount of cores for parallelization that these ray tracing algorithms can work with, meaning that they are
done much faster than is possible on the CPU. The issues and challenges that may arise while implementing
parallelized code on the GPU are multifaceted, though, and the largest issue we may come into contact with
will purely be our inexperience with parallel processing.

3.3.2 Desired Characteristics
An ideal solution for our clients would be to figure out how to get these ray tracing algorithms to work on
the GPU, and to be able to create a functional module that our clients could use for rendering asteroids. To
reach the stretch goal that our clients have asked for in the original requirements, we would simply need a
basic implementation of rendering on the GPU and to do some initial trials to gain better understanding of
the computational power it would take for ray tracing these triangular facets.

Since our baseline goal is fairly low and a stretch goal, the desired characteristics of a GPU parallelization
framework are fairly base level and include:

● Compatibility:​ A framework that is usable to develop and run on the users machine, namely ours
and our clients machines.

● Ease of Integration:​ We need a framework that we can easily add to our existing codebase.

● Easy Learning Curve: ​Knowing that a GPU solution is something that none of us have ever worked
with, the framework that allows us to begin working on a solution the quickest will be the best.

3.3.3 Solutions
There are several frameworks that we could use as a solution for this problem, of which we have narrowed it
down to two: CUDA and OpenCL. These two frameworks seem to be the two more popular ones that are
considered when working with similar applications, and so they are the two we will be looking at.

CUDA

CUDA is a parallel computing platform that has been developed by NVIDIA, and as such is only available on
NVIDIA hardware. It is a well established framework, being around for over a decade, and is still very well
supported. It is widespread in its adoption, and we have several resources to be able to approach coding in
this environment.

14

OpenCL

OpenCL is a framework for writing programs that execute across heterogeneous platforms consisting of
central processing units (CPUs) and graphics processing units (GPUs). This is to say, systems using more
than a single kind of processor. It has been around for less time than CUDA, but still over a decade. The
benefits of OpenCL over CUDA is that it is not vendor specific, so we will not be limited to who can run and
develop using this framework.

3.3.4 Analysis
The analysis between these two frameworks are rather straightforward and simple when judged by the
factors listed above.

Compatibility

CUDA: ​It is only operable on NVIDIA hardware. Several members in our group have access to this hardware
and our clients have access to it as well.

OpenCL: ​It is operable on any hardware, including NVIDIA hardware. This is a good option because if our
clients were unable to acquire an NVIDIA GPU, they could still use the application.

Ease of Integration

In order to analyze the differences between these two frameworks, we had to look at how these two
frameworks are integrated. Both offer a set of extensions for the C/C++ languages, which is perfect as that
ties in exactly to the language of our codebase. This means that both frameworks satisfy this key
characteristic.

Learning Curve
The easiest way to determine how difficult it will be to learn a new system is first to compare it to how
similar it is to things we are already familiar with. Since we are all familiar with C programming languages in
this group, that is a nice starting point. Thankfully, one of the members on our team has basic knowledge of
the CUDA framework, which means there is already a leg up on implementing that solution.

3.3.5 Chosen Approach
Both CUDA and OpenCL would allow us to tie in their frameworks to our already existing codebase and
would work on our clients machines. The biggest benefit CUDA has over OpenCl is that the resources we
have to learn about and implement CUDA is far greater than that of OpenCl.

Analysis of Possible GPU Implementations

Possible solution Compatibility Ease of Integration Ease of Learning Curve Ranking

CUDA Pass Pass Moderate/Difficult 1

OpenCL Pass Pass Difficult 2

15

For this table, we decided to list our best estimates of each of the key attributes we wanted our solution to
have out of 5. From the research we have done, neither CUDA or OpenCL would be any more or less difficult
to tie into our current codebase. Accessibility is where OpenCL has a much bigger advantage, since it is
able to be run on any kind of system instead of just NVIDIA hardware. But the Ease of Learning Curve is
where CUDA comes out ahead. We simply have access to so many more resources and points of contacts
to work with CUDA than we do for OpenCL.

3.3.6 Proving Feasibility
Moving forward with our decision to use CUDA as our GPU parallelization framework, we will need to prove
that we can implement and use this framework in any functioning capacity. To do this we will need to create
a demo that uses this framework in some way, though maybe not necessarily a demo that integrates any
part of the ray tracing algorithms used in the project. This will give a much better idea of how much work
will go into a GPU solution for our clients, and how plausible it is as a stretch goal.

16

3.4 GUI Implementation

3.4.1 Introduction
Although a GUI would certainly be a beneficial addition to the project, making a quality GUI that will satisfy
the client is a unique challenge. As posited by our client Dr. Grundy, well-designed GUIs, teach the user how
to utilize the program effectively and allow discovery to occur as the user begins playing with the interface.
The GUI must also be more feasible to use than a CLI or the current NLM solution implemented. Otherwise,
users will default to those options as they have in the past.

This is not the first time a GUI has been attempted by a capstone Team on this project. There was an
attempt by Team Andromeda to utilize the Qt library. However, there were some issues that arose last year:

● Incompatibility​: Qt has its own distinct build environment and many other idiosyncrasies that were
difficult to mesh with the Licht C++ architecture.

● Ineffective GUI Design:​ Too much time was spent getting it working over quality GUI design. GUIs
should teach the user. Intuitive inputs and help popups to guide a new user to effectively utilize the
program were points of feedback with the last team.

Because of these issues, the clients and team settled on utilizing the NLM package as a pseudo-GUI by
turning off the fitting function.

3.4.2 Desired Characteristics
An ideal solution (i.e. framework / library) to the GUI problem would have the following key characteristics:

● Easy to merge with Licht C++ Architecture: ​A architecture-agnostic solution would most likely be
best. If the GUI cannot merge well with the project, then the GUI is once again useless to the client.
This is the highest priority characteristic in determining the proper GUI solution.

● Relatively Quick Startup: ​Since a decent chunk of this project involves getting up to speed with the
language and the pre-existing modules, the quicker we can develop a working prototype GUI, the
better.

● Extensive Framework: ​ The number of input options will depend on what the client needs exactly
from a proper GUI. The more potential options we can present to the client, the finer tuned the GUI
will be to the end user.

● Open Source Licensing:​ When possible, we would like to work with an open source license on our
GUI framework solution. The more freedom we have in utilizing the solution, the less time we have
to worry about potential costs or roadblocks associated with licensed products.

A GUI, as noted by our client, should also have these characteristics to be considered excellent. Although
not necessarily framework specific, these aspects of GUI development are still worth noting for future
reference during development:

17

● Descriptive and Intuitive Options w/ examples:​ A quality GUI should not need a full user guide in
order to be used properly (although documentation is almost certainly necessary). Inputs should be
properly labeled with “example input” to lead the user towards proper utilization of the program.

● Incremental Display of Inputs: ​If a user does not need every single input in order to create a sphere,
for example, they should not be presented with every input parameter. Conditional statements will
be utilized in order to incrementally display necessary parameters for certain shapes and aspects of
modeling binary asteroid systems.

● Help Pop-ups for most (if not all) inputs: ​A simple link to either a help pop-up and/or the
documentation for that input parameter would help users understand how to properly use the GUI.
For each parameter, the extent of the help pop-up’s content would need to be determined in order to
maximise the quality of the user experience.

● Descriptive Error Messages:​ When a user makes an error when utilizing the GUI, the program
should tell the user what their error was. It would also be preferable to know how to fix it. Especially
with inputs within a certain range, typos and mistakes happen. The documentation should account
for possible errors, and the GUI should produce error messages that can be intuitively fixed, or
easily found in documentation in order to fix.

3.4.3 Solutions
The following approaches are being considered, based on our research​3​ and expectations for an effective
solution:

Qt
Qt is a framework available for Linux, macOS, and Windows that allows us to create a GUI for our program.
It is at the top of our potential solutions due to the fact that it is the baseline standard for GUIs developed
by previous capstone teams on this project.

Although many C++ programmers may tell us to lean towards Qt, based on previous attempts it may be
simpler to utilize a different framework. From our understanding, Qt is fairly archaic in its architecture if it
hasn’t already been included from the very beginning. User testimonies online only compound this;
according to these testimonies, the framework is slow to build and takes up a lot of space/memory to be
used properly.

Additionally, the previous capstone team could not merge Qt with the Licht C++ architecture and ended up
not delivering an effective GUI; this leads us to believe that an alternative solution may be best in this case.
Qt has both commercial and GPL3 / LGPL3 license options which allow us freedom to develop this
application fully so long as we abide by the GPL3/LGPL3 guidelines.

Pros:​ Powerful, good license, IDE/UI builder application

3 ​C++ UI Libraries • memdump

18

https://philippegroarke.com/posts/2018/c++_ui_solutions/

Cons:​ Heavy and slow framework, hard to implement mid-way, problematic in the past

wxWidgets
Whenever Qt is mentioned, wxWidgets is touted as an excellent replacement from our research. wxWidgets
is a C++ library that lets developers create applications for Windows, macOS, Linux and other platforms with
a single code base. It has popular language bindings for Python, Perl, Ruby and many other languages, and
unlike other cross-platform toolkits, wxWidgets gives applications a native look and feel because it uses the
platform’s native API rather than emulating the GUI.

It’s also extensive, free, open-source and mature. There are plenty of resources and tutorials available on
setting up and optimizing a GUI using wxWidgets, so the starting investment of learning wxWidgets is less
overall than other options. The wxWindows Library License is similar to the LGPL license, so utilizing the
library will also be easy to manage along with any open source requirements of development.

The only downside after research that users noted was a “convoluted API,” presumably referring to the
structure of how calls in the library are handled. This downside will hopefully be offset by the easy startup
and documentation available, however it is a concern to take into account moving forward.

Pros:​ Powerful, tative compatibility, easy startup and documentation, extensive API with multiple language
bindings

Cons:​ Convoluted API calls

GTK+
GTK, or the GIMP Toolkit, is a multi-platform toolkit for creating graphical user interfaces. Offering a
complete set of widgets, GTK is suitable for projects ranging from small one-off tools to complete
application suites.

Although this was a recommended alternative to Qt, many users note how convoluted building and linking a
UI is utilizing this toolkit. This may partially be due to appearances or structure of the API calls, but results
seem inconclusive and subjective. GNOME would be required to be able to utilize this toolkit, which may not
be a possibility depending on the hardware at Lowell Observatory. The license for GTK is also a version of
LGPL (2.1 to be specific) so development for us can start quickly and with relatively little roadblocks.

Pros:​ Good License, extensive toolkit

Cons: ​GNOME, subjectively bad API, convoluted building and linking of UI

Dear ImGui

Dear ImGui is a bloat-free graphical user interface library for C++. It outputs optimized vertex buffers that
you can render anytime in your 3D-pipeline enabled application. It is fast, portable, renderer agnostic and
self-contained (no external dependencies). This “no external dependencies” that was mentioned throughout
the research stood out to us because of how lightweight this potential GUI could be.

19

Additionally, the MIT license allows us to be more hands-on with certain aspects of the library and
potentially mold the framework in our favor. Furthermore, the proof of concept possible with Dear ImGui
would be significantly easier than the rest of the options presented above, requiring only four files, no build
process, and Not many people have remarked on forums on their thoughts regarding Dear ImGui, however
having an “under the radar” open source solution helps us to understand the full scope of our potential
choices.

Pros: ​MIT License, minimal dependencies, quickest startup seen yet
Cons: ​Not as much documentation as other options

3.4.4 Analysis
In the analysis of these solutions, our priority was to ensure that at least one of the desired characteristics
were present in the option. When talking about what is considered “easy,” we made sure that we had several
different sources for opinions from varying communities. This worked much better than taking a cursory
glance and assuming the nature of the framework, since many users had prior experience with the solutions
in small to mid-scale applications.

Easy to Merge with Licht
When it came to easy merging with the previous Licht architecture, a considerably lightweight and system
agnostic approach would prevail by this criterion.

Qt:​ Although Qt is powerful, the capstone team from last year was not able to amicably implement it
alongside the C++ already written.

GTK+:​ GTK+ may not be as easy to merge, alongside the fact that there aren’t much documentation or
tutorials on how to develop it.

Dear ImGui:​ We’d most certainly be able to implement a solution with this framework quickly, however being
a lesser known framework would present problems down the line if systematically it does not deliver all the
functionality we need.

wxWidgets:​ In comparison to our other possible solutions, wxWidgets surpasses all of these options.
WxWidgets has been touted as extremely easy to implement by user testimony regardless, so long as the
language wrapper exists for the particular language. Since a C++ wrapper exists, it stands to say, based on
previous user experience, that we’ll be able to implement a quality GUI for this program.

Quick Startup

A framework that would be best in the ‘Quick Startup’ category would have a relatively easy to implement
proof of concept (i.e. a “Hello Word” level prototype), and robust documentation in order to support the
development of the GUI.

Qt:​ Qt has plenty of documentation available, so at the very least there is reference material to support
prototype development. However, based on the “Getting Started” guide for Qt, there are a lot of steps to get
a proof of concept going.

20

GTK+:​ GTK+ has a relatively quick proof of concept tutorial but it’s not the quickest of our options.

wxWidgets:​ wxWidgets is certainly faster in implementation as well.

Dear ImGui:​ Dear ImGui is by far the quickest and least painful proof of concept on our list. There is no build
process involved with Dear ImGui, just a few imports of .cpp files and we can drag and drop five lines of
code anywhere in the main.cpp file to run a prototype.

Extensive Framework
An extensive framework is one that has several pre-built functions/widgets for commonly used GUI
components, such as text inputs, buttons, and additional “pop-up” windows. This category is where the
characteristics regarding a quality GUI come into focus, since we need to be able to provide the user with an
elegant and user friendly GUI.

wxWidgets, Qt, and GTK:​ These solutions have much of the same functionality with minor component
changes that are more up to developer preference, and the documentation/wiki supporting the utilization of
said components is quite robust for all three solutions.

Dear ImGui:​ The only option that we find to fall short is Dear ImGui due to the fact that the documentation
provided via Github Wikis is not nearly as in-depth as other solutions on this list.

Open Source Licensing
Although not much of a contest, the licensing of a framework is vital to ensuring that we’re spending more
time developing and less time paying costs or performing legal gymnastics.

All of the solutions presented have either the L-GPL/GPL, MIT License, or a derivative license of similar
nature. Each of these licenses have unique quirks, however the main theme is that all of them allow the free
use of the software for academic and small-scale purposes. This characteristic being noted is to simply
ensure that we are not cut short with a potential solution due to restrictions we were not previously aware
of.

3.4.5 Chosen Approach
In the end, we decided that wxWidgets would be the best solution. It is not only system agnostic, but there is
plenty of community and documentation support for development of both the proof of concept and final
product. wxWidgets has stood out to us as the best solution to start out with, with Dear ImGui coming in as
a powerful contender for an alternative. Qt and GTK+ unfortunately are either too “nitpicky” with their API
and dependencies, and may prove to be more trouble than they’re worth as the project continues.

21

Analysis of Possible GUI Implementations

Possible
solution

Easy to Merge
with Licht

Quick Startup Extensive
Framework

Open Source
Licensing

Ranking

wxWidgets System agnostic,
uses native API
calls on supported
systems

Plenty of tutorials
and startup,
robust
documentation
wikis and
development
resources

Hundreds of built-in
classes,
pre-existing
modules for
multithreading and
video playback

wxWindows,
similar to
L-GPL.

1

Dear ImGui Minimal
dependencies,
extremely
lightweight,
system agnostic

Lowest amount
of startup work, 5
lines of code to
get a proof of
concept on line.

Basic functionality,
may not have as
robust options for
GUI components

MIT 2

Qt Previous capstone
teams have had
trouble with this,
may not be easy

Extensive
documentation
and development
resources

Design and
development tools
along with
framework addons
to fine tune the
size of the
implementation

L-GPL/GPL 3 3

GTK+ GNOME may prove
difficult to work
with, additional
dependencies
required

Subjectively
complicated API,
but proof of
concept is
relatively doable

Lots of prebuilt
components with
supporting
documentation

L-GPL 2 4

3.4.6 Proving Feasibility
A technology demo that would successfully prove the technological feasibility of the GUI solution would be
able to do the following:

● Compile without warnings or errors on both the team and client’s Linux distribution.

● Show that inputs can be adjusted for a simple shape module.

● Properly display a rendered object to the user.

22

4 Technological Integration
Most of the initial challenges that we are facing with this project have been addressed in previous capstone
teams. Even so, these past iterations have not been successful in their entirety; some issues that still need
to be resolved include modelling triaxial ellipsoids and a functional GUI. So it is important for us to be
forthright and honest with our expectations for the implementation of these technologies.

4.2 Current Integration Issues
The module for modelling triaxial ellipsoids was not successfully implemented in the previous iteration of
this project, so this is one of our biggest priorities this semester. This issue may cause us to rewrite a
decent amount of their code, and may be one of the biggest starting hurdles of this project. We must make
sure that any changes that we make to the existing module will not affect its compatibility with the rest of
the program.

Similar to the triaxial ellipsoid problem, the previous iteration of this project does not have a successful GUI
implementation. The reasons for this are not entirely known, but basing it off of their own documentation,
we are taking this into consideration as we attempt to integrate one ourselves. Our concerns about
implementing a GUI is that we are not sure if it will successfully integrate with the rest of the program since
we do not have a successful predecessor GUI in a previous iteration to refer to. Although the platform
agnostic approach of wxWidgets is beneficial, the Licht architecture is something we are not completely
familiar with yet. As a result, we are not completely sure if it will integrate with the rest of the program.
However, we are confident that we can build a quality prototype and that development won't be stunted by
ineffective API architecture.

A complete CUDA/GPU solution would almost certainly require a complete rewrite and redesign of the code,
which may or may not be possible in the allotted time given. Therefore, we will have to focus on a GPU
solution only where possible, which may involve only implementing a new module for this solution.

4.2 Future Integration Issues
Some possible integration issues that we have not faced yet are implementing fluid equilibrium and generic
shape modules. Integrating these modules into the program will require further development than
debugging existing code because we would have to build them from scratch. Plus, they will be structurally
different from implementing other shape modules. With the current shape modules, we know the equations
for rendering the shape and we know that their shapes won’t change over time; however, with fluid bodies,
the shape of the model can change during the time of the simulation and, with generic shapes, we don’t
know the equation of the shape until a user inputs it.

23

5 Conclusion
Lowell Observatory and astronomers' knowledge of the universe can only be as good as the tools they have
to measure it. Our clients this year have tasked us with taking on a project two years in the works, to offer a
solution for modeling asteroids in our solar system. With this project come many new technologies for us,
and with those come many challenges. The main integrations we had to worry about were our GUI and GPU
implementations, since they will involve technologies that have not already been integrated within the
codebase.

Our major goals are to implement the rendering of triaxial ellipsoids, as well as fluid equilibrium shapes for
these binary asteroid systems. Should we be successful with this, our next goal will be to see how we can
build the program up to accept more complex shapes, which will only be feasible through a GPU
implementation of these modules. Through thorough research on the part of our team, we believe we have
found and addressed the issues that may arise during the course of this project. Below, we have laid out our
challenges, the solutions we have chosen for each challenge, the confidence we have in each of the
solutions we have chosen, and backup solutions in case our chosen solutions do not turn out to be feasible
in reality.

Technological Feasibility Summary

Challenge Chosen Solution Confidence (1-10) Backup Solution

Triaxial Ellipsoid
Implementation

Debug Current
Implementation

7 Start from Scratch

Implementing More
Complex Shapes

Only Fluid Equilibrium 8 Fluid Equilibrium and
Generic Shapes

GPU Implementation CUDA 5 OpenCL

GUI Implementation wxWidgets 8 Dear ImGui

24

