
Software Design Specifications

Version 1.0

Date: February 12, 2021

Team Name: SongBird

Project Sponsor: Paul Flikkema

Team’s Faculty Mentor: Andrew Abraham

Team Members: Kevin Imlay, Daniel Mercado, Yasmin Vega-Nuno, Anqi Wang

Table of Contents

Introduction 2

Implementation Overview 4

Architecture Overview 6

Module and Interface Descriptions 9

Implementation Plan 30

Conclusion 33

1

1. Introduction
Birds play an essential role in the health and development of many ecosystems
around the world. Pest and insect populations are regulated by bird predation,
dead animals are disposed of by bird scavenging, and many seeds rely on birds
for distribution and priming for sprouting. For example, in India, vultures
(Cathartes aura) are responsible for an estimated $34 billion worth of clean-up
of cow carcasses. In Sweden, it is estimated that it will cost $9,400 per hectare
for human seed dispersal services if the Earasian Jay (Garrulus glandarius)
were to disappear from their oak forests. In Jamaica, bird predation on pest
insects increases coffee bean production and quality by $310 per hectare per
year.

Despite the extreme importance of birds, the scientific community still has
numerous questions surrounding the behavior of birds and the ways that they
communicate. Questions such as where birds eat and nest, how they move from
area to area, and how they communicate with each other remain unanswered.
More importantly, it is not known how these behaviors are changing in
response to sound pollution, contact with humans, and climate change.

Dr. Flikkema, a professor of Computer Science and Electrical Engineering at
Northern Arizona University, is working with a research team at Politecnico di
Milano, in Italy, with the aim of helping scientists conduct more meaningful
research on birds. This team is creating an Artificial Intelligence tool to classify
bird sounds based on audio recordings. This tool will be able to identify bird
species, individual birds, and how many birds are present. Currently, however,
they are developing this tool using a library of audio recordings that don’t
include features such as environmental and human-made noise such as
vehicles, people, and wind. BiVo will allow Dr. Flikkema and other scientists to
deploy low-cost and open-source sensors to gather data on bird vocalizations
and features as explained in the sentence prior. With this data, scientists will be
able to conduct meaningful research towards our understanding of birds and
their behaviors.

Together with Dr. Flikkema, we proposed a structure for the functionality and
collaboration of BiVo devices and user interfaces. The structure is an open
source and fully documented project to allow users to add their own modules.

2

The current state of play of existing recording devices does not meet our
client’s needs. Current in person monitoring solutions are costly and many low
cost alternatives are difficult to use and have limited support for extensibility.
Moreover, they may not be open-source. Popular recording devices include the
AudioMoth, a cheaper and popular alternative to other audio sensors on the
market. Although, even this device lacks the extensibility our client is looking
for, nor does it have the ability to filter out audio that does not contain bird
vocalizations on site.

We are developing BiVo, a front-end-back-end system for recording bird
vocalizations. BiVo will be open-source and modular for easy modification and
addition of functionality. The BiVo device will be capable of streaming audio
and saving recordings for later retrieval. Furthermore, the BiVo device will use
the EFM32GG12 Thunderboard for main recording and audio analysis on site.
The desktop application will be able to operate alone or interface with Matlab
for easy data analysis. The user interface will mix the Matlab application
designer and Python to interact with the BiVo device to collect data from it.

In this report, we will discuss our implementation overview, architecture
overview, module and interface description, and our implementation plan of
our project.

3

2. Implementation Overview
While working together with Dr.Flikkema, we have come up with a structure
for how the BiVo device and user interface will function and work together that
is open source and well documented enough for anyone to add modules of
their own. This BiVo device will be using the EFM32GG12 Thunderboard to do
the main recording and audio analysis on site. The user interface will use a
mixture of Matlab application designer and Python to interact with the BiVo
device in order to gather data from it. This is explained more in detail in our
Technology Feasibility document where we explain why we chose the
EFM32GG12 Thunderboard as well as a Matlab application designer with
Python integration.

Figure 1. Flow chart of the general process of gathering audio data with the ThunderBoard.

Our solution is described by Figure 1. First going into the BiVo device is a bird
vocalization that will then be analyzed by the board shortly after it is picked up
to be within the frequency range. After this, the audio snippet will be discarded
or saved based on if there was an audio snippet. Then, the user will be able to
connect BiVo to a computer with the user interface installed. From there, the
user will be able to take out specific audio snippets that they need from the
BiVo device for later analysis. This will help create a standalone device for later
recovery.

2.1. Technology
In order to fully explain the BiVo system along with the user interface,
these are the technologies we are using to implement them:

EFM32GG12 Thunderboard- This is an embedded system that uses two
small PDM microphones and a EFM Giant Gecko 12 MCU. This is used to
capture and analyze data on site in order to tell what a bird call is. This
will be the central system to gathering audio clips of bird vocalization.

4

Matlab application designer- This is the Matlab supplied system that we
will design the whole graphical user interface in so that people can fully
use Matlab to import and export the audio clips of birds. It allows us to
integrate python scripts into it as well to allow for more complicated
scripts in audio analysis and communication.

Python integrated with Matlab UI- This will contain functions that should
be easy to edit and adjust to whatever needs the user has for the data.
This will allow the application to be extensible and well documented on
what functions to change if they require something different.

5

3. Architecture Overview
BiVo’s architecture is divided into two main groups: the sensor that is
responsible for recording, analyzing, and saving or streaming audio recordings
of bird vocalizations, and the desktop application that lets the user interact
with the sensor and download the audio data it collects. The desktop
application can be further divided into a graphical user interface in Matlab and
a python script routine that interfaces the sensor with Matlab.

Figure 2. Bivo system component architecture. Blue boxes represent modules
and white boxes represent components. Dashed arrows represent
dependencies between modules and the solid arrows represent
communication between components.

The sensor component is the most important element of the entire system.
This component is responsible for everything related to recording bird
vocalizations and saving or streaming to the desktop application. The sensor
component will use:

● A module to manage the on-board microphones for recording,
● A module for audio analysis for determining if audio contains bird

vocalizations,
● An energy management module to sleep the sensor for power saving,
● A timer module for working with a real-time calendar an periodic event

triggers,

6

● A module for managing the saving and retrieval of audio data and sensor
data to device storage,

● A module to manage communication over a USB connection,
● A module for the practical implementation of the communication

schema.

Audio from the microphones will be passed on to the audio analysis module to
determine if bird vocalizations are in the audio. If there are, the audio data will
be passed to the storage module for later retrieval or to the communication
modules for streaming.

The Python component is the core of the desktop application, encapsulating
the functionalities of managing the connected sensor and the data to and from
the sensor. The Python script will incorporate:

● A module for managing the connection with the board over a USB
connection,

● A module for the practical implementation of the communication
schema,

● A module for accepting audio data streams and assembling it into audio
files for passing on to Matlab to use.

As data comes from the board, it will be accepted by the USB communication
module and passed to the general communication module. The general
communication module will process the data according to the type of data
received and pass it along to the data management module for assembling the
data into a format that can be passed on to Matlab or exported. Additionally,
the Python component will be able to run stand-alone from Matlab to allow
users without access to Matlab to still use the system from a command line
interface.

The graphical user interface (GUI) component to the system will be the main
method for users to interact with the system. This GUI will allow the user to
manage the board’s settings and download stored or streamed audio, and the
GUI will let the user load audio data into Matlab for more advanced analyses.
To make this possible, the GUI component will incorporate:

7

● A visualization module to show the downloaded audio data in a
spectrogram (visual representation of frequency and loudness plotted
against time) format.

● An import/export module to export and import audio files and sensor
configurations on the desktop computer.

The GUI will be built on top of the core functionality of the Python component
and provide graphical means to control the Python component.

8

4. Module and Interface Descriptions
BiVo’s components can be broken down into many smaller modules that work
together to carry out the needs of each component. In this section we will give
a description of each module’s purpose and responsibilities, a diagram
showing the functionalities of the module, and a description of the
public-facing interface to that module.

4.1. BiVo Sensor Component
4.1.1. Communication (General)

The general communication module in the sensor component is used to
communicate with the general communication module in the Python
library component on the Desktop Application. The purpose of the
communication module implements the communication schema as the
slave in the master-slave relationship, and is abstracted away from the
specific communication medium being used. This is to allow future users
to incorporate other medium-specific communication such as Bluetooth
or WiFi without needing to rewrite major parts of the communication
schema to work with it.

This communication module has the following responsibilities:

● Accept incoming commands from the desktop.
● React appropriately to these commands in the form of changing

settings, modes, or state of the sensor, or responding with data
requested by the desktop application.

● Handle connection and disconnection handshakes to properly
handle connections and disconnections.

There are two main functions within the general communication module,
one to handle incoming commands from the desktop application, and
one separate one to send streaming data to the desktop application.

9

Figure 3. Callback function to handle a message that has just been
received from the desktop application.

Figure 3 shows the function for accepting a message that has just been
received. From the desktop application. This is called as a callback
function by the receive function in the USB Communication module when
a transmission has been received in full. This function also calls on the
send function of the USB Communication module to send back the data
the desktop application has requested or a status/error code.

Figure 4. Function to send a segment of audio data to the desktop
application.

10

Figure 4 shows the function for sending audio data to the desktop
application as it is being recorded (streaming). This function is called by
the core system of the sensor when there is audio data to be sent and
calls the USB Communication module’s send function to pass the data to
the desktop application.

4.1.2. USB Communication

The USB Communication module in the sensor component is used to
communicate with the USB Communication module in the Python library
component of the desktop application. The purpose of this module is to
handle all the USB-specific functionalities of communication for the
general communication module to use. This allows for easy replacement
of this module with another medium-specific module (such as Bluetooth
or WiFi) without the need to rewrite major parts of the general
communication to work with it.

This communication module has the following responsibilities:

● Accept incoming data over the USB connection from the desktop
application.

● Send outgoing data over the USB connection to the desktop
application.

● Call on the General Communication module when a message has
been fully received.

There are three main functionalities of the USB Communication module,
a function to initialize the USB serial driver, a function to begin receiving
data from the desktop application, and a function to send data to the
desktop application.

Figure 5. Initialization function for setting up the USB serial driver.

Figure 5 shows the steps taken to initialize the USB serial driver before a
connection can be made with the desktop application. This needs to be
called before any other USB communication functions can be used.

11

Figure 6. Function to begin a non-blocking receive over the USB
connection

Figure 6 shows the steps to start receiving data from the desktop
application. Once called, the receive operations run in the background
using direct memory access to store all incoming data into a buffer. This
allows the sensor to not need to intervene with incoming data until it is
ready to be processed. Once the buffer is full, a callback function passes
the message on to the General Communication module to processing.

Figure 7. Function to begin a non-blocking send over the USB
connection.

Figure 7 shows the steps for sending data to the desktop application.
Once called, the send process runs in the background using direct
memory access so the sensor can continue its operation in the meantime.

4.1.3. Timers

The Timer module is in the sensor board. The timer module is used to get
the current time and set a timer when needed. The Sleeptimer driver
provides software timers, delays, timekeeping and date functionalities
using a low-frequency real-time clock peripheral. [1]

Getting the current time can provide users the choice of a fixed-point of
time to start recording. This function has the following responsibilities:

● Convert the time into Unix timestamp
● Get current time and date
● Let users set current time in date format

12

Figure 8. Function to get current time and date.

The timer can also set a timer when needed. This starting timer at the
fixed time function has the following responsibilities:

● Restart the timer
● Get the status of timer
● Start a 32 bit timer

Figure 9. Function to restart the timer.
13

4.1.4. Data Storage

The Data Storage Management module is used to manage the storing and
retrieving of audio data and board settings on the board’s FLASH
memory. The purpose of this module is to encapsulate the functionalities
needed for platform-specific read and write functions while giving a
public interface for saving and retrieving data between power cycles.

This data storage module has the following responsibilities:

● Save and retrieve sensor configuration settings.
● Save, retrieve, and delete audio segments and their respective

metadata.
● Report when storage is full.

There are seven main functionalities of the Data Storage module:

● Initializing the drivers needed to perform read and write
operations and loading the directories for finding saved data.

● Saving the directories of saved data for loading again after a power
cycle.

● Saving sensor configuration settings.
● Reading sensor configuration settings.
● Saving an audio segment with its metadata.
● Reading an audio segment with its metadata.
● Deleting an audio segment with its metadata.

Figure 10. Function to initialize the Data Storage module before use.

Figure 10 shows the steps for initializing the drivers for reading and
writing to FLASH storage on the board as well as loading the directories
of saved data and configuration settings. This needs to run before any
read or write functionalities can be used.

To save the directories to FLASH when powering down the sensor or
before sleeping the sensor, the sensor will simply have to save the

14

directory table. Without saving the directories, it would not be possible
to find the locations of saved audio segments once the board powers on
again.

Similar to the functionality to save directories, saving the sensor’s
configuration settings needs to be called before the board powers down
or sleeps to make it possible to retrieve the data once the board powers
back on.

Figure 11. Function to save audio data frames as they are being passed
in.

Figure 11 shows the steps taken to save a frame of an audio segment. Due
to the limited RAM on the sensor, audio segments can’t be handled as a
full length segment but rather are split into many smaller frames that
sum to create the full segment. It is not possible to store an entire
segment then, so the segment must be progressively saved while it is
being recorded.

Figure 12. Function to read saved audio data frames to pass on to the
desktop app.

15

Figure 12 shows the steps taken to read an audio segment from storage.
Similarly as with saving an audio segment, reading a segment must be
done so in many small frames. Reading an audio segment is only useful
for sending to the desktop application, so as the segment frames are read
they are passed to the general communication module by the sensor core
for sending to the desktop application.

Figure 13. Function to delete an audio segment from the storage.

Figure 13 shows the steps taken to delete an audio segment from storage
along with its metadata. It is not necessary to overwrite the actual
location of the audio storage so deleting an audio segment is really a
matter of deleting the reference to its location. This frees the location to
be used by another audio segment.

4.1.5. Audio Analysis

This module is in charge of handling audio analysis on the board to tell
which audio snippets are significant. This takes in an audio buffer and
performs an FFT on it to then determine the frequency range of this and
decide what is important within the buffer. This will pass on the data to
the next module depending on the mode the sensor is set on.

16

Figure 14. This chart shows the main functionality of the Audio
Analysis showing the path of what happens after a Callback happens
from microphones to the returning a buffer marked with either clear
or save.

Some of the data this module will save and need is listed below:

● Audio Buffer to Analyze
● Frequency Range
● Audio Buffer with FFT done

The functionality of this module will be to compute the FFT and then
based on that FFT be able to determine that the audio snippet is within
the frequency range. Listed below is some of the public functions within
this module:

● calculateFTT(audioSnippet,audioSnippetNum) - This will calculate
the FFT based on the audio SnippetGiven.

● determineHit(audioSnippetFFT,audioSnippetNum) - This will
determine based on the FFT if the audio has a bird call within the
frequency range.

● markHit(audioSnippet,audioSnippetNum) - This will mark the
audio buffer as a hit for it contains a bird call within the frequency
range.

17

4.1.6. Recording

Recording module is used to record the voice of birds in preparation for
streaming.

In the recording module, the main parts are initializing the microphone
and preparing the buffer.

We need to initialize the microphone before starting recording to avoid
malfunction. The initialize function has the following responsibilities:

● Initialize the microphone
● De-initialize the microphone

Figure 15. Function to initialize the microphone.

When the sensor starts recording, we will put the data into the buffer to
prepare for steaming to a buffer or desktop application. The buffer
function has the following responsibilities:

● Check if the buffer is ready
● Wait until the buffer is ready
● Put the samples into the buffer
● Start streaming

18

Figure 16. Function to start streaming.

4.1.7. Energy Management

Energy Management mode is in the sensor board which can help the
board to save energy and stay for a longer time. Energy management
module is used to let the sensor shut off or sleep to save more energy.
The mode transition part is very important in the energy management
module which can switch the mode when the sensor is needed.

19

This module has several energy modes which list as follow:

● Sleep mode(which includes normal sleeping and deep sleeping):
sleeping other than working time to save energy

● Shut off mode: save data and shut off the board when the power is
very low.

Figure 17 Sleep mode and shutoff mode.

The mode transition function has the following responsibilities:

● Initialize power manager .
● Start sleeping when the board has nothing left to do.

20

Figure 18. Functions initializing the power manager and for putting
the board to sleep.

4.2. Desktop Application Python Library Component
4.2.1. Data/Board Management

The Data/Board Management module will be responsible for handling
data that is exchanged between the sensor and the desktop application.
This module will largely be communicating with the Communication
module on the front-end. It will also communicate with the MATLAB GUI
in order to play incoming audio from Streaming Mode. Responsibilities of
the module include:

● Capture the audio data sent from the sensor and received from the
Communication Module.

● Reassemble the audio segments received so it can be played on the
GUI. This is specifically for Streaming Mode.

● Relay mode changes to the Sensor. These modes include:
Time-Interval Mode, Triggered Mode, Power-Down Mode, Idle
Mode, and Streaming Mode.

● Delete files from the sensor.
● Download files from the sensor.
● Communicate changes in sensor settings.

21

Figure 19. There will be two functions that take care of downloading
audio files and deleting audio files. Both have the option of
select/select all.

There will be two separate functions for deleting and downloading audio
files that operate similarly. The appropriate function is called when the
user makes their selection.

22

Figure 20. There will be a function in charge of relaying mode change
data to the sensor via communication module. The handling of audio
data will be in a separate function. The conversion into a wav file will
also be a separate function.

To capture audio and assemble that audio into files, the module will be
going back and forth with the Communication Module. There will be a
check to see if any more audio is incoming. If there is, a function will get
the audio from the Communication Module. Another function will turn
that audio into a wav file. The file will be handed over to the GUI to play.
There are MATLAB functions in place that will read the wav file and play
it. If there is no more incoming audio, the GUI will cease its operation of
playing audio. To change modes, the module will simply let the sensor
know to commence the operation of the specified mode at that end via
the Communication module. This is part of the master/slave relationship
between the two components. Streaming Mode is different from the
other modes because it requires more data management, which is why it
isn’t a simple call to the sensor to implement the mode.

23

Figure 21. There will be a function in charge of fetching current
setting configurations. Another function will be in charge of relaying
changes in setting configurations to the sensor via communication

module.

To fetch current settings, a function will make a call to the
communication module to do so. To change sensor settings, a function
will deliver the specified changes to the Communication Module.

4.2.2. Communication (General)

The communication module is in charge of transmitting data back and
forth between the data management module and the USB
communication module on the front-end. The purpose of this front-end
communication module is to implement the communication schema as
the master in the master-slave relationship. It is abstracted away from
the specific communication medium being used. This is to allow future
users to incorporate other medium-specific communication such as
Bluetooth or WiFi without needing to rewrite major parts of the

24

communication schema to work with it. Below are the responsibilities of
this module:

● Send commands from the desktop application to the back-end
● Accept incoming data from the back-end
● Handle connection and disconnection handshakes to properly

handle connections and disconnections.

Figure 22. A function will take care of the handshake portion of
communication. Another will be handling data received by the sensor.

4.2.3. USB Communication

The USB Communication module in the Python library component is
used to communicate with the USB Communication module in the sensor
component. The purpose of the USB Communication module is to
provide the general communication module the USB-specific
communication functionalities needed. This is to abstract the
medium-specific protocols from the practical implementation of the
communication schema so the communication medium can be changed
without needing to rewrite most of the general communication aspects.

This USB Communication module has the following responsibilities:

● Accept incoming data over the USB connection from the sensor.
● Send outgoing commands and data over the USB connection from

the desktop application to the sensor.
● Return to the General Communication module when a message has

been fully received.

25

There are three main functionalities of the USB Communication module,
a function to initialize the USB communication, a function to send a
command, and a function to receive a command.

Figure 23. This diagram shows the basic USB Communication
Initialization.

Figure 23 shows the steps to initialize a communication with the sensor
from the user interface. First it would have to send the initial handshake
to be able to send and receive data.

Figure 24. This diagram shows sending data and commands to the
sensor.

Figure 24 shows the steps to send a command to the sensor through this
USB connection. This will fill a buffer and send data to the sensor and
return.

Figure 25. This diagram shows the user interface receiving data from
the sensor.

26

Figure 25 shows the steps to receive a command from the sensor through the
USB connection. This simply allows a command to come through and sends the
data through a callback to another function to handle it with ease.

4.3. Desktop Application Matlab GUI Component
4.3.1. Import/Export

This would handle any exporting of data from the board to any place on
the users computer. This is called when you hit the export button on the
User Interface. The purpose of this module is to have an easy method of
exporting files so that the User can analyze this on their own or to keep
the files for further use.

Figure 26. Diagram showing the path that import export will take in
order to ensure that you select where a user would like to save these
files.

Some of the data required and saved by this module is listed below:

● User selected files to export onto a selected path.
● User selected path to export the user selected files to.

The main functionality of this module will be exporting data from the
sensor to a users path that requires it to only call from the user interface
meaning no communication needed at this point.

● ExportFiles(files,path) - Export the selected files to the path
provided by the user return 0 if successful.

● SelectPath() - Select the path that the user would like to export the
files to and return that list.

● SelectFiles() - Select the files that a user would like to export and
return that list of files.

27

4.3.2. Data Visualization

The Data Visualization module does not have the Communication module
as a middleman. This is because its responsibilities do not rely on
exchanges between the sensor and the desktop application. The purpose
of this module is to display audio file information. Below are the
responsibilities of this module:

● Filter through the audio segment files based on sensor ID, time,
and date

● Allow the user to interact with the audio segment files.
● The module should allow the ability to display the audio file’s

respective spectrogram and metadata, which includes the sensor
ID that recorded the audio, and time and date of recording and

● Allow the user to manipulate the audio segment file by playing,
resuming, stopping, and pausing the audio.

Figure 27. Function to sort audio data based on the user’s selection.

Figure 28. Function to start playing the audio file. Nonblocking and
will have a callback function to cease playing audio if the user has
chosen that.

28

Figure 29. There are two functions that can be called depending on
what selection was made on the context menu. Those two functions
had the display of audio file metadata and spectrogram of the audio
file.

The module discussed is for the most part MATLAB GUI specific. The user
will navigate themselves through a series of clicks on MATLAB
components (buttons, context menus, drop-down menus) in order to get
to their desired action. After the user selects their preferred sorting
method, whether they want to see the spectrogram or metadata of an
audio file, or whether they want to play, resume, stop, or pause audio,
then callback functions will be called after GUI components are
interacted with. These callback functions will do the sorting based on the
user’s preference, manipulate audio, and display audio file information.
There will be a callback function for every action possible. For the
spectrogram specifically, there will be a function to generate one from an
audio file.

29

5. Implementation Plan
We are working towards creating a working and usable product before the
deadline. In order to ensure that outcome, we have set deadlines in place for
every part of our project. Below we discuss the details of implementation and
testing.

Our Gantt chart is composed of three main components: Document Schedule,
Module Implementation, and Module Testing Schedule. We are expecting
substantial parallelism in our work as the due dates for the work under the
three main components will intertwine.

The Document schedule component serves as our schedule for completing
deliverables and documents. These documents are listed according to their due
date in ascending chronological order.

The Module Implementation component focuses on the twelve modules that
make up our project as a whole. Those modules are Communication (Sensor),
Communication (Desktop App), Microphones and Recording (Sensor), USB
Communication (Sensor), Data Management (Desktop App), Audio Analysis
(Sensor), File System (Sensor), Data Visualization (Desktop App), Energy
Management (Sensor), Sensor Management (Desktop App), Import/Export
(Desktop App), and Time and Date (Sensor). Our Team is divided into two
main subgroups: Yasmin on the desktop application, Kevin and Anqi on the
sensor, and Daniel who will be on the end that needs help at any point during
the implementation of the modules. Each module is listed in the order of how
we will be starting each one. In other words, the modules that are listed first
from top to bottom are to have progress first before the modules that follow. As
such, they are higher in priority in order to ensure the success of our product
and to avoid major problems that may ensue. Due dates vary based on
perceived difficulty.

The Module Testing Schedule component is lined up exactly like the Module
Implementation component in terms of the order of modules. The testing of the
first five modules starts when their implementation ends. The rest of the

30

modules start their testing roughly in the middle of implementation. Due dates
for the end of testing vary based on the team’s judgement of how long it would
take to ensure the module is working properly. Modules perceived to be harder
and to take longer to implement will get more testing than others that are not
considered so.

There is one plan detail that is not visible on the chart. We did not include any
integration of modules into our chart, but we will be doing so progressively
throughout implementation when appropriate. For example, Communication
on both the sensor side and the desktop application side are related to each
other, and therefore, will be integrated with one another after successful
implementation. They will be tested together as well as separately.

31

Figure 30. Gantt chart for our project implementation including
documents schedule, module implementation schedule, and module
testing schedule. The red line represents the current week.

32

6. Conclusion
Birds play a very important role in ecosystems around the world. Without
birds, many plants and animals would not survive and ecosystems would fall
apart. Consequently, it is imperative to learn more about the behaviors of birds
and how human interactions are influencing them.

There are current limitations in place that hinder our study of bird behavior.
For example, the machine learning methods that people are using are limited
by a lack of data. In addition, audio recording devices on the market do not
offer the extensibility , on site analysis, ease of use, or are open source and low
cost as we would like.

Together with Dr. Flikkema, we proposed a structure for the functionality and
collaboration of BiVo devices and user interfaces. The structure is an open
source and fully documented project to allow users to add their own modules.
The BiVo device will use the EFM32GG12 Thunderboard for main recording
and audio analysis on site. The user interface will mix the Matlab application
designer and Python to interact with the BiVo device to collect data from it.

BiVo's architecture is divided into two major categories: sensors responsible
for recording, analyzing, saving or streaming audio of bird sounds, and desktop
applications that allow users to interact with sensors and download collected
audio data. Desktop applications can be further divided into graphical user
interfaces in Matlab and python script routines that interface sensors with
Matlab.

Preparing a plan for the future of this project is crucial to avoid potential risks
and challenges. Our Gantt chart is composed of three main components:
Document Schedule, Module Implementation, and Module Testing Schedule.
We are expecting substantial parallelism in our work as the due dates for the
work under the three main components will intertwine.

Moving forward we are excited to begin developing BiVo, we expect challenges
in the future but are optimistic to overcome these challenges. Our next step is
getting the streaming mode working to show an alpha prototype.

33

References
1. Silicon Labs Library API Documentation,

https://docs.silabs.com/mcu/latest/efr32mg12/group-SLEEPTIMER.

Osprey on a limb in Flagstaff, AZ. Imlay, K. 2017.

34

