
1

Northern Arizona University
Team Radio Pi

Capstone Team Project Sponsor Mentor

Tyler Plihcik General Dynamics David Failing

Brandon Click Mission Systems

Jeffrey Williamson Randy Derr

Kaelen Carling

Saurabh Jena

Technological Feasibility Document

Version 2.0

October 23rd, 2020

2

Contents

Introduction 3

Technological Challenges 4

Technological Analysis: Multi-Processing vs Single-Processing 5

Technological Analysis: Database Management System 7

Technological Analysis: Database and Application Language 10

Technological Analysis: Networking Protocols 12

Technological Analysis: API and Web Application Interface 14

Technological Integration 17

Conclusion 18

3

Introduction
The world runs on multitudes of various IoT (Internet of Things) devices. These devices are
anything from smart home devices, to wifi extenders, speakers, even cars and kitchen appliances.
All these devices communicate via radio waves and run on what are called embedded chipsets,
which are inherently small, in both footprint and power consumption. As our technology
continues to advance, the need for smaller and smaller embedded systems becomes more
prevalent each hour.

For nearly three decades software defined radios, or SDRs have been revolutionizing the way
these IoT devices communicate. Leading the charge into this new era of devices and
communication platforms is our project sponsor, General Dynamics Mission Systems. The need
for newer, smaller, more efficient yet more powerful systems is great. Current solutions are often
times built on legacy software, and although they still work, are definitively not the best solution
given our technological advances since the late twentieth century. Because of this, Software
Defined Radios are prone to:

• Failure

• System crashes

• Memory overloads

• General decay

Our envisioned solution for this rising issue is to completely redesign from the ground up, using
modern technology in both hardware and software the way we interface with SDRs today. We
will be simulating this solution on a Raspberry Pi, a very small yet powerful, computer. We will
establish a database and a web interface, connect the two, implementing these in the most
efficient language(s) available, including networking protocols and database languages. We will
then ensure that the end user has complete and total control, given they have the proper
authorization, over the system. From querying the database, collecting, sorting, and storing data,
controlling permissions and viewing system diagnostics, our envisioned solution will attempt to
right all the wrongs of current command and control interfaces for embedded systems.

Now that we have outlined our project’s scope, and gone into brief detail of our envisioned
solution, we will describe the technological challenges we feel will be most adverse in the
development of our solution.

4

Technological Challenges
Our solution must save data coming from the radio by multiple functions within the radio,
respond to queries of the database, define querying protocols, and define thread safe access from
multiple processes and or applications. It must also provide status of data transactions, contain
metadata, and be completely reconfigurable in the case of data deletion. Additionally, the
database must support multiple data formats, save state upon unexpected or scheduled system
shut down, and operate on limited computing resources.

From this list of requirements, we have derived the following five major areas to research as we
see them to be the pillars of success on which our project will be built on.

• Process Threading

• Database Management System (DBMS)

• Database and Application Language

• Networking Protocols

• API, Web Application and Database Interfacing

In the following sections, we will go into detail on these five areas. Describing the issue in depth,
providing desired characteristics of a potential solution. Then we will survey the viable options,
and make a recommendation based on the information given, and set forth a plan of development
and testing for the solution that we selected.

5

Technological Analysis: Multi-Process Vs Single-Process

Intro
In order to achieve the directives of this project, that state we want fast, clean, and efficient code
we need to decide between two clear set options. Do we choose to only have one process running
at any point in time, or do we utilize threading in an attempt to speed up our total run times by
running multiple processes at the same time.

Desired Characteristics
We are looking for the option here that not only provides us with a high amount of stability, but
one that offers the fastest route possible for processing and accessing our data. We are looking
for something that provides a safe environment to run our code in, avoiding any potential for
system locks or false sharing of data.

Alternatives
As it stands, there are only two options available to us. We can either utilize Multi-Processing, or
stick with Single-Processing. Each holds their own advantages and disadvantages. Multi-
Processing is the act of utilizing multiple cores on a processor to run multiple programs at the
same time. Single-Processing only allows for one program to be running at any time, halting
processing whenever a new program must be run.

Analysis
Multi-Processing offers us a quick and efficient way to speed up our run times. By fully using
the cores provided to us by our hardware we are able to run multiple tasks simultaneously. This,
when properly utilized with longer running tasks, cuts a significant amount of runtime off of our
program. However with running multiple programs at the same time we run the risk of
encountering issues with thread locking, false sharing, and data races.

Single-Processing is when we simply run our code in a linear way, jumping from one task to
another, pausing the current task whenever something else must be handled. This provides a lot
of safety as it never runs the risks that Multi-Processing can incur. However it can be extremely
difficult to cut down run times with Single-Processing, relying on efficient coding tactics to
make up for the speed increase.

Chosen Approach
We have decided to go with Multi-Processing. With its possibilities to handle multiple actions at
the same time we deem it is worth the risks that it carries with it. To mitigate these risks we can
partake in various coding standards and safety procedures when designing our code in order to
minimize these risks.

6

Proven Feasibility
In order to demonstrate and assure we have selected the appropriate choice, we can employ a
simple testing strategy that will be able to show that we are achieving our desired characteristics
as stated previously. Firstly we can test the speed of which our programs are running. By simply
coding in a simple timer, we can track the speed of which each thread completes its job, by
calculating the time needed to switch threads, we can then compare the total run time of our
program to one that would have been run in a Single-Process environment. If the speed
difference is greater than 10% between these two, then we can safely say that Multi-Processing
was a good choice.

7

Technology Analysis: Database Management System

Intro
In order to support a software defined radio, there needs to be a system in place to track how it is
performing and log any and all changes. One obvious solution to accomplish this is to implement
a database. A database to handle this needs to be small to accommodate the limited resources
available in an embedded system. For our purposes we are developing for a Raspberry Pi 3B+,
and this limitation will need to be kept in mind. Our solution should be general enough to also
apply to a range of physical devices.

Desired Characteristics
The most basic characteristic is that the database will save radio data provided to it from multiple
other applications and functions. This data needs to be stored even when the device is powered
off. The database also needs to safely survive unexpected shutdowns. Any data that has already
been stored should be accessible after power is restored.
A database that cannot be accessed is useless. Any database management system chosen will
need to respond to requests as well as provide data to other software. Aspects of this are covered
elsewhere in this document, including the network protocols, API, and web application. The
database will need to support a variety of data types including binary, hexadecimal, strings and
links to files. Another data type that needs to be supported is some form of date or time to be
used to timestamp operations. It is possible that a database management system does not include
every single necessary data type explicitly. If this is the case, then some kind of acceptable
substitute for these data types will need to exist.
In regards to the environment the database will exist, it needs to operate in a Linux operating
system. The exact Linux environment is not vital to this particular aspect of the project, but it
may affect other factors in development. Ideally the database management system will use the
fewest resources possible to allow other software on the embedded system device to perform
optimally in their operation. This means that any database will need to run with constraints to the
memory usage, the storage space, and the CPU utilization. Managing CPU utilization was
discussed in the previous section about threading, but the database management system will need
to handle multiple processes accessing the data simultaneously. This may or may not include
simultaneous writing to the database.

Alternatives
A popular database management system is SQLite. SQLite is commonly used for embedded
systems and mobile devices which aligns with our target range of devices. PostgreSQL is a
popular extensible database that can handle large numbers of simultaneous access and writes.
Both are open source projects that are freely available for use. PostgreSQL began development
back in 1986 making it the older of the two compared to SQLite which began in 2000. A third
alternative is developing a custom database management system for all of the desired
characteristics.

8

Analysis
SQLite and PostgreSQL are both powerful and popular choices as database management
systems. Both provide the same service, but with different levels of complexity and resource
usage. SQLite is designed to require very little storage on the device. It is designed to not be a
client server approach to databases, instead writing directly to the disk. SQLite offers a smaller
variety of specialized data types compared to PostgreSQL. This means that more general types
would be used instead. SQLite can allow multiple queries from multiple processes at once, but
only permits one to make changes at a time. PostgreSQL on the other hand is more of a classical
client server database that excels at data integrity and handling larger numbers of queries and
changes simultaneously. This comes at the cost of needing more resources, in particular memory
to handle multiple clients at once. PostgreSQL offers many ways of adding functionality, but this
also makes setup more complicated. This information was gathered from multiple independent
sources as well as limited testing to verify common differences and comparisons. In regards to
developing our own database management system, this would be the most challenging option. In
theory this would be the most flexible solution and grant a level of freedom to solve any
unforeseen complications. This advantage is less important when proper planning is done before.
It is impossible to quantify this theoretical solution that does not exist yet, and it could not match
solutions that have decades of development behind them.

Chosen Approach
To review, SQLite takes up fewer resources and offers a comparatively simple setup. PostgreSQL
has the capacity to be more powerful and allow more connections to the database at once, but
requires more resources to accomplish this. A custom solution would be the most difficult to
develop, but support any possible data types.

*Score out of 5

The above table quantifies how the three alternatives perform in different categories. SQLite and
PostgreSQL are really close overall and often had qualities that each chose to prioritize and
sacrifice. The most important factor is the memory usage and SQLite is the better option in this

Desired Trait SQLite PostgreSQL

Memory Usage 5 3

Supports Multiple Points of
Access

3 5

Data Types Supported 3 4

Data Integrity in the Event of
Error

4 5

Ease of Implementation 5 3

9

category. Any shortcomings that it has like a comparatively limited set of data types can be
solved by using more general data types. The flexibility that a custom solution could provide is
outweighed by the amount of work needed to develop and optimize it compared to both of the
other solutions. Currently SQLite appears to be the better choice with one caveat. SQLite does
not support as many connections as PostgreSQL, which could be enough to change what
database system we use. Currently we do not think it will be a limitation for the device, but it is
worth remembering.

Proven Feasibility
Testing is necessary to verify that SQLite is the correct choice. This will take the process of
prototyping a database to hold the required fields and simulating the environment. A test to see
the limits of the number of changes and requests made will need to be done. For any data types
not implemented, we will have to design the database to work with more general data types as
needed. To develop a minimum viable product, benchmarks of how it performs on the Raspberry
Pi as well as integrating it with other parts of the project will be done.

10

Technology Analysis: Database System and Language

Intro
Our database system will need an efficient programming language. Database systems run on
various different programming languages such as C, Java , Python, Perl, Javascript, and etc.
Most database systems can adapt to most programming languages, however some of them have
more efficient libraries to work with and are much more feasible to create modular code. Some
programming languages are more efficient than others and are more portable between multiple
operating systems.

Desired Characteristics
The project we are working on will be using a Linux based system and we will be using
threading in our program as well. We want to use a language that most of our team is familiar
with and have had lots of experience in as well to come up with the most optimal solution. With
that said C and C++ are the most commonly used languages in most modern database systems
people have nowadays. Using C could benefit us in the long run since we are using Linux and
are integrating multiple threads within our project. We also feel as if we can write much more
modular code for our database by using this programming language over using other languages.

Alternatives
Some great alternatives other than C would be C++, Java, or maybe React. Depending on how C
works out for us will determine this but from our research C and C++ would be the most optimal
programming languages to use for this project. Overall there are several alternatives we could
use though if we think the first language we go with is not optimal. C++ is another viable option
because we can use another language to wrap around the C interface.

Analysis
Overall there are several pros and cons for each language and how it can benefit being used in a
database system. Overall the ones that mostly stood out during research were C and C++ being
used in database systems. Below is a brief pros and cons list comparing C, and C++.

11

C C++

Chosen Approach
We’ve decided to go with C seeing that it is the most compatible with our project and our whole
team has experience in it. Also it would be more efficient to go with the threading that will be
implemented using POSIX threads.

Proven Feasibility
Overall this programming language we have decided to go with may be the most compatible
with the chosen database we have chosen which is SQLite. We may end up working on the
project and realizing that we may need to change the chosen programming language but for now
we are going with the C programming language for our database language. The one way may end
up deciding this is by how we implement the libraries that the languages have and utilize them
when we are coding.

Pros Cons Pros Cons

Free Entities that C++
lacks

Insufficient error
handling

Object oriented Uses manual memory
management

Team has more
practical experience

Procedural Uses namespaces

Effective libraries
available

Sufficient error handling

Easy to compile with
Linux

12

Technology Analysis: Network Protocols

Intro
In order to actually command and control multiple embedded chips, information will need to be
transported and in order to do that we will need to use a transport layer protocol. We will be
using one of the two most commonly used transport layer protocols TCP and UDP.

Desired Characteristics
For our solution to be feasible we must have the fastest most efficient transfer of data between
components. This quick transfer rate will allow for many commands to be send one after another
without degradation of performance in our system. Additionally, and perhaps for the same
reason, we must have low congestion upon transfer, as well as modularity within that data
transfer.

Alternatives
In Transport Layer Protocol there are really only two viable options.
TCP, or Transmission Control Protocol which is the more commonly used for most network
traffic today. It has proven reliable and has stood the test in the history of the internet, however
brief that may be.
UDP, or User Datagram Protocol is the less commonly used of our two explorations, and was
also developed nearly ten years after TCP.

Analysis
TCP could be seen as the correct option in many cases, it ensures delivery of packets and if one
or many have been lost somewhere along the line, it will attempt to resend. It accomplishes this
via a “handshake”. When the two systems of a network wish to connect and exchange data, this
handshake must be exchanged in order for any networking to occur.

However UDP, does not share this handshaking trait and is as a result, faster as far as data
transfers goes. Although it is faster there is potential for packet loss under unwelcome
circumstances since there is no verification between sender and receiver.

13

 Suggested Usages

 TCP vs. UDP

Chosen Approach
UDP for transfer of data to and from embedded chips will allow us to request and receive
updates from the device without worry about congestion and connection maintenance. The
occasional lost packet will not affect the embedded chips enough to justify the weight of TCP.

Proven Feasibility
Our command and control system will function similarly to DNS with one system receiving and
requesting data from possibly hundreds of other systems. While TCP may seem like the obvious
choice here due to the fact that speed is not a requirement it doesn’t actually provide us with any
more functionality than UDP. Like DNS our system can simply wait for a received response from
a request made over UDP and then resend the request if no response is received. A TCP request
would guarantee that a response is given but it would take more than double the time of a UDP
request which could simply re-request if an issue was found.

Having established our use of UDP, we now dive into the research of integration of front end and
back end, between database and GUI, and define how that relationship will function.

TCP UDP

Remote configuration changes Embedded device status updates

Requests to embdedded devices Information updates to front end

Data Transmission to the front end

Pros Cons Pros Cons

Reliable Data
Transfer

Slower Data Transfer
 Quick Data Transfer More Potential For
Lost Packets

Less Packet Loss Lots of Overhead Less Congestion
Issues

Less data Verification

Possible Congestion
Problem

Connectionless

Not as Scalable

14

Technology Analysis: API and Web Application - Database
Interface

Intro

Aside from the database we have chosen for our project, the next most important thing we must
consider is how said database will interact with our particular web application, the glue that ties
everything together, database, language, network protocols, and finally our application, which as
a whole makes up the Command and Control System. This web application interface must be
dynamic, working on a variety of different devices, be fast, scalable, and able to communicate
with the database in the most elegant way.

Desired Characteristics
For this project, we must create a fast, scalable, intuitive web application interface to
communicate with our database 24/7. It must automate basic operations, such as storage and
transfers, control basic input-output operations, contain a remote control interface for these
operations to communicate commands to the database allow for complete control over all
operations of the database.

Alternatives

In the team’s research into this topic, we found only a handful of outside approaches that could
potentially be molded to be optimally used in our project.

Firstly, the Eclipse Hono developed Command and Control API. We found this particular option
just by searching around for any API that might fit our needs for this project. This product is
used for some Command and Control systems, albeit seemingly less complex than our desired
product, and is mainly used to send and receive queries and responses, and to control the state of
actuators in certain applications.

Next, we found the SmartSDR Command Line API, developed by FlexRadio. We found this one
while looking up general information about the underpinnings of SDR’s and were immediately
intrigued. This as we found, is used solely for FlexRadio’s SmartSDR engine.

Lastly, as a default directive we also considered the idea of building our own tool to support
these actions. Being developed from scratch in house by the team would provide the easiest way
to truly customize every single part of the web application-database interface.

15

Analysis
The Eclipse Hono Command and Control API was the most relevant of the “out of the box”
options, and was promising upon first discovery and a cursory reading on eclipse’s website. It
had all the capabilities we would potentially need, from command sending, to automated
configuration, sending request / respond commands, and even came nicely prepackaged, ready to
go upon download or, “out of the box” as it were.

The option that we came across during this research period was the SmartSDR Command Line
API. At first this seemed too good to be true, an API specifically for software defined radios,
however, it was indeed too good to be true. The true nature of this specific API is really for
debugging FlexRadio’s SmartSDR engine software, which we would not be using, so however
insightful it was to see an API dedicated specifically to SDR’s we discarded this one rather
quickly.

After these two we began to really dig into the requirements we had been given by General
Dynamics, and started to explore the idea of building everything we needed for this portion of
the project from scratch, in house. This idea seemed appealing to us as we could customize it
every which way we wanted, and truly make it fit to the exact specifications from General
Dynamics.

Chosen Approach
After looking at all of our options, (only the ones listed above were worth discussing in this
document, however there were other alternatives that we came across, however briefly) we came
to the conclusion that while there are certain API’s that we could potentially mold and shape to
what we need, in the long run it would take too many resources, for the perhaps subpar result
they would deliver. Because of this the decision has been made unanimously by the members of
the team that developing our own tool, although not necessarily an API, to accomplish our tasks
would give the best result based on the scope of our project and the initial requirements set forth
by the General Dynamics Mission Systems team.

*Score out of 5

Desired Trait Command and Control
API

SmartSDR Command
Line API

In-House Solution

Customization 2 1 5

Ease of Use 3 3 4

Speed 3 3 4

Database Connection 3 2 5

16

As you can see from the table above, comparing the traits we thought important to the overall
success of this project, in this particular area of development, an in house solution wins across
the board. If we take advantage of the ability to start from scratch we can control exactly what is
in this solution, we can completely customize our GUI, and custom select network protocols for
various tasks based off of the inherent performance needs of our project, ensuring the most
efficient connection and interfacing between the application and our database making for the
fastest, most user friendly option.

Proven Feasibility
In the coming weeks, as we gather more and expand upon previously set forth requirements, we
plan to begin building this solution, and as soon as possible, getting it connected and interfacing
with our chosen database. From there we can perform tests sending information from the
database to the application, and commands from the application to the database, and confirm our
hypothesis that building this tool in house was and is the best option for our situation.

For any Command and Control solution, all parts must integrate into each other, and function
both independently to do individual tasks, and as a whole, do accomplish an over all goal. The
following section will detail how we intend to make the five major areas you’ve just read about
above work together in such a way.

17

Technological Integration
As stated above, for a solution like this to work, as complex as it is, all parts must seamlessly
integrate with one another, and be able to function independently and together as needed by even
the most basic functionality of a Command and Control System.

It should be clear at this point that that the entire success of our solution is predicated upon the
efficient execution of database commands on our database, and the ability of our application to
effectively and remotely control the SDR. The SDR will need to communicate with our database
effectively and in turn the database will need to communicate with our web application quickly
and efficiently, which will require the careful selection of networking protocols based off of a
given task that must be accomplished. Once the data reaches the application we will build it will
need to be simultaneously displayed, sorted, and stored in various different file formats
depending on the data types. The application will need to be built to run highly efficiently, and
create an intuitive way to interact with our system. By careful use of threading, and proper
choice of programming language, working in parallel with an efficient database and a well built
application we believe that our proposed solution will succeed on every level and fulfill every
requirement that we have been given by our client. As you can see in the diagram accompanying

this page, we have created a
document that details how the
interworking of our envisioned
solution will work based off of the
information we have been given and
the research we have done up to this
point.

18

Conclusion
As technology continues to evolve, and the needs of everyday embedded systems continue to
become more complex, especially as SDRs become more prevalent we must strive to make our
embedded system run on less power consumption, require less memory, and efficiently and
effectively execute its desired operations. Throughout the duration of this document we have
covered what we consider to be the five major areas that the success of this project will rely on.
We believe that the use of POSIX threading, working to maximize functionality to and from our
SQLite Database, in combination with our use of UDP for successful data transfer to our web
application, we will provide a highly efficient, optimally configured, nominally functioning
whole Command and Control system to provide proper control over a software defined radio.

Going forward we intend to continue to discuss requirements with our client, General Dynamics,
to further establish realistic and necessary requirements that will shape this project in the coming
months. We will begin to build a demonstration of our envisioned solution implementing all of
the technologies we have chosen earlier in this document, and through this building, we will
perform extensive testing, working in parallel with General Dynamics to verify our testing
results and gain further insight to build the best product we can with the time and resources we
have been given.

