
1

Northern Arizona University
Team Radio Pi

Capstone Team Project Sponsor Mentor

Tyler Plihcik General Dynamics David Failing

Brandon Click Mission Systems

Jefferey Williamson Randy Derr

Kaelen Carling

Saurabh Jena

Software Design Document

Version 2.1

February 10th, 2021

2

Contents
Introduction 3

Implementation Overview 5

Architectural Overview 6

Module and Interface Descriptions 8

Implementation Plan 13

Conclusion 15

Glossary 16

3

Introduction

The world runs on multitudes of IoT (Internet of Things) devices; everything from smart home
devices, to wifi extenders, speakers, even cars and kitchen appliances. These devices
communicate via radio waves and run on what are called embedded chipsets, which are
inherently small, in both footprint and power consumption. As our technology continues to
advance, the need for smaller and smaller embedded systems becomes more urgent.

For nearly three decades software defined radios (SDRs) have been revolutionizing the way
these IoT devices communicate. Leading the charge into this new era of is our project sponsor,
General Dynamics Mission Systems. The need for newer, smaller, more efficient yet more
powerful systems is great. Current solutions are often times built on legacy software, and
although they still work, are definitively not the best solution given our technological advances
since the late twentieth century. Because of this, Software Defined Radios are prone to:

• Failure

• System crashes

• Memory overloads

• General decay

Our envisioned solution is to redesign General Dynamics SDR Command and Control System
from the ground up. We will be simulating this solution on a Raspberry Pi, a very small yet
powerful, computer. We will establish an interconnected database and web interface in the most
efficient language(s) available, including networking protocols and database languages. We will
then ensure that the end user has complete and total control, given they have the proper
authorization, over the system. From querying the database to collecting, sorting, and storing
data to controlling permissions and viewing system diagnostics, our envisioned solution will
attempt to right all the wrongs of current command and control interfaces for embedded systems.

The following will serve as the design “blueprint” of our redesigned SDR command and control
system (C2 system). Our implementation must ensure that the overall footprint of the C2 system
remains very small as is will be running on an embedded chipset. Our implementation must also
be scaleable, that is, to be able to control and monitor many devices, as well as our backend
being able to handle a very high volume of requests, at times simultaneously, with no
degradation of quality of service. Our backend database will support a variety of data types
including but not limited to:

• Temperature

• Device ID primary key

4

• Log file pointers

• Device status

• Time

• Size of database

The remainder of datatypes and database support information can be found in the architectural
overview. In addition to these functional requirements, we must also ensure security, speed, and
quality. The C2 system must be useable and efficient under load.

This document will be used as a reference by Team Radio Pi members throughout the
development process, as well as by the team’s client and mentor as a vision and high level
overview of our products design.

5

Implementation Overview

Our envisioned solution, coupled with our directive from the project sponsor, is to build a
completely redesigned and reimagined C2 system to interact with GD’s software defined radios,
simulating real hardware with a Raspberry Pi 3 B+. Our solution will feature:

• Fast and efficient transfer of data

• Modern hardware

• A slick user interface

• Small overall footprint

• High throughput

• Low power consumption

• Elegant continuity of tasks and functions

Our solution will be a simulated prototype, which we will present to the project sponsor as a
proof of concept.

To accomplish this, as mentioned earlier, we will be using a Raspberry Pi 3 B+ as our hardware
platform, using the most recent release of Raspberry Pi OS, installed via noobs. In the realm of
software, our solution relies heavily on our database and networking protocol performance. We
will be implementing a SQLite database, which will store the datatypes mentioned above and
throughout this document.

Our networking protocols will be UDP and TCP. UDP will be used when the data being
transferred over the network is non system critical and time sensitive, this is because UDP does
not have functionality to ensure data delivery, but is faster than TCP. TCP will be used when the
data being transferred is system critical data or sensitive, this is because TCP favors confirmation
of data delivery over speed. This network will have a backbone of socket programming, written
in C, to allow for device communication.

Our front end user interface (UI) will rely on the python micro web framework Flask. Flask
makes our web development process smooth and painless while adding some python
functionality that is essential to our system.

6

Architectural Overview

The diagram pictured below (Figure 1) represents a high-level architectural view of our solution.
It containing three distinct major components, each with its own smaller yet still very important
components inside.

We will look at this diagram from the bottom up. The first, and most basic component of the
solution will be the SDR embedded device which itself has 3 smaller components in it, in our
case this is a Raspberry Pi 3 B+. The device will have an its own database, storing all device
specific information locally. This will communicate with our data manager which receives,
formats, and stores the data from the device. The data manager connects to the network we have
built for communication, this component connects the simulated SDR devices to the next major
component, our Shepherd C2 System.

The Shepherd C2 System is the “go-between” for the SDR devices and our front end user
interface (UI). We have dubbed this component the “Shepherd System” because it acts as the
shepherd, controlling his flock (our devices) and keeping them all in one place This major
component also contains three smaller components within it. Firstly, we have the Shepherd
System itself, which is networked to each SDR device over the network mentioned above. This
will contain the addresses for our front end, and the SDR device database. It will process, send,
store, and retrieve data. This SDR device database will be the staging area for all of our
embedded devices, where you can see all devices, on and offline, and is the access point to
individual device data. Driving this component is our custom built Shepherd API, which receives
and parses the requests from our front end to the Shepherd System..

Finally, we have the front end UI. This will be the component which allows the user to actually
command and control the devices being monitored on our command and control system. In the
interface, you will be able to see the status of all devices registered in our SDR device database,
and access the information in each one. The user will also be able to request specific information
by performing certain queries, after which the data will be displayed to the user in such a way
that is easily digestible.

Our solution as a whole, in short, works as follows: the simulated SDR device will store its data
locally, and be networked with our Shepherd System, this system will contain all SDR devices,
and the user will be able to access the Shepherd system and the devices it contains via the front
end user interface.

7

Figure 1. Architectural Diagram of Team Radio Pi C2 System.

8

Module and Interface Descriptions

The following is a continuation of the component descriptions from above, in greater detail.
Broken into three separate sections, each with its own sub sections which will describe each
smaller component.

Section 1:

SDR Embedded Device
The SDR embedded device will be simulated on a Raspberry Pi 3 B+, because of its low
resource consumption and availability it is a perfect substitute for an actual SDR device.

Section 1.1:

Embedded Device Database

The embedded device database is one of the core elements of our solution. It will house all
essential device information that is needed for the command and control system.

As you can see in the Entity Relationship Diagrams (ERD’s) below (Figures 2 and 2.1), the
database will have four main tables in it:

• Temp Log

• Device Information

• Process / Transition

• Connections

The Temperature Log table, or temp log for short, will contain the temperature of the devices
processor, and the time that temperature measurement was taken.

The Device Information table will contain the current status of the device, online or offline, the
device ID, which will serve as the primary key for the SDR device database, as well as for each
embedded database. It will also contain the size of the database to ensure we continue to be
efficient with our memory usage.

The Process / Transaction table will contain the status of the current running process:

• New

• Ready

9

• Waiting

• Running

• Terminated

As well as the time that process was loaded into the queue, and the instruction. In this case the
instruction will be database commands, select, update, delete, insert into, create, or alter.

The Process / Transaction table is related to the Connections table as follows. Each process /
transaction can have one and only one connection, and each connection can have zero or many
processes / transactions.

The connections table will contain the time in which the connection began, the time it ended (an
optional entry into the database as the connection may be viewed before ending). There will also
be a connection ID, which will serve ads the primary key for this particular table as well as a
foreign key in the process / transaction table. Finally, the connections table will store the type of
connection being used.

Figure 2. Embedded Device Database ERD

10

Figure 2.1. Embedded Device Database ERD

11

Section 1.2:

Data Manager

The device data manager will interact with the embedded device database by storing device stats
data, and be able to access and query the device database. This includes retrieving data from the
device, formatting that data, and then storing it.

Section 1.3:

Embedded Device Networking Component

The embedded device networking component is the data pipeline driving our solution. This will
implement two different protocols, UDP and TCP. As mentioned earlier in this document, TCP
will be used for system critical, non time sensitive data transfer. UDP will be used for non system
critical, time sensitive data. The networking component will receive data requests from the
Shepherd C2 System, process those requests, and send them to the correct destinations within the
system.

Section 2:

Shepherd C2 System
The Shepherd C2 System the backbone of our solution. Its purpose is to have all of the SDR
devices stored in one place, virtually speaking. This will streamline the management of the
devices.

Section 2.1:

SDR Device Database

The SDR device database will be a small
database as far as tables are concerned, as it
compares to the embedded database
contained on each device. It will simply be a
table containing the SDR device ID, which is
used to then access the individual device’s
data. A visual is shown to the right (Figure 3).

 Figure 3. SDR Device Database

12

Section 2.2:

Shepherd System

The Shepherd system is the most complex part of the overall shepherd component. It will use
front end addresses and a connection to the SDR devices database to process requests, send
status requests, send data to the front end UI, store data in the device database (in the case a new
device is registered, or an old device is removed), and to retrieve data from the SDR device
database. This system interacts closely with the custom Shepherd API described below.

Section 2.3:

Shepherd API

The Shepherd API is our mediator between the front end user interface, and the Shepherd C2
System. This component will receive requests from the UI, and parse those requests out to the
Shepherd System, which initiates contact with the SDR database, which obtains information
from each individual device over the network, using either UDP or TCP depending on the task.

Section 3:

Front End User Interface
The front end user interface is a stand alone component of our system and connects to the
Shepherd C2 System. This interface will allow the user to view all registered devices, their status
access the data stores in their database, query specific information from specific devices, as well
as add or remove devices from the system as a whole, depending on the level of access the user
has within the system.

13

Implementation Plan

Figure 4. Team Radio Pi Implementation Timeline, visualized as a Gantt Chart.

As seen above in the project time line (Figure 4), we have a few large tasks that must be
completed in January, those being Python to C language conversions of certain parts of our
source code, and database expansion. For our prototype, we decided to use python to prove that
what we had proposed to our client was feasible, for its ease of use and practically unlimited
functionality, we chose python. Now that our prototyping phase is over and we are in full
development, it is essential that we convert specific parts to C for the C language’s low overhead
high efficiency properties. In the prototyping phase we also only used one table with two
attributes for our database, the temperature table, containing temperature and time of
measurement. Now that we have proven feasibility, we expand our database to conform to what
is stated in our signed requirements document. Starting in February, following regularly
scheduled end of month integration testing on completed modules, we being to do the heavy
lifting on the front end user interface. In addition to that, our main large task in February is to
implement protocol swapping based off of the task, as mentioned throughout this document. This

14

module will be essential to providing the quickest and most reliable service to our client.
Additionally, we will begin security testing to ensure the integrity of the data being transferred
back and forth on our network. These two tasks will continue into early March. At the end of this
phase we will perform the integration testing of new modules, as per usual at the end of the
month, or thereabouts. Beginning in March, the front end engineering will be nearing
completion, it will be important in meeting our non functional requirements of usability and ease
of learning of the UI for us to have extensive user testing. This testing will be done internally,
only by those who have signed the necessary legal documents provided to us by the client to
ensure authorized access only. We will also being stress testing our system at this time to ensure
that it can handle extremely large volumes of traffic and have no degradation of service
whatsoever. As March comes to a close, we will be mostly finished with all engineering, it is at
this point we will be making final touches and finishing polishes on the product, compiling user
guides and manuals, and look forward to final product delivery in late April.

15

Conclusion
This document stands as a “blueprint” for our solution. Containing a high level overview of the
solution components, followed by an in-depth description of each individual component, we
have laid the ground work for a successful development phase looking forward to final product
delivery in late April, 2021. All milestones and tasks have been completed on time and
engineered very well to this point at the writing of this document, and no roadblocks are foreseen
by team leadership that would cause a delay in delivery. Our solution will be delivered to
General Dynamics Mission Systems as a proof of concept to a proposed solution of a completely
redesigned command and control system for embedded products. Using modern hardware and
well engineered software, we believe that our solution will exceed the expectations set forth to
Team Radio Pi by GDMS, and the NAU Capstone staff.

16

Glossary
Noobs - New out of the box software, noobs is a compressed configuration file making the install
of a new system easy and fast

UDP - User datagram protocol, a core member of the internet protocol suite

TCP - transmission control protocol, a core member of the internet protocol suite

UI - user interface, the interaction point between human user and computer system

ERD - entity relationship diagram, a structural diagram used in database design

Overhead - an excess of computing time and resources spent on a certain process

