
Software Testing Plan
Version 1.0

Date: March 26, 2021

Team Name: SongBird

Project Sponsor: Paul Flikkema

Team’s Faculty Mentor: Andrew Abraham

Team Members: Kevin Imlay, Daniel Mercado, Yasmin Vega-Nuno, Anqi Wang



Table of Contents

Introduction 2

Unit Testing 3

Integration Testing 10

Useability Testing 12

Conclusion 14

1



1 Introduction

Birds play an essential role in the health and development of many

ecosystems around the world. Pest insect populations are regulated by

bird predation, dead animals are disposed of by bird scavenging, and

many seeds rely on birds for distribution and priming for sprouting.

Despite the extreme importance of birds, the scientific community still

has numerous questions surrounding the behavior of birds and the ways

that they communicate. Questions such as where birds eat and nest, how

they move from area to area, and how they communicate with each

other remain unanswered. Possibly more importantly, it is not known

how these behaviors are changing in response to sound pollution,

contact with humans, and climate change.

To solve this problem, we are developing BiVo, a front-end-back-end

system for recording bird vocalizations. BiVo will use the EFM32GG12

Thunderboard for main recording and audio analysis on site, which will

send audio segments to the desktop application. The desktop

application will interface with Matlab for easy data analysis, and allow

the user to record a specified number of audio segments, view a

spectrogram of a wav file, and save wav files.

During the development of BiVo we will be creating software tests.

Software testing is used to find and remove bugs early on in

development and help us determine if our product fixes the problem it is

trying to solve. This is achieved through unit testing to determine if the

smallest units of code function properly, integration testing to determine

if those units fit together without issues, and usability testing to address

any flaws in the user interface with the system. Testing flows from the

smallest tests of units to the largest test of the usability and acceptance

testing of the system along with every step of development to address

issues as early as possible. We will not address acceptance testing in this

document as it will be done at a later date.

Our plan for testing is to perform unit and integration testing on each

module and useability testing for the whole product. For unit testing the

2



sensor, we will write our own custom scripts in C and Python since that

is the easiest way to verify values and tests on the sensor side. For the

front end, we will use the Python “unittest” module in the standard

python library and Matlab’s application testing framework. This will

help us automate testing on the units of the GUI and the Python

components of the desktop application.

We will then need to perform integration testing to verify that data flows

correctly between modules. This will be done with use of the Python

“unittest” module as well as custom C scripts and some manual testing

to supplement the lack of an embedded testing framework for the

sensor.

Finally, usability testing will be conducted to help us identify the

deficiencies of our user interface and workflow. We have selected twelve

people with various levels of experience in computer use to test our

product via the Matlab GUI. These people will be observed to determine

qualities such as the ease of use and time taken to figure out the user

interface, and will be questioned about their thoughts and what can be

improved upon.

2 Unit Testing

Unit testing is the first step in the testing and validation process for a

software system. In order to make sure all of our units work properly we

will implement unit testing. In general, testing should begin on the

smallest indivisible unit of the system to make sure all components

work correctly on their own. This is done to break down the debugging

process into small and manageable sections and to prevent more

complex bugs when the units are later integrated.

In order to make our testing easy and replicable, we will be using testing

frameworks and automated testing scripts wherever possible. For

testing the desktop application, we will make use of Python’s standard

unit testing module “unittest” and Matlab’s app testing framework for its

App Builder tool. Both of these provide automated testing with mocking

3



and stubs, which help isolate the testing from other units that are called

on. For testing the sensor, custom C and Python scripts will be used to

automate testing where possible, but some testing will have to be done

manually with Simplicity Studio’s debugger.

Due to the novelty of this project, most of the units in our system will

have to be tested. The exceptions to these tests are the functionalities

that are supplied from Matlab such as displaying the spectrogram and

the file explorer because we didn’t create those, and the units associated

with the general communication modules and audio analysis module,

because these have been removed from our final product.

Within the Matlab GUI, the units that will be tested are the capturing of

numeric user input and storing selected file information. Within the

Python component of the application, we will be testing the units of

creating/exporting wav files, moving files between directories, the

generation of wav file names, establishing a connection with the board,

and  collecting data from the connection stream.

Within the sensor, the units that will be tested are initializing the serial

communication module, sending and receiving within this module,

initializing and recording in the microphone module, and initialization

and interrupt handling within the LDMA utility.

2.1. Audio Segment Input in the GUI

The number that the user specifies in the number of four second

audio segments will need to be tested. The partition equivalence

would be any negative integer, zero, and any positive integer. The

boundary condition would be the positive integer 3600 (which

results in about an hour of audio). There is not a boundary

condition for the negative integers because any negative integer

no matter how big or small is invalid. Zero is also considered to be

invalid because no recording will ensue. No recording should also

result from a negative integer. Any positive integer up to 3600

should result in recording occurring.

4



2.2. Storing Selected File Information in the GUI
All browse buttons need to receive the path to a wav file in order

to compute the spectrogram or play its audio. To do this, the file

explorer is opened and the GUI awaits a selection to give the path

to a function that stores that file’s path into a variable that can

later be accessed by the spectrogram and play audio functionality.

The function that stores the path needs to be tested. Because the

function deals with paths, there will not necessarily be

equivalence partition or boundary values. Correct values to test

are if we receive a char value from the file explorer that contains a

wav file. This indicates that the user selected a file and a file which

is considered in the correct format. The invalid values to test is if a

double (or empty vector) is received which indicates that the user

closed the file explorer window without selecting anything, or if a

char value was received but it contains a file that is in any file

format besides wav.

2.3. Creating/Exporting Wav Files
One of the inputs to the function that creates the wav files is a byte

array. The equivalence partition would be a byte array with zero

entries or a byte array with 16000(1 second of audio)-64000

entries(4 seconds of audio) where the boundary conditions are 0

entries and 64000 entries. A byte array with 0 inputs is

considered to be invalid because a wav file cannot be created from

0 bytes collected. A byte array with 16000 - 64000 entries is valid

to create a wav file from.

2.4. Moving Files Between Directories
There will not be any boundary conditions or equivalence

partition for this particular unit. This unit concerns itself with

whether the created wav files can be moved to the correct path

which should result in the wav file being transported to the Audio

directory. The only way to test this functionality is to observe the

5



behavior in a PC, Mac, and Linux environment by running that

portion of the script.

2.5. Wav File Name Creation
The testing involved in this unit is similar to the one discussed in

2.4. There will not be any equivalence partition or boundary

conditions for this unit. Since this unit looks inside the path that

contains the Audio folder and file names to generate a unique file

name, the only way to test this is to observe if the function

generates a duplicate file name that already exists within the

Audio folder on the computer. Existing wav file names are invalid.

If the wav file name is unique and does not exist in the Audio

folder, then it is considered valid. This portion of the script will

have to be run on PC, Mac, and Linux environments.

2.6. Establishing a Connection with the Board
There are no explicit inputs for this function however there are

inputs from the class itself for this would be the “COM” port that a

user would try to connect to which has an equivalence partition

from COM0 to COM256 on windows and 0 to 1023 ports on unix

systems. While the boundary conditions are COM0 to COM256 on

windows and 0 to 1023 ports on unix systems. There is no

boundary condition on negative ports because any negative

number would be incorrect in this context there should never be a

negative port. The boundary condition on the ports for windows is

0-256 and 0-1023 on unix systems. For this I would ensure that

there is actually a connection and handle any connection

exceptions.

2.7. Collecting Data from the Connection’s Stream
Collecting data would have no explicit inputs for the function. This

function returns whenever the buffer reaches the appropriate size

or the timeout limit is reached or an exception occurs if there is a

connection error or it is trying to read from an invalid connection.

This will test for the appropriate buffer size from 0 to 1020 bytes

6



with 1020 being the maximum buffer size that can be returned

with pyserial.

2.8. Initializing the Serial Communication Module
For initializing the serial communication module, there aren’t any

boundary conditions or equivalence partitions. This is because

there is no input to the function and there is only one

configuration with the hardware that works. Because of this, the

unit test will consist of using the debugger tool in Simplicity

Studio to check that the hardware registers are set appropriately.

2.9. Sending with the Serial Communication Module
Sending with the serial communication module takes three inputs,

the buffer to send from, the number of bytes to send, and a

callback function pointer for when the sending is complete. The

callback will be tested in another unit test (2.10 below). A single

send operation has an upper limit of sending 2048 bytes and a

lower limit of 1 byte. The equivalence partition falls between 1

and 2048, with 1 and 2048 being the boundary conditions.

Erroneous inputs to be tested would include 0 and negative

numbers, and inputs 2049 and above.

2.10. Receiving with the Serial Communication Module
Receiving with the serial communication module takes in three

inputs, the buffer to save into, the amount to save into that buffer,

and a callback function pointer for when the sending is complete.

The callback will be tested in another unit test (2.10 below). A

single receive operation has an upper limit of 2048 bytes and a

lower limit of 1 byte. The equivalence partition falls between 1

and 2048, with 1 and 2048 being the boundary conditions.

Erroneous inputs to be tested would include 0 and negative

numbers, and inputs 2049 and above.

7



2.11. Serial Communication Module Callback Functions
The completion callback function has only one input (a pointer to

that function to run), so there are only three cases that can be

tested. These cases are a valid function pointer, a null pointer

(which is also valid), and a pointer to something that is other than

a function as an erroneous input.

2.12. Initializing the Microphone Module
Similar to the serial communication module initialization, there

are no inputs to test, so there are no boundary conditions,

erroneous inputs, or equivalence partitions to test. Instead, the

unit test will consist of using the debugger tool in Simplicity

Studio to check that the hardware registers are set appropriately.

2.13. Recording with the Microphone Module
Recording with the microphone module takes in three inputs, the

buffer to record into, the size of that buffer, and a callback function

pointer. This callback function will be tested in another unit test

(2.13 below). A single record operation has an upper limit of 1024

bytes and a lower limit of 2 byte. The equivalence partition falls

between 2 and 1024, with 1 and 1024 being the boundary

conditions. Erroneous inputs to be tested would include 0 and

negative numbers, and inputs 1025 and above. Additionally,

recording will be tested using the debugger tool in Simplicity

Studio to check that data is being recorded, and Audacity and

Excel will be used to verify that the audio recorded is accurate to

what is being recorded.

2.14. Microphone Module Callback Functions
The completion callback function has only one input (a pointer to

that function to run), so there are only three cases that can be

tested. These cases are a valid function pointer, a null pointer

(which is also valid), and a pointer to something that is other than

a function as an erroneous input.

8



2.15. Initializing the LDMA Utility
Similar to both the microphone module and serial communication

module, there are no inputs to test, so there are no boundary

conditions, erroneous inputs, or equivalence partitions to test.

Instead, the unit test will consist of using the debugger tool in

Simplicity Studio to check that the hardware registers are set

appropriately.

2.16. Allocating Channels with the LDMA Utility
Allocating LDMA channels to modules takes in two parameters,

the channel to use and a pointer to the function to call to maintain

the appropriate module when a transfer is complete. There exist

12 channels for LDMA transfers (0-11), so the equivalence

partition is 0-11. The boundary cases are 0 and 11, and erroneous

inputs would be any negative numbers and any number 12 or

greater. The callback function will be tested in a different unit

(2.17 below) test because it is only set in this function, but not

used.

2.17. Interrupt Handling with the LDMA Utility
There are no input parameters for the LDMA interrupt handler, so

the full functionality must be tested in an integration test. For the

functionality that can be tested, the debugger tool will be used to

look at variable values and register values to confirm that it is

functioning properly.

2.18. LDMA Utility Callback Functions
The completion callback function has only one input (a pointer to

that function to run), so there are only three cases that can be

tested. These cases are a valid function pointer, a null pointer

(which is also valid), and a pointer to something that is other than

a function as an erroneous input.

9



3 Integration Testing

The next step in the testing and validation process, after all unit testing

has passed, is integration testing. Integration testing refers to testing the

flow of data between the units verifying that there is not a mishandling

of data through this transfer of data. This is important because once we

have completed unit tests we will want to make sure the transfer of data

between modules is bug free. The focus for our integration test will be

on the interaction points between the individual modules created.

After revisions of requirements with our client, we are now left with the

following modules in our current implementation of BiVo to test: serial

communication and microphones/recording, on the sensor side, and

serial communication, data management, and data visualization on the

desktop application side.

Figure 1. Interactions between the modules in the current implementation of our product.
Note: data visualization is inside the GUI.

10



To begin with, the general data flow starts at the microphone module.

The Thunderboard’s microphones will record audio as audio samples.

Next, the USB communication module on the sensor side will need to

send these audio samples to the serial communication module on the

desktop application side. The serial communication module’s job on the

desktop side is to send the audio samples as byte data to the data

management module to create playable wav files for the Matlab GUI.

Data Visualization lives entirely in Matlab and depends on the wav files

generated in data management to either generate a spectrogram, or to

play them.

3.1. Serial Communication Between the Sensor and Application
This integration point we will verify the data on both the Sensor

side and User Interface by running an echo test to confirm

transmission of data is correct in both directions. With this we will

ensure that the entirety of data is being transmitted correctly

without corruption of loss. This can be written with a custom

Python script or using the Python “unittest” module.

3.2. Microphone to Serial Communication Desktop Side
Due to the use of hardware to move data in the sensor, the

integration of the microphone module and sensor side serial

communication module cannot be observed directly. Instead, the

integration will have to be tested by sending the microphone data

to the desktop application’s serial communication module. This

will need to be performed after test 3.1 is tested to eliminate the

possibility of bugs with the communication. This will be tested

using a custom Python script along with Audacity to confirm the

audio recorded and sent is accurate to what was being recorded.

11



3.3. Serial Communication Desktop Side to Data Management
This integration point will verify that data is correctly sent from

the data stream from the board to be compiled into a wav file. To

test this we will make use of the Python “unittest” module and

Audacity to feed in a byte stream of data from a known audio file

and then compare it to the new audio file produced. This ensures

that data is not being corrupted and is being saved appropriately

into the wav format.

3.4. Between Matlab and Communication Desktop Side
This integration point will verify that Matlab can appropriately

call the Python side of the application to collect audio segments,

and that the Python side of the application can effectively update

Matlab on its progress. Testing for this will involve running the

streaming mode from the GUI to get audio segments and

observing that the GUI is updated appropriately. This will need to

be done manually due to the lack of a testing framework that can

observe both the Matlab and Python sides simultaneously.

4 Useability Testing

Usability testing is the second to last step in the testing and validation

process for a software system, the last being acceptance testing. This

will be done after integration and unit testing so that we can confirm

that the product works with little to no bugs. This type of testing is used

to evaluate the functionality and ease of use of our product by having

end-users go through the workflow of our product by completing tasks.

By doing so, we will be able to see what can be improved upon and if the

product is usable in its current state.

There are a limited number of actions the user can take to use the BiVo

system at this point. Those include plugging the board, opening the GUI,

running streaming mode, displaying a spectrogram of an audio segment,

and listening to an audio segment. Additionally, the process of flashing

12



the board will be skipped as it requires extensive knowledge and

experience in software IDEs, toolchains, Git, and troubleshooting, which

are all known to be outside the experience of our test users. The

installation and configuring of Matlab will also be skipped because

Matlab requires a paid licence that our test users will not have access to.

These are known deficiencies of our testing user group, but would

hopefully not be deficiencies of our target demographic of scientist

end-users.

Due to COVID-19, the amount of users we can test with, as well as the

demographic of users we can recruit to test our product, is severely

limited. This is because many people are reluctant to agree to meet in

person. This creates a situation where we have less users to test BiVo

and no users in the target end-user demographic.

In our usability testing plan, we have 12 test users selected on a

volunteer basis by contacting roommates, friends, and families in close

contact with ourselves. They will perform the 3 main tasks available:

record a number of audio segments, view the spectrogram of a wav file

produced from recording, and play a wav file produced from recording.

We will conduct our testing in an in-person and moderated fashion. We

have chosen to use in-person testing because we need to also provide

the hardware and software to run the system, and we have chosen to

moderate to help guide the flow of the test. For the three main tasks, we

will observe the following qualitative and quantitative attributes:

Recording:

● How confused the user is figuring out how to record audio

segments.

● How many questions the user asks.

● How much the user struggles before completing the recording

segments task.

● How many clicks does it take the user to record an audio segment

● How long it takes the user to record an audio segment

13



Viewing Spectrogram:

● How confused the user is in finding where to view a spectrogram.

● How many questions the user asks.

● How many clicks it takes the user to successfully view a

spectrogram.

● How much the user struggles before completing the viewing the

spectrogram task.

● How long it takes for the user to select a recorded wav file.

● How long it takes for the user to successfully view a spectrogram.

Playing Audio:

● How confused the user is in figuring out how to play an audio file.

● How many questions the user asks.

● How many clicks it takes the user to play an audio file.

● How much the user struggles before completing the playing audio

task.

● How long it take the user to play an audio segment

● How long it takes a user to select the file.

Information will be recorded by observing the test users perform these

actions. Quantitative attributes of performance like mouse movements,

mouse clicks, and well as time to perform can be directly observed.

Quantitative attributes can be recorded by noting comments made by

the users during the test as well as interviewing the users after the tests

complete.

Analysis of these results will look at the average and median of each of

the quantitative results, and the qualitative results will be compiled into

a list of comparing positive results to negative results. From these we

will compare our number of clicks and time taken against the

requirements document to determine if we need to simplify the GUI

layout, and we will analyze the positive and negative results to find

where we could make the process more intuitive as a whole.

14



5 Conclusion

As mentioned in the beginning, birds play a vital role in the health and

development of many ecosystems by regulating pest populating,

scavenging, and distributing seeds. Despite this, we still have many

questions surrounding their behavior. Our solution is BiVo, a

front-end-back-end system for recording, analyzing, and sending bird

vocalizations to the PC for further analysis in Matlab. Our testing plan is

composed of three phases: unit testing, integration testing, and

useability testing. To implement our plan, we will be using Python’s

“unittest”, Matlab’s app testing framework, custom C and Python scripts,

and Simplicity Studio’s debugger. In the unit testing phase, we will

observe the output resulting from valid and invalid inputs in our units

inside of our modules. In the integration testing phase, we will be testing

the portions of our code that link modules together through data

transfers. The following are the core links we will be testing: serial

communication between the sensor and application, microphone to

serial communication (desktop side), serial communication (desktop

side) to data management, and between matlab and communication

(desktop side). In the useability testing phase, we will be gathering a

total of 12 end-users to evaluate the functionality and ease of use of our

product by performing three tasks: record 2 audio segments, generate a

spectrogram, and play a wav file. Additionally, we will be recording and

analyzing relevant data such as the time and number of clicks it took to

finish each task and the difficulties the user had. Our three phase testing

plan will ensure that we deliver a working and easy to use product with

minimal bugs.

Despite the hurdles and roadblocks we have faced on both the front-end

and back-end, we have managed to create a functioning product. To date,

we have incorporated the ability for the Thunderboard to record audio

and stream that audio to the PC. On the front-end, we have incorporated

the ability to save the streamed audio as wav files, view the

spectrograms of the wav files, and to play recorded wav files. Next on

15



our agenda is to successfully implement audio analysis, increase the

audio quality coming from the Thunderboard’s microphones, refine the

front-end communication side to programmatically find the COM port

the Thunderboard is connected to, and for the GUI to programmatically

find where the Python scripts are located without having to hard code

the paths. Despite the fact that we still have quite a bit to do, we have

implemented the product’s core functionality and are confident that we

will be able to implement the remaining functionality and refinements

that are on our agenda.

16



Great Blue Heron at Kaibab Lake, Williams, AZ. Imlay, K. 2017.

17


